Package ‘quallmer’

February 16, 2026

Type Package
Title Qualitative Analysis with Large Language Models
Version 0.3.0

Description Tools for Al-assisted qualitative data coding using large language
models (LLMs') via the 'ellmer' package, supporting providers including
'OpenAl', 'Anthropic', 'Google', 'Azure’, and local models via 'Ollama’.
Provides a 'codebook’-based workflow for defining coding instructions and
applying them to texts, images, and other data. Includes built-in 'codebooks'
for common applications such as sentiment analysis and policy coding, and
functions for creating custom 'codebooks' for specific research questions.
Supports systematic replication across models and settings, computing
inter-coder reliability statistics including Krippendorff's alpha
(Krippendorff 2019, <doi:10.4135/9781071878781>) and Fleiss' kappa
(Fleiss 1971, <doi:10.1037/h0031619>), as well as gold-standard validation
metrics including accuracy, precision, recall, and F1 scores following
Sokolova and Lapalme (2009, <doi:10.1016/j.ipm.2009.03.002>). Provides audit
trail functionality for documenting coding workflows following Lincoln and
Guba's (1985, ISBN:0803924313) framework for establishing trustworthiness
in qualitative research.

License GPL-3

URL https://quallmer.github.io/quallmer/
Depends R (>=3.5.0), ellmer (>= 0.4.0)

Imports cli, dplyr, tidyr, digest, irr, lifecycle, rlang, stats,
yardstick

Encoding UTF-8
LazyData true
RoxygenNote 7.3.3

Suggests ggplot2, janitor, knitr, rmarkdown, testthat (>= 3.0.0),
kableExtra, mockery, quanteda, quanteda.tidy, tibble, withr

Config/testthat/edition 3
VignetteBuilder knitr

NeedsCompilation no

https://doi.org/10.4135/9781071878781
https://doi.org/10.1037/h0031619
https://doi.org/10.1016/j.ipm.2009.03.002
https://quallmer.github.io/quallmer/

2 accessors

Author Seraphine F. Maerz [aut, cre] (ORCID:
<https://orcid.org/0000-0002-7173-9617>),
Kenneth Benoit [aut] (ORCID: <https://orcid.org/0000-0002-0797-564X>)

Maintainer Seraphine F. Maerz <seraphine.maerz@unimelb.edu.au>
Repository CRAN
Date/Publication 2026-02-16 18:00:02 UTC

Contents
ACCESSOIS o & v v v e e e e e e e e e e e e e e e 2
as_glm_coded e 4
codebook e e e e 8
data_codebook_immigration 9
data_codebook_sentiment e 10
data_corpus_LMRDsampleo 11
data_corpus_manifsentsUK2010sample 12
data_corpus_ms2020sample 14
INPUES . . . e 15
glm_code e e 16
glm_codebook 17
glm_compare e e 19
glm_meta e e e e e 22
glm_replicate L 24
glm_trail L e e 25
glm_validate 27

Index 31

accessors Accessor functions for quallmer objects
Description

Functions to safely access and modify metadata from quallmer objects (qlm_coded, glm_comparison,
glm_validation, glm_codebook). These functions provide a stable API for accessing object meta-
data without directly manipulating internal attributes.

Metadata types

quallmer objects store metadata in three categories:

User metadata (type = "user”):

¢ name: Run identifier (settable)
* notes: Descriptive notes (settable)

* Plus any custom fields added via as_qglm_coded(. .., metadata =1list(...))

https://orcid.org/0000-0002-7173-9617
https://orcid.org/0000-0002-0797-564X

accessors

Object metadata (type = "object"”):

 call: Function call that created the object

* parent: Parent run name (for replications)

* batch: Whether batch processing was used

* chat_args: Arguments passed to the LLM chat

* execution_args: Arguments for parallel/batch execution
* n_units: Number of coded units

e input_type: Type of input ("text", "image", or "human")
* source: Coding source ("human" or "llm")

* is_gold: Whether this is a gold standard
System metadata (type = "system"”):

* timestamp: When the object was created
* ellmer_version: Version of ellmer package
* quallmer_version: Version of quallmer package

e R_version: Version of R

Functions

¢ glm_meta(): Get metadata fields
* glm_meta<-(): Set user metadata fields (only name and notes)
* codebook(): Extract codebook from coded objects

* inputs(): Extract original input data

See Also

* glm_code() for creating coded objects
* as_qlm_coded() for converting human-coded data

* gqlm_trail() for viewing coding history

Examples

Create a coded object

texts <- c("I love this!”, "Terrible."”, "It's okay.")
coded <- glm_code(

texts,

data_codebook_sentiment,

model = "openai/gpt-4o-mini”,

name = "runl”,

notes = "Initial coding run”
)

Access metadata
glm_meta(coded, "name") # Get run name

4 as_qlm_coded

glm_meta(coded, type = "user") # Get all user metadata
glm_meta(coded, type = "system") # Get system metadata

Modify user metadata
glm_meta(coded, "name") <- "updated_run1”
glm_meta(coded, "notes”) <- "Revised notes”

Extract components
codebook (coded) # Get the codebook
inputs(coded) # Get original texts

Custom metadata from human coding
human_data <- data.frame(

.id = 1:5,
sentiment = c("pos”, "neg"”, "pos"”, "neg", "pos")
)
human_coded <- as_qglm_coded(
human_data,
name = "coder_A",
metadata = list(
coder_name = "Dr. Smith",
experience = "5 years”
)
)

Access custom metadata
glm_meta(human_coded, "coder_name”) # "Dr. Smith”
glm_meta(human_coded, type = "user”) # All user fields

as_qlm_coded Convert coded data to qlm_coded format

Description

Converts a data frame or quanteda corpus of coded data (human-coded or from external sources)
into a qlm_coded object. This enables provenance tracking and integration with glm_compare(),
glm_validate(), and glm_trail() for coded data alongside LLM-coded results.

Usage
as_qlm_coded(
X,
id,
name = NULL,

is_gold = FALSE,
codebook = NULL,
texts = NULL,

as_qlm_coded

notes = NULL,
metadata = list()
)

S3 method for class 'data.frame'
as_glm_coded(

X,

id,

name = NULL,

is_gold = FALSE,

codebook = NULL,

texts = NULL,
notes = NULL,
metadata = list()

)

Default S3 method:
as_glm_coded(
X,
id,
name = NULL,
is_gold = FALSE,
codebook = NULL,
texts = NULL,

notes = NULL,
metadata

Arguments

X

id

name

is_gold

codebook

list()

A data frame or quanteda corpus object containing coded data. For data frames:
Must include a column with unit identifiers (default ".id"). For corpus ob-
jects: Document variables (docvars) are treated as coded variables, and docu-
ment names are used as identifiers by default.

For data frames: Name of the column containing unit identifiers (supports both
quoted and unquoted). Default is NULL, which looks for a column named "”.id".
Can be an unquoted column name (id = doc_id) or a quoted string (id = "doc_id").
For corpus objects: NULL (default) uses document names from names(x), or
specify a docvar name (quoted or unquoted) to use as identifiers.

Character. a string identifying this coding run (e.g., "Coder_A", "expert_rater",
"Gold_Standard"). Default is NULL.

Logical. If TRUE, marks this object as a gold standard for automatic detection by
glm_validate(). When a gold standard object is passed to qlm_validate(),
the gold = parameter becomes optional. Default is FALSE.

Optional list containing coding instructions. Can include:

name Name of the coding scheme
instructions Text describing coding instructions

6 as_qlm_coded

schema NULL (not used for human coding)

If NULL (default), a minimal placeholder codebook is created.
texts Optional vector of original texts or data that were coded. Should correspond to

the . id values in data. If provided, enables more complete provenance tracking.
notes Optional character string with descriptive notes about this coding. Useful for

documenting details when viewing results in glm_trail(). Default is NULL.
metadata Optional list of metadata about the coding process. Can include any relevant

information such as:

coder_name Name of the human coder

coder_id Identifier for the coder

training Description of coder training

date Date of coding

The function automatically adds timestamp, n_units, notes, and source =
"human”.

Details

When printed, objects created with as_glm_coded() display "Source: Human coder" instead of
model information, clearly distinguishing human from LLM coding.

Gold Standards:

Objects marked with is_gold = TRUE are automatically detected by qlm_validate(), allowing
simpler syntax:

With is_gold = TRUE
gold <- as_glm_coded(gold_data, name = "Expert”, is_gold = TRUE)
glm_validate(codedl, coded2, gold, by = "sentiment”) # gold = not needed!

Without is_gold (or explicit gold =)
gold <- as_qglm_coded(gold_data, name = "Expert")
glm_validate(codedl, coded2, gold = gold, by = "sentiment”)

Value

A glm_coded object (tibble with additional class and attributes) for provenance tracking. When
is_gold = TRUE, the object is marked as a gold standard in its attributes.

See Also

glm_code() for LLM coding, glm_compare() for inter-rater reliability, qlm_validate() for vali-
dation against gold standards, glm_trail() for provenance tracking.

Examples

Basic usage with data frame (default .id column)
human_data <- data.frame(

.id = 1:10,

sentiment = sample(c("pos”, "neg"”), 10, replace = TRUE)

as_qlm_coded

)

coder_a <- as_qglm_coded(human_data, name = "Coder_A")
coder_a

Use custom id column with NSE (unquoted)
data_with_custom_id <- data.frame(

doc_id = 1:10,
sentiment = sample(c("pos”, "neg"”), 10, replace = TRUE)
)
coder_custom <- as_qglm_coded(data_with_custom_id, id = doc_id, name = "Coder_C")

Or use quoted string
coder_custom2 <- as_glm_coded(data_with_custom_id, id = "doc_id", name = "Coder_D")

Create a gold standard from data frame
gold <- as_qglm_coded(

human_data,

name = "Expert"”,

is_gold = TRUE
)

Validate with automatic gold detection
coder_b_data <- data.frame(

.id = 1:10,

sentiment = sample(c("pos”, "neg"), 10, replace = TRUE)
)
coder_b <- as_glm_coded(coder_b_data, name = "Coder_B")

No need for gold = when gold object is marked (NSE works for 'by' too)
glm_validate(coder_a, coder_b, gold = gold, by = sentiment, level = "nominal")

Create from corpus object (simplified workflow)
data("data_corpus_manifsentsUK2010sample”)
crowd <- as_glm_coded(
data_corpus_manifsentsUK201@sample,
is_gold = TRUE
)

Document names automatically become .id, all docvars included

Use a docvar as identifier with NSE (unquoted)
crowd_party <- as_qglm_coded(
data_corpus_manifsentsUK201@sample,
id = party,
is_gold = TRUE
)

Or use quoted string

crowd_party2 <- as_qglm_coded(
data_corpus_manifsentsUK2010@sample,
id = "party”,
is_gold = TRUE

)

8 codebook

With complete metadata
expert <- as_glm_coded(
human_data,
name = "expert_rater”,
is_gold = TRUE,
codebook = list(

name = "Sentiment Analysis”,
instructions = "Code overall sentiment as positive or negative”

),

metadata = list(
coder_name = "Dr. Smith",
coder_id = "EXP0@01",
training = "5 years experience”,
date = "2024-01-15"

)

)
codebook Extract codebook from quallmer objects
Description

Extracts the codebook component from glm_coded, glm_comparison, and qlm_validation ob-

jects. The codebook is a constitutive part of the coding run, defining the coding instrument used.
Usage

codebook (x)

Arguments

X A quallmer object (qlm_coded, glm_comparison, or glm_validation).

Details

The codebook is a core component of coded objects, analogous to formula() for 1m objects. It
specifies the coding instrument (instructions, schema, role) used in the coding run.

This function is an extractor for the codebook component, not a metadata accessor. For codebook
metadata (name, instructions), use glm_meta().

Note: glm_codebook() is the constructor for creating codebooks; codebook () is the extractor for
retrieving them from coded objects.

Value

A glm_codebook object, or NULL if no codebook is available.

data_codebook_immigration 9

See Also

* accessors for an overview of the accessor function system
* glm_codebook() for creating codebooks
* glm_meta() for extracting metadata

* inputs() for extracting input data

Examples

Load example objects
examples <- readRDS(system.file("extdata”, "example_objects.rds”, package = "quallmer"))
coded <- examples$example_coded_sentiment

Extract codebook
cb <- codebook(coded)
cb

Access codebook metadata
glm_meta(cb, "name")

data_codebook_immigration
Immigration policy codebook based on Benoit et al. (2016)

Description

A glm_codebook object defining instructions for annotating whether a text pertains to immigration
policy and, if so, the stance toward immigration openness. This codebook replicates the crowd-
sourced annotation task from Benoit et al. (2016) and is designed to work with data_corpus_manifsentsUK2010sample.

Usage

data_codebook_immigration

Format
A glm_codebook object containing:

name Task name: "Immigration policy coding from Benoit et al. (2016)"

instructions Coding instructions for identifying whether sentences from UK 2010 election mani-
festos pertain to immigration policy, and if so, rating the policy position expressed

schema Response schema with two fields: 11m_immigration_label (Enum: "Not immigration"
or "Immigration" indicating whether the sentence relates to immigration policy), and 11m_immigration_position
(Integer from -1 to 1, where -1 = pro-immigration, 0 = neutral, and 1 = anti-immigration)

input_type "text"

levels Named character vector: 1lm_immigration_label = "nominal”, llm_immigration_position =
"ordinal"

10 data_codebook_sentiment

References

Benoit, K., Conway, D., Lauderdale, B.E., Laver, M., & Mikhaylov, S. (2016). Crowd-sourced Text
Analysis: Reproducible and Agile Production of Political Data. American Political Science Review,
110(2), 278-295. doi:10.1017/S0003055416000058

See Also

glm_codebook (), glm_code(), data_corpus_manifsentsUK2010sample

Examples

View the codebook
data_codebook_immigration

Not run:
Use with UK manifesto sentences (requires API key)
if (requireNamespace("quanteda”, quietly = TRUE)) {
coded <- glm_code(data_corpus_manifsentsUK2010@sample,
data_codebook_immigration,
model = "openai/gpt-40-mini")

Compare with crowd-sourced annotations
crowd <- as_glm_coded(
data.frame(
.id = docnames(data_corpus_manifsentsUK2010sample),
docvars(data_corpus_manifsentsUK2010sample)
),
is_gold = TRUE
)

glm_validate(coded, gold = crowd)

}

End(Not run)

data_codebook_sentiment
Sentiment analysis codebook for movie reviews

Description
A glm_codebook object defining instructions for sentiment analysis of movie reviews. Designed to
work with data_corpus_LMRDsample but with an expanded polarity scale that includes a "mixed"
category.

Usage

data_codebook_sentiment

https://doi.org/10.1017/S0003055416000058

data_corpus_LMRDsample 11

Format

A glm_codebook object containing:

name Task name: "Movie Review Sentiment"
instructions Coding instructions for analyzing movie review sentiment

schema Response schema with two fields: polarity (Enum of "neg", "mixed", or "pos") and
rating (Integer from 1 to 10)

role Expert film critic persona

input_type "text"

See Also

glm_codebook (), glm_code(), glm_compare(), data_corpus_LMRDsample

Examples

View the codebook
data_codebook_sentiment

Use with movie review corpus (requires API key)
coded <- glm_code(data_corpus_LMRDsample[1:10],
data_codebook_sentiment,
model = "openai”)

Create multiple coded versions for comparison

codedl <- glm_code(data_corpus_LMRDsample[1:20],
data_codebook_sentiment,
model = "openai/gpt-4o0-mini")

coded2 <- glm_code(data_corpus_LMRDsample[1:20],
data_codebook_sentiment,
model = "openai/gpt-40")

Compare inter-rater reliability
comparison <- glm_compare(codedl, coded2, by = "rating”, level = "interval")
print(comparison)

data_corpus_LMRDsample
Sample from Large Movie Review Dataset (Maas et al. 2011)

Description

A sample of 100 positive and 100 negative reviews from the Maas et al. (2011) dataset for sentiment
classification. The original dataset contains 50,000 highly polar movie reviews.

12 data_corpus_manifsentsUK2010sample

Usage

data_corpus_LMRDsample

Format

The corpus docvars consist of:

docnumber serial (within set and polarity) document number
rating user-assigned movie rating on a 1-10 point integer scale

polarity either neg or pos to indicate whether the movie review was negative or positive. See Maas
et al (2011) for the cut-off values that governed this assignment.

Source

http://ai.stanford.edu/~amaas/data/sentiment/

References

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. (2011). "Learning Word Vectors for Sentiment Analysis". The 49th Annual Meeting of the
Association for Computational Linguistics (ACL 2011).

See Also

data_codebook_sentiment for an example codebook and usage with this corpus

Examples

if (requireNamespace("quanteda”, quietly = TRUE)) {
Inspect the corpus
summary (data_corpus_LMRDsample)

Sample a few reviews
head(data_corpus_LMRDsample, 3)
3

data_corpus_manifsentsUK2010@sample
Sample of UK manifesto sentences 2010 crowd-annotated for immi-
gration

http://ai.stanford.edu/~amaas/data/sentiment/
http://ai.stanford.edu/~amaas/papers/wvSent_acl2011.pdf

data_corpus_manifsentsUK2010sample 13

Description

A corpus of sentences sampled from from publicly available party manifestos from the United
Kingdom from the 2010 election. Each sentence has been rated in terms of its classification as
pertaining to immigration or not and then on a scale of favorability or not toward open immigration
policy (as the mean score of crowd coders on a scale of -1 (favours open immigration policy), 0
(neutral), or 1 (anti-immigration).

The sentences were sampled from the corpus used in Benoit et al. (2016) doi:10.1017/S0003055416000058,
which contains more information on the crowd-sourced annotation approach.

Usage

data_corpus_manifsentsUK2010sample

Format

A corpus object. The corpus consists of 155 sentences randomly sampled from the party manifestos,
with an attempt to balance the sentencs according to their categorisation as pertaining to immigra-
tion or not, as well as by party. The corpus contains the following document-level variables:

party factor; abbreviation of the party that wrote the manifesto.
partyname factor; party that wrote the manifesto.
year integer; 4-digit year of the election.

immigration_label Factor indicating whether the majority of crowd workers labelled a sentence
as referring to immigration or not. The variable has missing values (NA) for all non-annotated
manifestos.

immigration_mean numeric; the direction of statements coded as "Immigration" based on the ag-
gregated crowd codings. The variable is the mean of the scores assigned by workers who
coded a sentence and who allocated the sentence to the "Immigration" category. The vari-
able ranges from -1 (Favorable and open immigration policy) to +1 ("Negative and closed
immigration policy").

immigration_n integer; the number of coders who contributed to the mean score immigration_mean.

immigration_position integer; a thresholded version of immigration_mean coded as -1 (pro-
immigration, mean < -0.5), 0 (neutral, -0.5 <= mean <= 0.5), or 1 (anti-immigration, mean
> (.5). Set to NA for non-immigration sentences.

References

Benoit, K., Conway, D., Lauderdale, B.E., Laver, M., & Mikhaylov, S. (2016). Crowd-sourced Text
Analysis: Reproducible and Agile Production of Political Data. American Political Science Review,
100,(2), 278-295. doi:10.1017/S0003055416000058

Examples

if (requireNamespace("quanteda”, quietly = TRUE)) {
Inspect the corpus
summary (data_corpus_manifsentsUK2010sample)

}

https://doi.org/10.1017/S0003055416000058
https://doi.org/10.1017/S0003055416000058

14 data_corpus_ms2020sample

data_corpus_ms2020sample
Sample corpus of political speeches from Maerz & Schneider (2020)

Description

A corpus of 100 speeches from the Maerz & Schneider (2020) corpus, balanced across regime types
(50 autocracies, 50 democracies). This sample is included in the package for demos and testing.
The full corpus of 4,740 speeches is available in the package’s pkgdown examples folder.

Usage

data_corpus_ms2020sample

Format

A corpus object. The corpus consists of 100 speeches randomly sampled from 40 heads of govern-
ment across 27 countries, balanced by regime type. The corpus contains the following document-
level variables:

speaker Character. Name of the head of government.

country Character. Country name.

regime Factor. Regime type: "Democracy"” or "Autocracy".

score Numeric. Original dictionary-based liberal-illiberal score.

date Date. Date of the speech.

title Character. Title of the speech.

References

Maerz, S. F., & Schneider, C. Q. (2020). Comparing public communication in democracies and
autocracies: Automated text analyses of speeches by heads of government. Quality & Quantity, 54,
517-545. doi:10.1007/s11135019008857

Examples

if (requireNamespace("quanteda”, quietly = TRUE)) {
Inspect the corpus
summary (data_corpus_ms2020@sample, n = 10)

Regime distribution
table(data_corpus_ms2020sample$regime)

View a sample speech
cat(data_corpus_ms2020sample[1])

https://doi.org/10.1007/s11135-019-00885-7

inputs 15

inputs Extract input data from qlm_coded objects

Description

Extracts the original input data (texts or image paths) from gqlm_coded objects. The inputs are the
source material that was coded, constituting a core component of the coded object.

Usage

inputs(x)

Arguments

X A qlm_coded object.

Details

The inputs are a core component of coded objects, representing the source material that was coded.
Like codebook (), this is a component extractor rather than a metadata accessor.

The function name mirrors the inputs argument in glm_code(), providing a direct conceptual
mapping: what is passed in via inputs = is retrieved back via inputs().

Value
The original input data: a character vector of texts (for text codebooks) or file paths to images (for
image codebooks). If the original input had names, these are preserved.

See Also

* accessors for an overview of the accessor function system

glm_code() for creating coded objects

codebook () for extracting the codebook

glm_meta() for extracting metadata

Examples

Load example objects
examples <- readRDS(system.file("extdata”, "example_objects.rds”, package = "quallmer"))
coded <- examples$example_coded_sentiment

Extract inputs
texts <- inputs(coded)
texts

16 qlm_code

glm_code Code qualitative data with an LLM

Description

Applies a codebook to input data using a large language model, returning a rich object that includes
the codebook, execution settings, results, and metadata for reproducibility.

Usage

glm_code(x, codebook, model, ..., batch = FALSE, name = NULL, notes = NULL)

Arguments

X Input data: a character vector of texts (for text codebooks) or file paths to im-
ages (for image codebooks). Named vectors will use names as identifiers in the
output; unnamed vectors will use sequential integers.

codebook A codebook object created with qlm_codebook(). Also accepts deprecated
task() objects for backward compatibility.

model Provider (and optionally model) name in the form "provider/model” or "provider”
(which will use the default model for that provider). Passed to the name argu-

ment of ellmer: :chat(). Examples: "openai/gpt-4o0-mini”, "anthropic/claude-3-5-sonnet-202
"ollama/1lama3.2", "openai” (uses default OpenAl model).

Additional arguments passed to ellmer: :chat(),ellmer: :parallel_chat_structured(),
orellmer::batch_chat_structured(), based on argument name. Arguments

recognized by ellmer: :parallel_chat_structured() take priority when there

are overlaps. Batch-specific arguments (path, wait, ignore_hash) are only

used when batch = TRUE. Arguments not recognized by any function will gen-

erate a warning.

batch Logical. If TRUE, uses el1lmer: :batch_chat_structured() instead of ellmer: :parallel_chat_struc
Batch processing is more cost-effective for large jobs but may have longer turnaround
times. Default is FALSE. See ellmer: :batch_chat_structured() for details.

name Character string identifying this coding run. Default is NULL.

notes Optional character string with descriptive notes about this coding run. Useful
for documenting the purpose or rationale when viewing results in qlm_trail().
Default is NULL.

Details

Arguments in . . . are dynamically routed to either el1lmer: :chat(), ellmer: :parallel_chat_structured(),
or ellmer: :batch_chat_structured() based on their names.

Progress indicators and error handling are provided by the underlying el1lmer: :parallel_chat_structured()
or ellmer: :batch_chat_structured() function. Set verbose = TRUE to see progress messages
during coding. Retry logic for API failures should be configured through ellmer’s options.

glm_codebook 17

When batch = TRUE, the function uses ellmer: :batch_chat_structured() which submits jobs
to the provider’s batch API. This is typically more cost-effective but has longer turnaround times.
The path argument specifies where batch results are cached, wait controls whether to wait for
completion, and ignore_hash can force reprocessing of cached results.

Value
A glm_coded object (a tibble with additional attributes):

Data columns The coded results with a . id column for identifiers.

Attributes data, input_type, and run (list containing name, batch, call, codebook, chat_args,
execution_args, metadata, parent).

The object prints as a tibble and can be used directly in data manipulation workflows. The batch
flag in the run attribute indicates whether batch processing was used. The execution_args con-
tains all non-chat execution arguments (for either parallel or batch processing).

See Also
glm_codebook () for creating codebooks, qlm_replicate() for replicating coding runs, glm_compare ()

and qlm_validate() for assessing reliability.

Examples

Basic sentiment analysis

texts <- c("I love this product!”, "Terrible experience.”, "It's okay.")
coded <- glm_code(texts, data_codebook_sentiment, model = "openai/gpt-40-mini")
coded

With named inputs (names become IDs in output)

texts_named <- c(reviewl = "Great service!”, review2 = "Very disappointing.")
coded2 <- glm_code(texts_named, data_codebook_sentiment, model = "openai/gpt-40-mini")
coded?
glm_codebook Define a qualitative codebook
Description

Creates a codebook definition for use with qlm_code(). A codebook specifies what information
to extract from input data, including the instructions that guide the LLM and the structured output
schema.

18 gqlm_codebook

Usage

glm_codebook (
name,
instructions,
schema,
role = NULL,
input_type = c("text”, "image"),
levels = NULL

Arguments

name Name of the codebook (character).

instructions Instructions to guide the model in performing the coding task.

schema Structured output definition, e.g., created by ellmer: : type_object(), ellmer: : type_array(),
or ellmer::type_enum().

role Optional role description for the model (e.g., "You are an expert annotator"). If
provided, this will be prepended to the instructions when creating the system
prompt.

input_type Type of input data: "text” (default) or "image".

levels Optional named list specifying measurement levels for each variable in the schema.

Names should match schema property names. Values should be one of "nominal”,
"ordinal”, "interval”, or "ratio”. If NULL (default), levels are auto-detected
from schema types using the following mapping: type_boolean and type_enum
= nominal, type_string = nominal, type_integer = ordinal, type_number =
interval.

Details
This function replaces task (), which is now deprecated. The returned object has dual class inheri-
tance (c("glm_codebook”, "task")) to maintain backward compatibility.

Value
A codebook object (a list with class c("qlm_codebook”, "task")) containing the codebook defi-
nition. Use with glm_code () to apply the codebook to data.

See Also
glm_code () for applying codebooks to data, data_codebook_sentiment for a predefined codebook
example, task() for the deprecated function.

Examples

Define a custom codebook
my_codebook <- glm_codebook(
name = "Sentiment"”,
instructions = "Rate the sentiment from -1 (negative) to 1 (positive).”,

qlm_compare 19

schema = type_object(
score = type_number(”Sentiment score from -1 to 1"),
explanation = type_string("Brief explanation”)
)
)

With a role
my_codebook_role <- glm_codebook(
name = "Sentiment"”,
instructions = "Rate the sentiment from -1 (negative) to 1 (positive).”,
schema = type_object(
score = type_number(”Sentiment score from -1 to 1"),
explanation = type_string("Brief explanation”)
),
role = "You are an expert sentiment analyst.”

)

With explicit measurement levels
my_codebook_levels <- glm_codebook(
name = "Sentiment"”,
instructions = "Rate the sentiment from -1 (negative) to 1 (positive).”,
schema = type_object(
score = type_number(”Sentiment score from -1 to 1"),
explanation = type_string("Brief explanation”)
),

levels = list(score = "interval”, explanation = "nominal”
’

Use with glm_code() (requires API key)

texts <- c("I love this!”, "This is terrible.")
coded <- glm_code(texts, my_codebook, model = "openai/gpt-4o0-mini")
coded
glm_compare Compare coded results for inter-rater reliability
Description

Compares two or more data frames or glm_coded objects to assess inter-rater reliability or agree-
ment. This function extracts a specified variable from each object and computes reliability statistics
using the irr package.

Usage

glm_compare(

by,

20 qlm_compare

level = NULL,

tolerance = 0,

ci = c("none", "analytic”, "bootstrap"”),
bootstrap_n = 1000

Arguments

Two or more data frames, qlm_coded, or as_glm_coded objects to compare.
These represent different "raters" (e.g., different LLM runs, different models,
human coders, or human vs. LLM coding). Each object must have a . id column
and the variable specified in by. Objects should have the same units (matching
.id values). Plain data frames are automatically converted to as_glm_coded
objects.

by Optional. Name of the variable(s) to compare across raters (supports both quoted
and unquoted). If NULL (default), all coded variables are compared. Can be
a single variable (by = sentiment), a character vector (by = c("sentiment”,
"rating”)), or NULL to process all variables.

level Optional. Measurement level(s) for the variable(s). Can be:

¢ NULL (default): Auto-detect from codebook
¢ Character scalar: Use same level for all variables
» Named list: Specify level for each variable

Valid levels are "nominal”, "ordinal”, "interval”, or "ratio".

tolerance Numeric. Tolerance for agreement with numeric data. Default is O (exact agree-
ment required). Used for percent agreement calculation.

ci Confidence interval method:

"none"” No confidence intervals (default)
"analytic” Analytic CIs where available (ICC, Pearson’s r)
"bootstrap” Bootstrap Cls for all metrics via resampling

bootstrap_n Number of bootstrap resamples when ci = "bootstrap”. Default is 1000. Ig-
nored when ci is "none” or "analytic”.

Details

The function merges the coded objects by their . id column and only includes units that are present
in all objects. Missing values in any rater will exclude that unit from analysis.
Measurement levels and statistics:
* Nominal: For unordered categories. Computes Krippendorft’s alpha, Cohen’s/Fleiss’ kappa,
and percent agreement.

* Ordinal: For ordered categories. Computes Krippendorff’s alpha (ordinal), weighted kappa
(2 raters only), Kendall’s W, Spearman’s rho, and percent agreement.

* Interval: For continuous data with meaningful intervals. Computes Krippendorff’s alpha
(interval), ICC, Pearson’s r, and percent agreement.

glm_compare 21

» Ratio: For continuous data with a true zero point. Computes the same measures as interval
level, but Krippendorff’s alpha uses the ratio-level formula which accounts for proportional
differences.

Kendall’s W, ICC, and percent agreement are computed using all raters simultaneously. For 3 or
more raters, Spearman’s rtho and Pearson’s r are computed as the mean of all pairwise correlations
between raters.

Value
A glm_comparison object (a tibble/data frame) with the following columns:

variable Name of the compared variable

level Measurement level used

measure Name of the reliability metric

value Computed value of the metric

rateri, rater2, .. Names of the compared objects (one column per rater)

ci_lower Lower bound of confidence interval (only if ci != "none")

ci_upper Upper bound of confidence interval (only if ci != "none”

The object has class c("glm_comparison”, "tbl_df"”, "tbl"”, "data.frame") and attributes con-
taining metadata (raters, n, call).

Metrics computed by measurement level:

* Nominal: alpha_nominal, kappa (Cohen’s/Fleiss’), percent_agreement

* Ordinal: alpha_ordinal, kappa_weighted (2 raters only), w (Kendall’s W), rho (Spearman’s),
percent_agreement

* Interval/Ratio: alpha_interval/alpha_ratio, icc, r (Pearson’s), percent_agreement

Confidence intervals:

* ci ="analytic": Provides analytic CIs for ICC and Pearson’s r only

* ci ="bootstrap": Provides bootstrap CIs for all metrics via resampling

See Also

glm_validate() for validation of coding against gold standards, glm_code() for LLM coding,
as_qlm_coded() for human coding.

Examples

Load example coded objects
examples <- readRDS(system.file("extdata"”, "example_objects.rds”, package = "quallmer"))

Compare two coding runs
comparison <- glm_compare(
examples$example_coded_sentiment,
examples$example_coded_mini,
by = "sentiment”,

22 gqlm_meta

level = "nominal”

)

print(comparison)

Compare specific variables with explicit levels
glm_compare(
examples$example_coded_sentiment,
examples$example_coded_mini,
by = "sentiment”

)

glm_meta Get or set quallmer object metadata

Description

Get or set metadata from glm_coded, glm_codebook, glm_comparison, and glm_validation ob-
jects. Metadata is organized into three types: user, object, and system. Only user metadata can be
modified.

Usage

NULL, type = c("user”, "object”, "system”, "all"))

glm_meta(x, field

glm_meta(x, field = NULL) <- value

Arguments

X A quallmer object (qlm_coded, qlm_codebook, glm_comparison, or glm_validation).

field Optional character string specifying a single metadata field to extract or set.
If NULL (default), glm_meta() returns all metadata of the specified type, and
glm_meta<-() expects value to be a named list.

type Character string specifying the type of metadata to extract:
"user" User-specified descriptive information (default). These fields are mod-
ifiable via glm_meta<-(): name (run label) and notes (documentation).

"object” Parameters defining how coding was executed. Read-only fields in-
clude: batch, call, chat_args, execution_args, parent, n_units, input_type.

"system” Automatically captured environment information. Read-only fields
include: timestamp, ellmer_version, quallmer_version, R_version.

"all” Returns a named list combining all three types.

value For glm_meta<-(), the new value for the metadata field, or a named list of user
metadata fields.

glm_meta 23

Details

Metadata is stratified into three types following the quanteda convention:

User metadata (type = "user”, default): User-specified descriptive information that can be modi-
fied via qlm_meta<-(). Fields: name, notes.

Object metadata (type = "object”): Parameters and intrinsic properties set at object creation
time. Read-only. Fields vary by object type but typically include: batch, call, chat_args,
execution_args, parent, n_units, input_type.

System metadata (type = "system”): Automatically captured environment and version informa-
tion. Read-only. Fields: timestamp, ellmer_version, quallmer_version, R_version.

For glm_codebook objects, user metadata includes name and instructions (the codebook instruc-
tions text), both of which can be modified.

Modification via qlm_meta<-() (assignment):

Only user metadata can be modified. For glm_coded, glm_comparison, and glm_validation
objects, modifiable fields are name and notes. For qlm_codebook objects, modifiable fields are
name and instructions.

Object and system metadata are read-only and set at creation time. Attempting to modify these will
produce an informative error.

Value

glm_meta() returns the requested metadata (a named list or single value). qlm_meta<-() returns
the modified object (invisibly).

See Also

* accessors for an overview of the accessor function system
* codebook() for extracting the codebook component

* inputs() for extracting input data

Examples

Load example objects
examples <- readRDS(system.file("extdata”, "example_objects.rds”, package = "quallmer"))
coded <- examples$example_coded_sentiment

User metadata (default)
glm_meta(coded)
glm_meta(coded, "name")

Object metadata

glm_meta(coded, type = "object”)
glm_meta(coded, "call”, type = "object")
glm_meta(coded, "n_units”, type = "object")

System metadata
glm_meta(coded, type = "system")
glm_meta(coded, "timestamp”, type = "system")

24

qlm_replicate

All metadata
glm_meta(coded, type = "all")

Modify user metadata
glm_meta(coded, "name") <- "updated_run”
glm_meta(coded, "notes") <- "Analysis notes”

Set multiple fields at once
glm_meta(coded) <- list(name = "final_run”, notes = "Final analysis"”)

Not run:
This will error - object and system metadata are read-only

glm_meta(coded, "timestamp”) <- Sys.time()

End(Not run)

glm_replicate Replicate a coding task

Description

Re-executes a coding task from a glm_coded object, optionally with modified settings. If no over-
rides are provided, uses identical settings to the original coding.

Usage

glm_replicate(
X,

L

codebook = NULL,

model = NULL,
batch = NULL,
name = NULL,
notes = NULL
)
Arguments
X A glm_coded object.
Optional overrides passed to qlm_code (), such as temperature or max_tokens.
codebook Optional replacement codebook. If NULL (default), uses the codebook from x.
model Optional replacement model (e.g., "openai/gpt-40"). If NULL (default), uses
the model from x.
batch Optional logical to override batch processing setting. If NULL (default), uses the

batch setting from x. Set to TRUE to use batch processing or FALSE to use parallel
processing, regardless of the original setting.

qlm_trail 25

name Optional name for this run. If NULL, defaults to the model name (if changed) or
"replication_N" where N is the replication count.

notes Optional character string with descriptive notes about this replication. Useful
for documenting why this replication was run or what differs from the original.
Default is NULL.

Value

A glm_coded object with run$parent set to the parent’s run name.

See Also

glm_code() for initial coding, glm_compare() for comparing replicated results.

Examples

First create a coded object
texts <- c¢("I love this!”, "Terrible.”, "It's okay.")
coded <- glm_code(texts, data_codebook_sentiment, model = "openai/gpt-4o-mini”, name = "run1")

Replicate with same model
coded2 <- glm_replicate(coded, name = "run2")

Compare results

glm_compare(coded, coded2, by = "sentiment”, level = "nominal”)
glm_trail Create an audit trail from quallmer objects
Description

Creates a complete audit trail documenting your qualitative coding workflow. Following Lincoln
and Guba’s (1985) concept of the audit trail for establishing trustworthiness in qualitative research,
this function captures the full decision history of your Al-assisted coding process.

Usage
glm_trail(..., path = NULL)
Arguments
One or more quallmer objects (qlm_coded, glm_comparison, or glm_validation).
When multiple objects are provided, they will be used to reconstruct the com-
plete workflow chain.
path Optional base path for saving the audit trail. When provided, creates {path}. rds

(complete archive) and {path}.gmd (human-readable report). If NULL (default),
the trail is only returned without saving.

26 qlm_trail

Details

Lincoln and Guba (1985, pp. 319-320) describe six categories of audit trail materials for establish-
ing trustworthiness in qualitative research. The quallmer package operationalizes these for LLM-
assisted text analysis:

Raw data Original texts stored in coded objects

Data reduction products Coded results from each run

Data reconstruction products Comparisons and validations
Process notes Model parameters, timestamps, decision history
Materials relating to intentions Function calls documenting intent

Instrument development information Codebook with instructions and schema

When path is provided, the function creates:

* {path}.rds: Complete trail object for R (reloadable with readRDS())
¢ {path}.qgmd: Quarto document with full audit trail documentation

Value

A glm_trail object containing:

runs List of run information with coded data, ordered from oldest to newest

complete Logical indicating whether all parent references were resolved

References

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Sage.

See Also

glm_code(), glm_replicate(), glm_compare(), glm_validate()

Examples

Load example coded objects
examples <- readRDS(system.file("extdata”, "example_objects.rds”, package = "quallmer"))

View audit trail from two coding runs

trail <- glm_trail(
examples$example_coded_sentiment,
examples$example_coded_mini

)

print(trail)

Save complete audit trail (creates .rds and .gmd files)
glm_trail(
examples$example_coded_sentiment,
examples$example_coded_mini,

gqlm_validate

27

path = tempfile("my_analysis")

)

glm_validate

Validate coded results against a gold standard

Description

Validates LLM-coded results from one or more qlm_coded objects against a gold standard (typi-
cally human annotations) using appropriate metrics based on measurement level. For nominal data,
computes accuracy, precision, recall, Fl-score, and Cohen’s kappa. For ordinal data, computes
accuracy and weighted kappa (linear weighting), which accounts for the ordering and distance be-

tween categories.

Usage

glm_validate(

gold,

by,
level = NULL,
average = c("macro”, "micro”, "weighted”, "none"),

ci = c("none”
bootstrap_n =

Arguments

gold

by

level

, "analytic”, "bootstrap”),

1000

One or more data frames, glm_coded, or as_glm_coded objects containing pre-
dictions to validate. Must include a .id column and the variable(s) specified
in by. Plain data frames are automatically converted to as_gqlm_coded objects.
Multiple objects will be validated separately against the same gold standard, and
results combined with a rater column to distinguish them.

A data frame, qlm_coded, or object created with as_glm_coded() containing
gold standard annotations. Must include a . id column for joining with objects
in ... and the variable(s) specified in by. Plain data frames are automatically
converted. Optional when using objects marked with as_qlm_coded(data,
is_gold = TRUE) - these are auto-detected.

Optional. Name of the variable(s) to validate (supports both quoted and un-
quoted). If NULL (default), all coded variables are validated. Can be a single vari-
able (by = sentiment), a character vector (by = c("sentiment”, "rating")),
or NULL to process all variables.

Optional. Measurement level(s) for the variable(s). Can be:

¢ NULL (default): Auto-detect from codebook

28

average

ci

bootstrap_n

Details

qlm_validate

* Character scalar: Use same level for all variables

* Named list: Specify level for each variable
Valid levels are "nominal”, "ordinal”, or "interval”.
Character scalar. Averaging method for multiclass metrics (nominal level only):
"macro” Unweighted mean across classes (default)
"micro” Aggregate contributions globally (sum TP, FP, FN)
"weighted” Weighted mean by class prevalence
"none"” Return per-class metrics in addition to global metrics
Confidence interval method:
"none"” No confidence intervals (default)
"analytic” Analytic CIs where available (ICC, Pearson’s r)
"bootstrap” Bootstrap Cls for all metrics via resampling

Number of bootstrap resamples when ci = "bootstrap”. Default is 1000. Ig-
nored when ci is "none” or "analytic”.

The function performs an inner join between x and gold using the .id column, so only units
present in both datasets are included in validation. Missing values (NA) in either predictions or
gold standard are excluded with a warning.

Measurement levels:

* Nominal: Categories with no inherent ordering (e.g., topics, sentiment polarity). Metrics:
accuracy, precision, recall, F1-score, Cohen’s kappa (unweighted).

* Ordinal: Categories with meaningful ordering but unequal intervals (e.g., ratings 1-5, Likert
scales). Metrics: Spearman’s tho (rho, rank correlation), Kendall’s tau (tau, rank correlation),
and MAE (mae, mean absolute error). These measures account for the ordering of categories
without assuming equal intervals.

* Interval/Ratio: Numeric data with equal intervals (e.g., counts, continuous measurements).
Metrics: ICC (intraclass correlation), Pearson’s r (linear correlation), MAE (mean absolute
error), and RMSE (root mean squared error).

For multiclass problems with nominal data, the average parameter controls how per-class metrics

are aggregated:

* Macro averaging computes metrics for each class independently and takes the unweighted
mean. This treats all classes equally regardless of size.

* Micro averaging aggregates all true positives, false positives, and false negatives globally
before computing metrics. This weights classes by their prevalence.

* Weighted averaging computes metrics for each class and takes the mean weighted by class

size.

* No averaging (average = "none") returns global macro-averaged metrics plus per-class break-

down.

Note: The average parameter only affects precision, recall, and F1 for nominal data. For ordinal
data, these metrics are not computed.

qlm_validate 29

Value
A glm_validation object (a tibble/data frame) with the following columns:

variable Name of the validated variable

level Measurement level used

measure Name of the validation metric

value Computed value of the metric

class For nominal data: averaging method used (e.g., "macro”, "micro", "weighted") or class label
(when average = "none"). For ordinal/interval data: NA (averaging not applicable).

rater Name of the object being validated (from input names)

ci_lower Lower bound of confidence interval (only if ci != "none")

ci_upper Upper bound of confidence interval (only if ci != "none")

The object has class c("gqlm_validation”, "tbl_df"”, "tbl"”, "data.frame") and attributes con-

taining metadata (n, call).

Metrics computed by measurement level:

* Nominal: accuracy, precision, recall, f1, kappa
* Ordinal: rho (Spearman’s), tau (Kendall’s), mae

¢ Interval: icc, r (Pearson’s), mae, rmse

Confidence intervals:

* ci="analytic": Provides analytic CIs for ICC and Pearson’s r only

* ci="bootstrap": Provides bootstrap CIs for all metrics via resampling

See Also

glm_compare() for inter-rater reliability between coded objects, glm_code() for LLM coding,
as_qlm_coded() for converting human-coded data, yardstick: :accuracy(), yardstick: :precision(),
yardstick::recall(), yardstick::f_meas(), yardstick: :kap(), yardstick: :conf_mat()

Examples

Load example coded objects
examples <- readRDS(system.file("extdata"”, "example_objects.rds”, package = "quallmer"))

Validate against gold standard (auto-detected)
validation <- glm_validate(
examples$example_coded_mini,
examples$example_gold_standard,
by = "sentiment”,
level = "nominal”
)

print(validation)

Explicit gold parameter (backward compatible)
validation2 <- glm_validate(

30

examples$example_coded_mini,
gold = examples$example_gold_standard,
by = "sentiment”,
level = "nominal”
)
print(validation2)

qlm_validate

Index

* data qlm_meta(), 3,8, 9, 15
data_codebook_immigration, 9 glm_meta<- (qlm_meta), 22
data_codebook_sentiment, 10 glm_replicate, 24
data_corpus_LMRDsample, 11 glm_replicate(), 17, 26
data_corpus_manifsentsUK2010@sample, glm_trail, 25

12 glm_trail(), 3,6, 16
data_corpus_ms2020sample, 14 glm_validate, 27

glm_validate(), 5, 6, 17,21, 26
accessors, 2,9, 15,23

as_qlm_coded, 4 task(), 16, 18
as_qlm_coded(), 3, 21, 27, 29
yardstick: :accuracy(), 29

codebook, 8 yardstick: :conf_mat(), 29
codebook (), 3, 15, 23 yardstick::f_meas(), 29
corpus, 13, 14 yardstick: :kap(), 29
yardstick: :precision(), 29
data_codebook_immigration, 9 yardstick: :recall(), 29

data_codebook_sentiment, 10, /2, 18
data_corpus_LMRDsample, 710, 11,11
data_corpus_manifsentsUK2010sample, 9,
10, 12
data_corpus_ms2020sample, 14

ellmer: :batch_chat_structured(), 16, 17
ellmer::chat(), 16

ellmer: :parallel_chat_structured(), 16
ellmer: :type_array(), I8

ellmer: :type_enum(), 18

ellmer: :type_object(), I8

inputs, 15
inputs(), 3, 9, 23

glm_code, 16
glm_code(), 3,6,10,11,15,17, 18, 21,
24-26, 29

glm_codebook, 17
glm_codebook(), 9-11, 16, 17
glm_compare, 19
glm_compare(), 6, 11, 17, 25, 26, 29
glm_meta, 22

31

	accessors
	as_qlm_coded
	codebook
	data_codebook_immigration
	data_codebook_sentiment
	data_corpus_LMRDsample
	data_corpus_manifsentsUK2010sample
	data_corpus_ms2020sample
	inputs
	qlm_code
	qlm_codebook
	qlm_compare
	qlm_meta
	qlm_replicate
	qlm_trail
	qlm_validate
	Index

