SpatialDownscaling: Methods for Spatial Downscaling Using Deep Learning

The aim of the spatial downscaling is to increase the spatial resolution of the gridded geospatial input data. This package contains two deep learning based spatial downscaling methods, super-resolution deep residual network (SRDRN) (Wang et al., 2021 <doi:10.1029/2020WR029308>) and UNet (Ronneberger et al., 2015 <doi:10.1007/978-3-319-24574-4_28>), along with a statistical baseline method bias correction and spatial disaggregation (Wood et al., 2004 <doi:10.1023/B:CLIM.0000013685.99609.9e>). The SRDRN and UNet methods are implemented to optionally account for cyclical temporal patterns in case of spatio-temporal data. For more details of the methods, see Sipilä et al. (2025) <doi:10.48550/arXiv.2512.13753>.

Version: 0.1.2
Depends: R (≥ 4.4.0)
Imports: stats, tensorflow, keras3, magrittr, Rdpack, raster, abind
Published: 2026-01-26
DOI: 10.32614/CRAN.package.SpatialDownscaling (may not be active yet)
Author: Mika Sipilä ORCID iD [aut, cre, cph], Claudia Cappello ORCID iD [aut], Sandra De Iaco ORCID iD [aut], Klaus Nordhausen ORCID iD [aut], Sara Taskinen ORCID iD [aut]
Maintainer: Mika Sipilä <mika.e.sipila at jyu.fi>
License: GPL-3
NeedsCompilation: no
SystemRequirements: Python (>= 3.8), TensorFlow, Keras
Materials: README, NEWS
CRAN checks: SpatialDownscaling results

Documentation:

Reference manual: SpatialDownscaling.html , SpatialDownscaling.pdf

Downloads:

Package source: SpatialDownscaling_0.1.2.tar.gz
Windows binaries: r-devel: not available, r-release: not available, r-oldrel: not available
macOS binaries: r-release (arm64): not available, r-oldrel (arm64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=SpatialDownscaling to link to this page.