
The affi package

Tamás K Papp∗

May 19, 2008

Abstract

This is a tutorial for the affi (affine indexing) package, that provides convenience functions
for traversing slices of arrays, optionally with index permutations and other convenient trans-
formations. A driver clause for iterate is provided, along with map-subarray, a simple yet
powerful function for mapping arrays into each other using affine indexes.

1 Introduction

Even though this is not widely known, Common Lisp is an amazing language for numerical com-
putation. The language constructs themselves are very powerful, and efficient compilers exist that
allow the user to run his code very quickly even without tedious optimization, while allowing for
the possibility of the latter when the need arises. Also, its interactive nature makes the language
ideal for debugging glitches in the algorithm or exploring problems quickly.

However, Common Lisp lacks a few features that users of languages like Matlab, R or even
Fortran are used to. One of these is the possibily of “slicing” arrays: for example, treating a
column of a matrix as a vector, a rectangular submatrix of a matrix as another matrix when
passing to another function, assigning rectangular sections of arrays to each other and performing
operations on them with ease, with appropriate syntactic sugar and usually corresponding fast
code.

This package is an attempt to fill this gap and implement a similar — but not identical — feature
in Common Lisp called affine indexes. Affine indexes and appropriate helper functions allow CL
users to copy, modify, transpose rectangular slices of arrays with ease. Instead of implementing
syntactic sugar like 3:5 for elements from 3 to 5, I decided that a functional approach would be
better. Thus instead of doing the tasks with specialized functions, affine indexes allow the user to
generate a walker, which is essentially a function that yields successive indexes for the flat vector
that holds the elements of an array. Section 2 presents affine indexes and walkers, and Section 3
explains some predefined operations on affine indexes (including subranges). Section 4 discusses
useful functions constructed with affine indexes.

2 Affine indexes and walkers

An array of rank n can be conceptualized as a function that maps a set of integer subscripts
(s1, . . . , sn), which are constrained by the dimensions of the array, to an element. It is useful to

∗E-mail: tpapp@princeton.edu

1



imagine that the elements in the array are stored in a flat vector with a single index i, and think of
this function as a composite of two other functions: one (s1, . . . , sn) 7→ i which maps the subscripts
to the index in the flat vector, and another which retrieves the element of the given index i from this
vector. In Common Lisp, aref does these two things in a single step, but like above, its operation
can be broken up into two stages, implemented as the functions array-row-major-index and
row-major-aref.

Affine indexes are nothing more than a class of integer functions that are more general than
those used for row-major arrays. Consider a positive integer n (which we will call the rank), and
a domain

D(d0, . . . , dn−1) =
(
[0, 1, . . . , d0) ∩ N

)
× · · · ×

(
[0, 1, . . . , dn−1) ∩ N

)
where di is the size of dimension i. An affine index is a mapping a : D → Z, defined as

a(s0, . . . , sn−1) = C + c0s0 + · · ·+ cn−1sn−1

where C ∈ Z is called the constant, and ci ∈ Z, i = 0, . . . , n− 1 are the coefficients.
An affine index is characterized by its domain, constant and coefficient. It is easy to see that

affine indexes are quite general and can be used to implement row-major (or column-major, for
that matter) indexing: for example, the 0 + 12s0 + 4s1 + 1s2 would index an array with dimensions
#(2 3 4) (with the appropriate domain). Moreover, affine indexes allow us to index rectangular
sub-arrays, or even reverse elements or permute indexes (transposing a matrix is a special case of
the latter).

Before I discuss functions in this package, two general remarks are in order. First, all func-
tions in the package are properly documented, so you can read their documentation string for a
complete description — examples in this tutorial are just meant to whet your appetite and make
you aware of features, and are not meant to be extensive descriptions. Second, the function names
are deliberately kept short, because I intend that they are used with their namespace prefix and
not imported to the current namespace using use-package — hence in your code, you would write
affi:drop instead of drop. Examples below are run from the affi namespace for simplicity, but
generally you should use another one (cl-user:, your own package, etc).

You can create an affine index conforming to a list if dimensions characterizing a row-major
array or the array itself using make-affi:

AFFI> (make-affi ’(2 3 4))
#<AFFI domain #(2 3 4), const 0, coeff #(12 4 1) {B0C4D61}>
AFFI> (make-affi (make-array ’(5 6 7)))
#<AFFI domain #(5 6 7), const 0, coeff #(42 7 1) {B3B8501}>

Or should you find yourself in need of interfacing with some vile language that uses column-
major indexing, call make-affi-cm on a list of indexes:

AFFI> (make-affi-cm ’(2 3 4))
#<AFFI domain #(2 3 4), const 0, coeff #(1 2 6) {B7340F1}>

How can you use affine indexes? If you just want to calculate the index of a single element, you
can use

AFFI> (defparameter *a* (make-affi ’(2 3 4)))
AFFI> (calculate-index *a* #(0 1 2))
6

2



But when you are traversing an array, it is better to use a walker. A walker is simply a function
that traverses the subscripts in a particular (lexicographic, with rightmost subscripts changing the
fastest) order, and returns the index corresponding to each:

AFFI> (defparameter *w1* (make-walker (make-affi ’(2 2))))
AFFI> (funcall *w1*)
0
AFFI> (funcall *w1*)
1
AFFI> (funcall *w1*)
2
AFFI> (funcall *w1*)
3
AFFI> (funcall *w1*)
NIL

On each call, it returns the current index, and then increments its internal counter. Once it runs
out of elements, it will just return nil. make-walker actually returns two functions, and the second
one allows you to query the index without incrementing it.

Of course, a row-major walker is not a particularly interesting one, as it justs lists consecutive
integers.1 Using the convenience function test-walker,2 this is how a column-major walker would
traverse the indexes:

AFFI> (test-walker (make-walker (make-affi-cm ’(2 3))))
0 2 4 1 3 5

Finally, there are a few convenience functions: size returns the number of integers indexed,
range returns the smallest and largest integers indexed, and rank returns the rank.

When using two walkers simultaneously, it is a good idea to check if they are conformable. You
can do that using check-conformability, which recognizes three types of conformability (in order
of decreasing strictness):

• :strict requires that the two domains are exactly the same

• :dropped checks if they are the same when we drop dimensions of size 1

• :size just checks the size of the two ranges.

dropped is usually a good compromise between catching errors and convenience, it still allows you
to treat a 6 × 1 matrix and a 6-element vector as conformable (:strict would not), but would
catch obvious errors like trying to walk the former matrix alogn with a 7-element vector.

For convenience, there is an iterate driver for affine indexes:3

1This is of course recognized, and walkers are optimized to recognize contiguous blocks of integers. [FIXME: not
yet, still working on it]

2This functions displays the indexes returned by a walker until it encounters nil. You can also call it directly on
an affine index.

3I prefer to put a : before keywords other than the first one when using iterate, you can just write
(for i in-affi (make-affi ’(2 3))) if you prefer.

3



(iter
(for i :in-affi (make-affi ’(2 3)))
(collecting i) ;; evaluates to (0 1 2 3 4 5)

affi instances are not meant to be modified directly: all utility functions below leave the
original argument intact and create a new instance. You can safely assume that an affi instance
is immutable, and the slots are not exported from the package. Nevertheless, they can be accessed
get-const, get-coeff and get-domain, the latter two makes copies of the internal vectors.

3 Operations

Of course, affine indexes become useful when we consider transformations on them. The affi
package has the following predefined transformations:

permute, which allows us to shuffle indexes around, for example, (permute affi ’(1 0)) is
equivalent to transposing a matrix (actually, transpose is defined too), but works for affine indexes
of any rank:

AFFI> (defparameter *affi* (make-affi ’(2 3 4)))
AFFI> *affi*
#<AFFI domain #(2 3 4), const 0, coeff #(12 4 1) {BCEBFF9}>
AFFI> (permute *affi* ’(1 2 0))
#<AFFI domain #(3 4 2), const 0, coeff #(4 1 12) {A903111}>

drop, which allows the elimination of degenerate dimensions (of size 1). It has an optional
argument which is supposed to contain the list of dimensions that are considered for elimination:

AFFI> (drop (make-affi ’(1 1 2 3)))
#<AFFI domain #(2 3), const 0, coeff #(3 1) {A9D5441}>
AFFI> (drop (make-affi ’(1 1 2 3)) ’(1))
#<AFFI domain #(1 2 3), const 0, coeff #(6 3 1) {AA04371}>

When this last argument is t (the default), all degenerate dimensions will be eliminated.
Finally, the most powerful operation is subrange, which constrains and/or transforms an affine

index given a list of range specifications, one for each dimensions.
One way to specify a range is using a two-element list: for example, (3 5) denotes the sub-

scripts from 3 to 5, inclusive. Negative numbers are counted from the dimension: if a subscript
is constrained to be below 6, -3 will denote 3. You can mix positive and negative subscripts, as
in (3 -1). If the two subscripts are in decreasing order (after being converted to nonnegative
integers), the indexes will be reversed along this dimension.

Also, there are some shortcuts: specifying a single integer n is equivalent to (n n), selecting a
single subscript. :all select all subscripts, and :rev selects them in reverse order. Some examples:

AFFI> (defparameter *affi* (make-affi ’(4 5)))
AFFI> (test-walker *affi*)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
AFFI> (test-walker (subrange *affi* (:all :rev)))
4 3 2 1 0 9 8 7 6 5 14 13 12 11 10 19 18 17 16 15
AFFI> (test-walker (subrange *affi* ’((1 -1) 2)))
7 12 17

4



AFFI> (test-walker (subrange *affi* ’((-1 1) 2)))
17 12 7

4 map-subarray

The function

(defun map-subarray (source target
&key source-range target-range permutation
(drop-which t)
(conformability ’dropped) (key #’identity)
(target-element-type (array-element-type source)))

combines the above transformations and allows us to copy ranges from one array to another,
optionally permuting the indexes.

If target is nil, a new array is created with element-type target-element-type and is re-
turned by the function (in this case, you can’t specify target-range, and degenerate dimensions
will be dropped according to drop-which). Otherwise, conformability is checked between the
two affine indexes (which are calculated internally using the given ranges and permutation) using
conformability.4 key is called on each element before copying and the result is copied in the
target array.

Some examples:

AFFI> *m* ;; the original array

#2A((0 1 2 3) (4 5 6 7) (8 9 10 11))
AFFI> (map-subarray *m* nil :permutation ’(1 0)) ;; transpose

#2A((0 4 8) (1 5 9) (2 6 10) (3 7 11))
AFFI> (map-subarray *m* nil :source-range ’(all 1)) ;; 2nd column

#(1 5 9)
AFFI> (map-subarray *m* nil :source-range ’(all 1) :drop-which nil)
#2A((1) (5) (9))
AFFI> (map-subarray *m* nil :source-range ’((1 2) rev))
#2A((7 6 5 4) (11 10 9 8))

If you check the source code of map-subarray, you will notice that it is very straightforward.
While the function is useful as it is, the tools in this package make writing similar functions easy.

4See check-conformability three kinds of conformability recognized by affi.

5


