
Package ‘SpatialDownscaling’
January 26, 2026

Type Package

Title Methods for Spatial Downscaling Using Deep Learning

Version 0.1.2

Date 2026-01-21

Imports stats, tensorflow, keras3, magrittr, Rdpack, raster, abind

Description The aim of the spatial downscaling is to increase the spatial resolution of the grid-
ded geospatial input data. This package contains two deep learning based spatial downscal-
ing methods, super-resolution deep residual network (SR-
DRN) (Wang et al., 2021 <doi:10.1029/2020WR029308>) and UNet (Ron-
neberger et al., 2015 <doi:10.1007/978-3-319-24574-4_28>), along with a statistical base-
line method bias correction and spatial disaggrega-
tion (Wood et al., 2004 <doi:10.1023/B:CLIM.0000013685.99609.9e>). The SR-
DRN and UNet methods are implemented to optionally account for cyclical temporal pat-
terns in case of spatio-temporal data. For more details of the methods, see Sip-
ilä et al. (2025) <doi:10.48550/arXiv.2512.13753>.

License GPL-3

Encoding UTF-8

LazyData true

RdMacros Rdpack

RoxygenNote 7.3.2

SystemRequirements Python (>= 3.8), TensorFlow, Keras

Depends R (>= 4.4.0)

NeedsCompilation no

Author Mika Sipilä [aut, cre, cph] (ORCID:
<https://orcid.org/0000-0002-5912-840X>),

Claudia Cappello [aut] (ORCID: <https://orcid.org/0000-0002-7905-5068>),
Sandra De Iaco [aut] (ORCID: <https://orcid.org/0000-0003-1820-2068>),
Klaus Nordhausen [aut] (ORCID: <https://orcid.org/0000-0002-3758-8501>),
Sara Taskinen [aut] (ORCID: <https://orcid.org/0000-0001-9470-7258>)

Maintainer Mika Sipilä <mika.e.sipila@jyu.fi>

Repository CRAN

Date/Publication 2026-01-26 16:20:38 UTC

1

https://doi.org/10.1029/2020WR029308
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
https://doi.org/10.48550/arXiv.2512.13753
https://orcid.org/0000-0002-5912-840X
https://orcid.org/0000-0002-7905-5068
https://orcid.org/0000-0003-1820-2068
https://orcid.org/0000-0002-3758-8501
https://orcid.org/0000-0001-9470-7258

2 bcsd

Contents
bcsd . 2
predict.BCSD . 4
predict.srdrn . 5
predict.UNet . 6
srdrn . 8
unet . 11
weather_italy . 16

Index 17

bcsd Bias Correction Spatial Disaggregation (BCSD) for statistical down-
scaling

Description

Implements the BCSD method for statistical downscaling of climate data. The approach consists
of two main steps: (1) bias correction using quantile mapping and (2) spatial disaggregation using
interpolation.

Usage

bcsd(
coarse_data,
fine_data,
method = "bilinear",
n_quantiles = 100,
reference_period = NULL,
extrapolate = TRUE,
normalize = TRUE

)

Arguments

coarse_data A 3D array of coarse resolution input data. The two first dimensions are the
spatial coordinates (e.g., latitude and longitude) in grid, and the third dimension
refers to the training samples (e.g. time).

fine_data A 3D array of fine resolution output data. The two first dimensions are the
spatial coordinates (e.g., latitude and longitude) in grid, and the third dimension
refers to the training samples (e.g. time).

method Character. Interpolation method that is used by resample to perform predictions.
The options are (’bilinear’, ’ngb’) that refer to bilinear and nearest neighbor
interpolation, respectively. Default: ’bilinear’.

n_quantiles Integer. Number of quantiles for bias correction. Default: 100.

bcsd 3

reference_period

Vector. Start and end indices for the reference period. Default: NULL (use all
data).

extrapolate Logical. Indicating whether to extrapolate corrections outside the range of the
training data. Default: TRUE.

normalize Logical. Indicating whether to normalize data before processing. Default: TRUE.

Details

The BCSD method is a statistical downscaling technique that combines bias correction and spatial
disaggregation. It uses quantile mapping to correct biases in coarse resolution data and then applies
spatial interpolation to disaggregate the data to a finer resolution.

The function allows for the interpolation methods "bilinear" and "ngb", that perform bilinear and
nearest neighbor interpolation, respectively. For more information on these methods, please refer
to the documentation for resample. The function provides the option to normalize data before
processing, by using the normalize argument. The quantile mapping step involves calculating
quantiles from the coarse data and mapping them to the fine data. The interpolation step uses the
specified method to create a fine resolution grid from the coarse data.

Value

Object of class BCSD containing the trained model components:

quantile_map Quantile mapping function for bias correction.

interpolation_params

Parameters for spatial interpolation.

axis_names Names of the axes in the fine data.

scalers List of scalers. If normalize = TRUE, the list contains scalers coarse and fine
for the coarse and fine data, respectively. If normalize = FALSE, the list is
empty.

model_params List of all model parameters.

Examples

Simple example with random data
coarse <- array(rnorm(8 * 8 * 10), dim = c(8, 8, 10)) # e.g. lat x lon x time
fine <- array(rnorm(16 * 16 * 10), dim = c(16, 16, 10)) # e.g. lat x lon x time
model <- bcsd(coarse, fine, method = "bilinear", n_quantiles = 100)
coarse_new <- array(rnorm(8 * 8 * 3), dim = c(8, 8, 3)) # e.g. lat x lon x time
predictions <- predict(model, coarse_new)

4 predict.BCSD

predict.BCSD Predict method for BCSD model

Description

This function generates predictions using a trained BCSD model.

Usage

S3 method for class 'BCSD'
predict(object, newdata, ...)

Arguments

object A BCSD model object, an output of the bcsd function.

newdata Array or raster that has the new coarse resolution data to be downscaled. The
resolution should match the resolution of the training data. The first two dimen-
sions are the spatial dimensions and the third refers to the training samples (e.g.
time).

... Additional arguments (not used).

Details

The predict method applies the trained BCSD model to new coarse resolution data. It performs
bias correction using the quantile mapping function and then applies spatial interpolation, specified
during model training with the method parameter, to generate fine resolution predictions.

Value

A matrix, array or raster of the downscaled predictions at fine resolution.

See Also

bcsd for training the model.

Examples

Simple example with random data
coarse <- array(rnorm(10*20*30), dim = c(10, 20, 30)) # time x lat x lon
fine <- array(rnorm(10*40*60), dim = c(10, 40, 60)) # time x lat x lon
model <- bcsd(coarse, fine, method = "bilinear", n_quantiles = 100)
New coarse data for prediction
new_coarse <- array(rnorm(5*20*30), dim = c(5, 20, 30)) # time x lat x lon
predictions <- predict(model, new_coarse)
Check dimensions of predictions
dim(predictions) # Should be (5, 40, 60) for time x lat x lon

predict.srdrn 5

predict.srdrn Predict method for SRDRN

Description

This function makes predictions using a trained SRDRN model. It takes a trained SRDRN object
and new data as input, normalizes the new data, and uses the model to make predictions. The
predictions are then rescaled back to the original range.

Usage

S3 method for class 'srdrn'
predict(object, newdata, time_points = NULL, ...)

Arguments

object A trained SRDRN object.

newdata A 3D array of shape (N_1, N_1, n) representing the new coarse resolution data to
be downscaled, where N_1 x N_1 is the coarse resolution of the training samples
and n is the number of samples to be downscaled. The two first dimensions are
the spatial coordinates in grid, and the third dimension refers to the samples (e.g.
time).

time_points An optional numeric vector of time points of the new data.

... Additional parameters (not used).

Details

The predict method for the SRDRN class takes a trained SRDRN object and new data as input. The
input resolution (N_1 x N_1) has to match the input dimension of the training samples. The method
normalizes the new data using the same min-max scaling used during training. The new data is
reshaped to match the input shape of the model, and the model is used to make predictions. The
output data has the same fine resolution (N_2 x N_2) as the target training data. The predictions are
rescaled back to the original range using the min-max scaling parameters of the training data. The
output is a 3D array of the predicted data.

Value

A 3D array of shape (N_2, N_2, n) representing the predicted data, where N_2 x N_2 is the fine
resolution of the training samples.

See Also

srdrn for fitting SRDRN model.

6 predict.UNet

Examples

Generate dummy low-resolution (16×16) and high-resolution (32×32) data
n <- 10
input <- array(runif(8 * 8 * n), dim = c(8, 8, n))
target <- array(runif(16 * 16 * n), dim = c(16, 16, n))

time_vec <- 1:n
model <- srdrn(

coarse_data = input,
fine_data = target,
time_points = time_vec,
cyclical_period = 365,
temporal_layers = c(32, 64),
epochs = 1,
batch_size = 4

)

n_new <- 3
newdata <- array(runif(8 * 8 * n_new),

dim = c(8, 8, n_new))
predictions <- predict(model, newdata, 1:n_new)

predict.UNet Predict function for UNet model

Description

This function generates predictions using a trained UNet model.

Usage

S3 method for class 'UNet'
predict(object, newdata, time_points = NULL, ...)

Arguments

object A UNet model object.

newdata Array or list of arrays. New data to predict on in format (x, y, time).

time_points An optional numeric vector containing the time points of the new data.

... Additional arguments (not used).

Details

The predict function applies the trained UNet model to new coarse data. It performs denormaliza-
tion if the model was trained with normalization.

predict.UNet 7

Value

Array of predictions in format (x, y, time).

See Also

unet for fitting UNet model.

Examples

Create tiny dummy data:
Coarse grid: 8x8 → Fine grid: 16x16
nx_c <- 8
ny_c <- 8
nx_f <- 16
ny_f <- 16
T <- 5 # number of time steps

Coarse data:
coarse_data <- array(runif(nx_c * ny_c * T),

dim = c(nx_c, ny_c, T))

Fine data:
fine_data <- array(runif(nx_f * ny_f * T),

dim = c(nx_f, ny_f, T))

Optional time points
time_points <- 1:T

Fit a tiny UNet (very small filters to keep the example fast)
model_obj <- unet(
coarse_data,
fine_data,
time_points = time_points,
filters = c(8, 16),
initial_filters = c(4),
epochs = 1,
batch_size = 4,
verbose = 0

)

T_new <- 3
newdata <- array(runif(nx_c * ny_c * T_new),

dim = c(nx_c, ny_c, T_new))
predictions <- predict(model_obj, newdata, 1:T_new)

8 srdrn

srdrn Super Resolution CNN for Spatial Downscaling

Description

This function implements a Time-aware Super Resolution Deep Neural Network (SRDRN) for
spatial downscaling of grid based data. The function allows an option for adding a temporal module
for spatio-temporal applications.

Usage

srdrn(
coarse_data,
fine_data,
time_points = NULL,
val_coarse_data = NULL,
val_fine_data = NULL,
val_time_points = NULL,
cyclical_period = NULL,
temporal_basis = c(9, 17, 37),
temporal_layers = c(32, 64, 128),
temporal_cnn_filters = c(8, 16),
temporal_cnn_kernel_sizes = list(c(3, 3), c(3, 3)),
activation = "relu",
cos_sin_time = FALSE,
use_batch_norm = FALSE,
output_channels = 1,
num_residual_blocks = 3,
num_res_block_filters = 64,
upscaling_filters = c(64, 32, 16, 8, 4, 2),
validation_split = 0,
start_from_model = NULL,
metrics = c(),
epochs = 10,
batch_size = 32,
seed = NULL

)

Arguments

coarse_data A 3D array of shape (N_1, N_1, n) representing the coarse resolution input data
in grid, where N_1 x N_1 is the coarse resolution and n is the sample size. The
two first dimensions are the spatial coordinates and the third dimension refers to
the samples (e.g. time).

fine_data A 3D array of shape (N_2, N_2, n) representing the fine resolution target data in
grid, where N_2 x N_2 is the fine resolution and n is the sample size. The two

srdrn 9

first dimensions are the spatial coordinates and the third dimension refers to the
samples (e.g. time).

time_points An optional numeric vector of length n representing the time points associated
with each sample.

val_coarse_data

An optional 3D array of shape (N_1, N_1, n) representing the input validation
data.

val_fine_data An optional 3D array of shape (N_2, N_2, n) representing the target validation
data.

val_time_points

An optional numeric vector of length n representing the time points of the vali-
dation samples.

cyclical_period

An optional numeric value representing the cyclical period for time encoding
(e.g. 365 for yearly seasonality).

temporal_basis A numeric vector specifying the temporal basis functions to use for time encod-
ing (default is c(9, 17, 37)).

temporal_layers

A numeric vector specifying the number of units in each dense layer for time
encoding (default is c(32, 64, 128)).

temporal_cnn_filters

A numeric vector specifying the number of filters in each convolutional layer
for temporal feature processing (default is c(8, 16)).

temporal_cnn_kernel_sizes

A list of integer vectors specifying the kernel sizes for each convolutional layer
in the temporal feature processing (default is list(c(3, 3), c(3, 3))).

activation A character string specifying the activation function to use in the model to intro-
duce nonlinearity. The options are listed in https://keras.io/api/layers/
activations. Default is "relu".

cos_sin_time A logical value indicating whether to use cosine and sine transformations for
time encoding (default is FALSE).

use_batch_norm A logical value indicating whether to use batch normalization in the residual
blocks (default is FALSE).

output_channels

An integer specifying the number of output channels (default is 1).
num_residual_blocks

An integer specifying the number of residual blocks in the model (default is 3).
num_res_block_filters

A integer specifying the number of filters in each residual block (default is 64).
upscaling_filters

A numeric vector specifying the number of filters in each upsampling layer (by
default, the first X values from vector c(64, 32, 16, 8, 4, 2) are selected, where
X is the upscaling factor.).

validation_split

A numeric value between 0 and 1 specifying the fraction of the training data to
use for validation (default is 0.2).

https://keras.io/api/layers/activations
https://keras.io/api/layers/activations

10 srdrn

start_from_model

An optional pre-trained Keras model to continue training from (default is NULL).

metrics A character vector specifying additional metrics to monitor during training (de-
fault is an empty vector).

epochs An integer specifying the number of training epochs (default is 10).

batch_size An integer specifying the batch size for training (default is 32).

seed An optional integer value to set the random seed for reproducibility (default is
NULL).

Details

The Super Resolution Deep Residual Network (SRDRN) implements a deep-learning-based spa-
tial downscaling approach inspired by Super-Resolution CNNs (SRCNN) (Dong et al. 2015) and
extended for environmental applications following (Wang et al. 2021).

The objective of SRDRN is to learn a mapping from coarse-resolution gridded fields to finer-
resolution targets by combining convolutional feature extraction, residual learning, and sub-pixel
upsampling. The method is designed for both purely spatial and fully spatio-temporal downscaling
when time information is provided. The method consists of the following main components:

• Feature Extraction Block: An initial convolutional layer extracts low-level spatial features
from the coarse-resolution input.

• Residual Blocks: A sequence of residual blocks learn higher-order spatial dependencies. Resid-
ual connections stabilize training and allow deeper representations.

• Upsampling Module: Sub-pixel convolution (pixel shuffle) layers upscale feature maps to
match the high-resolution target grid.

If time_points are provided, the model includes an auxiliary temporal branch. Time is encoded
either via:

• Radial basis temporal encodings (temporal_basis), or

• Cosine–sine cyclical encodings (cos_sin_time = TRUE).

The encoded temporal features pass through a multilayer perceptron (temporal_layers) and are
reshaped to spatial form before being concatenated with CNN features. This enables learning time-
varying downscaling dynamics (e.g., seasonality, long-term trends). The function supports missing
data via masking.

Value

An object of class SRDRN containing:

model The trained Keras model.

input_mean The mean value of the input data used for normalization.

input_sd The standard deviation of the input data used for normalization.

target_mean The mean value of the target data used for normalization.

target_sd The standard deviation of the target data used for normalization.

input_mask A logical array indicating the missing values in the input data.

unet 11

target_mask A logical array indicating the missing values in the target data.

min_time_point The minimum time point in the input data.

max_time_point The maximum time point in the input data.

cyclical_period

The cyclical period used for temporal encoding.

axis_names A list containing the names of the axes (longitude, latitude, time).

history The training history of the model.

References

Dong C, Loy CC, He K, Tang X (2015). “Image super-resolution using deep convolutional net-
works.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295–307.

Wang F, Tian D, Lowe L, Kalin L, Lehrter J (2021). “Deep learning for daily precipitation and
temperature downscaling.” Water Resources Research, 57(4), e2020WR029308. doi:10.1029/
2020WR029308.

Examples

Generate dummy low-resolution (16×16) and high-resolution (32×32) data
n <- 20
input <- array(runif(16 * 16 * n), dim = c(16, 16, n))
target <- array(runif(32 * 32 * n), dim = c(32, 32, n))

model1 <- srdrn(
coarse_data = input,
fine_data = target,
epochs = 1,
batch_size = 4

)

unet UNet model for spatial downscaling using deep learning

Description

Implements a time-aware UNet convolutional neural network for spatial downscaling of grid data.
Time-aware UNet features an encoder-decoder architecture with skip connections and a temporal
module. The function allows an option for adding a temporal module for spatio-temporal applica-
tions.

https://doi.org/10.1029/2020WR029308
https://doi.org/10.1029/2020WR029308

12 unet

Usage

unet(
coarse_data,
fine_data,
time_points = NULL,
val_coarse_data = NULL,
val_fine_data = NULL,
val_time_points = NULL,
cyclical_period = NULL,
cycle_onehot = FALSE,
cos_sin_transform = FALSE,
temporal_basis = c(9, 17, 37),
temporal_layers = c(32, 64, 128),
temporal_cnn_filters = c(8, 16),
temporal_cnn_kernel_sizes = list(c(3, 3), c(3, 3)),
initial_filters = c(16),
initial_kernel_sizes = list(c(3, 3)),
filters = c(32, 64, 128),
kernel_sizes = list(c(3, 3), c(3, 3), c(3, 3)),
use_batch_norm = FALSE,
dropout_rate = 0.2,
activation = "relu",
final_activation = "linear",
optimizer = "adam",
learning_rate = 0.001,
loss = "mse",
metrics = c(),
batch_size = 32,
epochs = 10,
start_from_model = NULL,
validation_split = 0,
normalize = TRUE,
callbacks = NULL,
seed = NULL,
verbose = 1

)

Arguments

coarse_data 3D array. The coarse resolution input data in format (x, y, time).

fine_data 3D array. The fine resolution target data in format (x, y, time).

time_points Numeric vector. Optional time points corresponding to each time step in the
data.

val_coarse_data

An optional 3D array of coarse resolution input data in format (x, y, time).

val_fine_data An optional 3D array of fine resolution target data in format (x, y, time).

unet 13

val_time_points

An optional numeric vector of length n representing the time points of the vali-
dation samples.

cyclical_period

Numeric. Optional period for cyclical time encoding (e.g., 365 for yearly sea-
sonality).

cycle_onehot Boolean. If TRUE, a onehot encoded vector of temporal cycles is added as input
to temporal module.

cos_sin_transform

Logical. Whether to use cosine-sine transformation for time features. Default:
FALSE.

temporal_basis A numeric vector specifying the temporal basis functions to use for time encod-
ing (default is c(9, 17, 37)).

temporal_layers

A numeric vector specifying the number of units in each dense layer for time
encoding (default is c(32, 64, 128)).

temporal_cnn_filters

A numeric vector specifying the number of filters in each convolutional layer
for temporal feature processing (default is c(8, 16)).

temporal_cnn_kernel_sizes

A list of integer vectors specifying the kernel sizes for each convolutional layer
in the temporal feature processing (default is list(c(3, 3), c(3, 3))).

initial_filters

Integer vector. Number of filters in the initial convolutional layers. Default:
c(16).

initial_kernel_sizes

List of integer vectors. Kernel sizes for the initial convolutional layers. Default:
list(c(3, 3)).

filters Integer vector. Number of filters in each convolutional layer. Default: c(32, 64,
128).

kernel_sizes List of integer vectors. Kernel sizes for each convolutional layer. Default:
list(c(3, 3), c(3, 3), c(3, 3)).

use_batch_norm Logical. Whether to use batch normalization after convolutional layers. Default:
FALSE.

dropout_rate Numeric. Dropout rate for regularization. Default: 0.2.

activation Character. Activation function for hidden layers. The options are listed in
https://keras.io/api/layers/activations. Default: "relu".

final_activation

Character. Activation function for output layer. The options are listed in https:
//keras.io/api/layers/activations. Default: "linear".

optimizer Character or optimizer object used in keras3::compile (see e.g. optimizer_adam).
Optimizer for training. The options are listed in https://keras.io/api/optimizers.
Default: "adam".

learning_rate Numeric. Learning rate for optimizer. Default: 0.001.

https://keras.io/api/layers/activations
https://keras.io/api/layers/activations
https://keras.io/api/layers/activations
https://keras.io/api/optimizers

14 unet

loss Character or loss function used in keras3::compile (see Loss). Loss function
for training. The options are listed in https://keras.io/api/losses. De-
fault: "mse".

metrics Optional character vector used in keras3::compile. Metrics to track during
training. The options are listed in https://keras.io/api/metrics. Default
is an empty vector.

batch_size Integer. Batch size for training. Default: 32.

epochs Integer. Number of training epochs. Default: 100.
start_from_model

An optional pre-trained Keras model to continue training from (default is NULL).
validation_split

Numeric. Fraction of data to use for validation. Default: 0.

normalize Logical. Whether to normalize data before training. Default: TRUE.

callbacks List. Keras callbacks for training (see Callback). Default: NULL.

seed Integer. Random seed for reproducibility. Default: NULL.

verbose Integer. Verbosity mode (0, 1, or 2). Default: 1.

Details

The UNet architecture (Ronneberger et al. 2015) is widely used in image processing tasks and
has recently been adopted for spatial downscaling applications (Sha et al. 2020). The method
implemented here consists of:

1. Initial Upscaling – Coarse-resolution inputs are first upsampled using bilinear interpolation
to match the spatial dimensions of the fine-resolution target.

2. Initial Feature Extraction – Multiple convolutional layers extract low-level features before
entering the encoder path.

3. Encoder Path – A sequence of convolutional blocks with max-pooling reduces spatial dimen-
sions while increasing feature depth.

4. Decoder Path – Spatial resolution is recovered via bilinear upsampling and convolutional
layers. Skip connections from the encoder help preserve fine-scale information.

5. Skip Connections – These link encoder and decoder layers at matching resolutions, improv-
ing gradient flow and retaining fine spatial structure.

6. Temporal Module (optional) – Time information can be incorporated through cosine–sine
encoding, one-hot seasonal encoding, or radial-basis temporal features. These are passed
through dense layers and reshaped to merge with the UNet bottleneck.

The function supports missing data via masking, optional normalization, validation data, and con-
figurable UNet depth and width.

Value

List containing the trained model and associated components:

model Trained Keras model

input_mask Mask for input data based on the missing values

https://keras.io/api/losses
https://keras.io/api/metrics

unet 15

target_mask Mask for target data based on the missing values

min_time_point Minimum time point in the training data

max_time_point Maximum time point in the training data
cyclical_period

Cyclical period for time encoding

max_season Maximum season for time encoding

axis_names Names of the axes in the input data

history Training history

References

Ronneberger O, Fischer P, Brox T (2015). “U-net: Convolutional networks for biomedical image
segmentation.” In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015:
18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18,
234–241. Springer. doi:10.1007/9783319245744_28.

Sha Y, Gagne II DJ, West G, Stull R (2020). “Deep-learning-based gridded downscaling of sur-
face meteorological variables in complex terrain. Part II: Daily precipitation.” Journal of Applied
Meteorology and Climatology, 59(12), 2075–2092.

Examples

Create tiny dummy data:
Coarse grid: 8x8 → Fine grid: 16x16
nx_c <- 8
ny_c <- 8
nx_f <- 16
ny_f <- 16
T <- 5 # number of time steps

Coarse data:
coarse_data <- array(runif(nx_c * ny_c * T),

dim = c(nx_c, ny_c, T))

Fine data:
fine_data <- array(runif(nx_f * ny_f * T),

dim = c(nx_f, ny_f, T))

Optional time points
time_points <- 1:T

Fit a tiny UNet (very small filters to keep the example fast)
model_obj <- unet(
coarse_data,
fine_data,
time_points = time_points,
filters = c(8, 16),
initial_filters = c(4),
epochs = 1,

https://doi.org/10.1007/978-3-319-24574-4_28

16 weather_italy

batch_size = 4,
verbose = 0

)

weather_italy Daily Weather Data for Italy

Description

A dataset containing daily gridded weather variables for Italy that are obtained from the ERA5-Land
dataset (Hersbach et al. 2023).

Usage

weather_italy

Format

A 4-dimensional array with dimensions:

longitude Longitude grid points (0.2 degree resolution)

latitude Latitude grid points (0.2 degree resolution)

variable Weather variables: relative humidity (%), temperature (°C), total precipitation (meters per
day)

time Daily measurements from 2023-11-01 to 2023-12-31

Index

∗ datasets
weather_italy, 16

bcsd, 2, 4

Callback, 14

Loss, 14

optimizer_adam, 13

predict.BCSD, 4
predict.srdrn, 5
predict.UNet, 6

resample, 2, 3

srdrn, 5, 8

unet, 7, 11

weather_italy, 16

17

	bcsd
	predict.BCSD
	predict.srdrn
	predict.UNet
	srdrn
	unet
	weather_italy
	Index

