Package ‘KinformR’

February 17, 2026

Title Relationship-Informed Pedigree and Variant Scoring
Version 0.1.2
Maintainer Cameron M. Nugent <cam.nugent@sequencebio.com>

Description Comparative evaluation of families and candidate variants in
rare-variant association studies. The package can be used for
two methodologically overlapping but distinct purposes. First, the prior to any genetic or genomic
evaluation, evaluation of relative detection power of pedigrees, can direct recruitment
efforts by showing which individuals not yet sampled would be the most meaningful addi-
tions to a study.
Second, after sequencing and analysis, variants based on association with disease status
and familial relationships of individuals, aids in variant prioritization.
Methodology is described in
Nugent (2025) <doi:10.1101/2025.10.06.25337426>.

License MIT + file LICENSE
URL https://github.com/SequenceBio/KinformR

BugReports https://github.com/SequenceBio/KinformR/issues
Encoding UTF-8

RoxygenNote 7.3.2

VignetteBuilder knitr

Suggests devtools, testthat, knitr, rmarkdown

NeedsCompilation no

Author Cameron M. Nugent [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1135-2605>)

Repository CRAN
Date/Publication 2026-02-17 15:50:02 UTC

Contents
add.fam.scores e e 2
ASSIZMLA .+ . o e e e e e e e e e 3

https://doi.org/10.1101/2025.10.06.25337426
https://github.com/SequenceBio/KinformR
https://github.com/SequenceBio/KinformR/issues
https://orcid.org/0000-0002-1135-2605

2 add.fam.scores

ASSIGN.SLALUS L e e e e e e e e e 3
ASSINLU . . . v e e e e e e e e e 4
build.relation.dict L 4
CaAlC.IV.SCOTE o o o e e e e e e e e e e e e e e e 5
eNCOdE.TOWS o o e e e e e e e e e e e e e e e e 6
ibd . . e 7
PENEITANCE L e e e e e e 8
read.indiv L L L e e e 8
read.pedigree L. 9
read.relation.mat L L 10
read.vartable L 10
070) (O 11
score.fam L. L L e e 11
score.pedigree 13
score.variant.status e e e e e e 14
subset.mat L e e e e e 15
Index 16
add.fam.scores Sum all the given scores and return a single vector with cumulative

"score", "for" and "against” vals. For use in instances where one
wishes to combine scores from multiple families.

Description

Sum all the given scores and return a single vector with cumulative "score", "for" and "against"
vals. For use in instances where one wishes to combine scores from multiple families.

Usage

add. fam.scores(score.vec)

Arguments

score.vec A vector will all of the per family score outputs.

Value

A vector with the summed scores of all inputs.

Examples

score.faml <- c("score” = 1.0, "score.for” = 2.0, "score.against”
score.fam2 <- c("score” = 1.0, "score.for” = 3.0, "score.against” = 2.0)
out <- add.fam.scores(c(score.faml, score.fam2))

1l
—_
S

~

assign.a 3

assign.a For affecteds: Take genetic variant and determine the category of the
combo.

Description

For affecteds: Take genetic variant and determine the category of the combo.

Usage

assign.a(variant)

Arguments
variant Variant for individual. genotypes, phased genotypes, or binary encodings ac-
cepted.
assign.status Take a disease status and a genetic variant and determine which cate-
gory the combo falls in. A.c = Affected individual with ALT variant A.i
= Affected individual without ALT variant U.c = Unaffected individ-
ual without ALT variant U.i = Unaffected individual with ALT variant
If theoretical. max = TRUE the true variant statuses are ignored and
all affected/unaffected are assigned A.c and U.c respectively. These
encoding can then be used show what a family’s max score would be.
Description

Take a disease status and a genetic variant and determine which category the combo falls in. A.c
= Affected individual with ALT variant A.i = Affected individual without ALT variant U.c = Un-
affected individual without ALT variant U.i = Unaffected individual with ALT variant If theoreti-
cal.max = TRUE the true variant statuses are ignored and all affected/unaffected are assigned A.c
and U.c respectively. These encoding can then be used show what a family’s max score would be.

Usage

assign.status(status, variant, theoretical.max = FALSE)

Arguments
status Disease status of an individual. A = affected, U = unaffected.
variant Variant for individual. genotypes, phased genotypes, or binary encodings ac-

cepted.
theoretical.max
Should the theoretical maxima be returned instead of the observed values? When

true, the scoring assumes correct variant-status pair for each individual. Default
is FALSE.

4 build.relation.dict

Value
a string
Examples
assign.status("A", "@/1") == "A.c"
assign.status("A", "0|0") == "A.i"
assign.status("U", 1) == "U.i"
assign.status("U", "@|0") == "U.c"
assign.u For unaffecteds: Take a genetic variant and determine the category of
the combo.
Description

For unaffecteds: Take a genetic variant and determine the category of the combo.

Usage

assign.u(variant)

Arguments

variant Variant for individual. genotypes, phased genotypes, or binary encodings ac-
cepted.

build.relation.dict Build dictionary with the relationships falling in the different cate-
gories for the query row.

Description

Build dictionary with the relationships falling in the different categories for the query row.

Usage

build.relation.dict(mat.row, name.stat.dict, drop.unrelated = TRUE)

Arguments

mat.row A row from a relationship matrix
name.stat.dict A list with the labelled status/variant combo for each individual.
drop.unrelated Should unrelated (-1) relationships be dropped? Default = TRUE.

Value

A list with the categorized relationship/variant information.

calc.rv.score 5

calc.rv.score Calculate a relatedness-weighted score for a given rare variant.

Description

These scores can be used to compare variants of interest within a family.

Usage

calc.rv.score(
fam.list,
affected.weight = 1,
unaffected.weight =
unaffected.max = 8,
max.err = 4

0.5,

Arguments

fam.list * A list with the names: *A.c’, ’A.i’, "U.c’, "U.i’ respectively containing the
affected correct, affected incorrect, unaffected correct and unaffected in-
correct. - This can be generated with the function: score.variant.status -
where each value in the dictionary is a list containing the reference and the
reference’s relatives as encoded based on their degree of relatedness to the
reference (reference = 0, sibling/parent/offspring = 1, uncle/grandparent =
2, cousin = 3, etc.)
affected.weight
A coefficient to multiply the calculated A.c and A.i relatedness values by.
unaffected.weight
A coefficient to multiply the U.c and U.i relatedness values by.

unaffected.max This param controls the score given to a first degree unaffected relatives scores
decay from this specified maximum by half for each subsequent relationship
degree.

max.err A heuristic cap of the number of incorrect assignments allowed when scoring.
‘When the total number of incorrect (sum of affected and unaffected) is exceeded,
the variant’s score is set to 0, regardless of the number of points for or against.
This simplifies scoring and allows for fast filtering of poor quality variants. De-
fault is 4.

Details

For each encoded relationship, a relationship-informed weight is applied to their sharing or not
sharing of a variant. The score for affected status is: (1 / coefficient.of.relatedness) * status.weight
For example, an affected cousin (encoded as a 3) would get a score of: (1/0.125) * affected weight
8 * 1 = 8 points in favour of the variant. Whereas for unaffected individuals, scores decay the

6 encode.rows

further a person is in relation to the proband based on the formula: ((unaffected.max2) * coeffi-
cient.of.relatedness) * unaffected.weight For example, with the default unaffected.max of 8. The
sister that does not have a variant would get a score of ((82) 0.5) * unaffected.weight (16 * 0.5)
* 0.5 = 4 points for the variant. If these were the only two relatives considered we could sum the
points and get a score in favour of the variant of 8 + 4 = 12 If there is evidence against a variant,
this is factored into the score as: total.score = evidence.for - evidence.against For example, if there
were also an affected sibling without the variant we would have the score against of: (1/0.5) * 1
= 2 The final score for the variant would then be for - against = total 12 - 2 = 10 Giving a final
score of 10 for the variant. Comparing values across variants can be used to rank them based on
pedigree-informed levels of variant sharing across affected and unaffected individuals. Increasing
the affected.weight relative to the unaffected.weight will make the scores give more weight to the
correct/incorrect status of affected individuals. The default is 2:1 weight for affected relative to
unaffected, which accounts for the fact that variants are likely to be incompletely penetrant and we
therefore want to be more tolerant of unaffected individuals that have a variant rather than affected
individuals that do not.

Input:

Value

A list with three components: score, score.for, score.against.

Examples

relations <- list("A.c” = c(0, 1, 3, 1), "A.i" = c(3), "U.c" = c(1, 2), "U.i" = c(1))
rv.scores <- calc.rv.score(relations)

encode.rows Take the relationship matrix and the encoded statuses of info. For each
row, generate the encoded data for scoring.

Description
Take the relationship matrix and the encoded statuses of info. For each row, generate the encoded
data for scoring.

Usage

encode.rows(relation.mat, status.df, ...)

Arguments

relation.mat The relationship matrix for all pairwise combinations of individuals.
status.df The ID, status, and genotypes for each individual.

Additional arguments to be passed between methods.

Value

A dictionary with the per-individual relationship lists. One value for each row of the matrix.

ibd 7

ibd Calculation of Identity by descent (IBD).

Description
Use the relationship informationfrom the pedigree to estimate of the amount of the genome they
have inherited it from a common ancestor without recombination.

Usage

ibd(a, b, c, d, n, K, theoretical = TRUE)

Arguments
a Count of affected individuals
b Count of obligate carriers
C Count of children of either affecteds or carriers, with no children of their own
d Count of Trees of unaffected individuals - specifically, two sequential genera-
tions (i.e. a parent and their offspring)
n Count of the number of second generation progeny in a given tree.
K The estimate of penetrance rate.
theoretical Boolean indicating if the calculation should be theoretical IBD calculation (us-
ing only d and k), or if the calculation should use the provided n value.
Details

Can do this for the total potential relatedness in a pedigree (theoretical=TRUE), or for the actual
relatedness across collected samples (theoretical=FALSE). For the theoretical=TRUE case, in the
unaffected trees, if we have a sample from the parent, then the offspring do not provide any addi-
tional information for a max IBD calculation. This means that K does not scale with n.

For theoretical=FALSE, sometimes we don’t have the healthy parent in an unaffected tree, and only
have a child. In this case, the IBD contribution from the child is 1/4, and since they’re unaffected
and therefore are a counter-filter, they would contribute 1-1/4 = 3/4 to the total relatedness. Either
the parent is a non-obligate carrier, or is a non-carrier. The probability of the children depends on
which of those is true, so we have the additional set of terms in the theoretical=FALSE logic.

Value

pi-hat value. The proportion of genome shared between individuals.

Examples

ibd <- ibd(3, 1, 5, 2, 1, 0.4576484)

8 read.indiv

penetrance Likelihood function for calculation of Pedigree-based autosomal dom-
inant penetrance value. Formula deployed via optimize so as to deter-
mine the optimal value.

Description

Likelihood function for calculation of Pedigree-based autosomal dominant penetrance value. For-
mula deployed via optimize so as to determine the optimal value.

Usage

penetrance(K, a, b, c, d, n)

Arguments
K The range of penetrance values to be explored by the optimization function.
a Count of affected individuals
b Count of obligate carriers
C Count of children of either affecteds or carriers, with no children of their own
d Count of trees of unaffected individuals - specifically, two sequential generations
(i.e. a parent and their offspring)
n Count of the number of second generation progeny in a given tree.
Value

K Pedigree-based estimation of autosomal dominant penetrance rate.

Examples

K <- optimize(penetrance, c(@,1), 3, 1, 5, 2, 1, maximum=TRUE) $max

read.indiv Read in variant and status info for individuals.

Description

Read in variant and status info for individuals.

Usage

read. indiv(fname)

read.pedigree 9

Arguments
fname A file name, expected format of contents is: name status variant MS-5678-1001
A 0/1
Value

A data frame.

Examples

tsv.namel <-system.file('extdata/1234_ex2.tsv', package = 'KinformR")
id.df1 <- read.indiv(tsv.name1l)

read.pedigree Read in the encoded pedigree data file.

Description

Read in the encoded pedigree data file.

Usage

read.pedigree(filename)

Arguments

filename name of the file with the data.

Value

A data frame containing the encoded pedigree information.

Examples

example.pedigree.file <- system.file('extdata/example_pedigree_encoding.tsv',
package = 'KinformR')
example.pedigree.df <- read.pedigree(example.pedigree.file)

10 read.var.table

read.relation.mat Read in relationship matrix Apply the individual names to the rows
and columns.

Description
Row/column intersections give the degree of relationship for the two individuals. 0 = self, -1 =
unrelated.

Usage

read.relation.mat(fname)

Arguments

fname The file with the relationship matrix information.

Value

A matrix with the relationships and individual ids as rownames and colnames.

Examples

mat.namel <-system.file('extdata/1234_ex2.mat', package = 'KinformR')
matl <- read.relation.mat(mat.namel)

read.var.table Read in a vcf-like subset of information obtained from use of se-
gbiopy’s vcf_extract function on a vcf with the status encoded in the
indivudal’s names

Description
Note - ensure the status in the names match your desired encoding! There are individuals with am-
biguous statues, that you may require to be encoded in a specific fashion for you current purposes.
Usage

read.var.table(fname)

Arguments

fname A file name, expected format of contents is: #CHROM POS REF ALT MS-
5678-1001_A MS-5678-1002_U ... chr3 46203838 G A 0/1 0/0 ...

score 11

Value

A dataframe. Data will be worked into a data frame with format. name status variant MS-5678-1001
A 0/1

Examples

ex.infile <-system.file('extdata/example_vcf_extract_5678.tsv',
package = 'KinformR')
read.var.table(ex.infile)

score Score the pedigrees using the pihat values.

Description

Score the pedigrees using the pihat values.

Usage

score(pihat)

Arguments

pihat Estimated proportion of genome shared between individuals, from function: ibd.

Value

The score value.

Examples

s.val <- score(12.61)

score.fam Given a relationship matrix and status dataframe, score a family by
applying the calc.rv.score scoring system to every pairwise combina-
tion of individuals.

Description

By default all individuals are treated as the reference 'proband’ and the given variant’s score is
calculated based on relationships to all other individuals. e.g. for each row in the relationship ma-
trix. calc.rv.score is run, with the row name indicating the reference individual that the calculation
is relative to. Note that the relation.mat can include more individuals than are present within the
status.df, but the matrix will be subset to include only those individuals that have status information
provided.

12 score.fam

Usage

score. fam(
relation.mat,
status.df,
affected.weight = 1,
unaffected.weight = 0.5,
return.sums = FALSE,
return.means = TRUE,
affected.only = TRUE,
max.err = 4

Arguments

relation.mat A relationship matrix for the family.

status.df A dataframe with the encoded variant/disease status of each individual
affected.weight

A coefficient to multiply the calculated A.c and A.i relatedness values by.
unaffected.weight

A coefficient to multiply the U.c and U.i relatedness values by.

return.sums Boolean indicating if sum of family variant scores should be returned (default =
FALSE).

return.means Boolean indicating if mean of all family variant scores should be returned (de-
fault = TRUE).

affected.only Boolean indicating if family score should be calculated using only affected in-
dividuals (default = TRUE).

max.err A heuristic cap of the number of incorrect assignments allowed when scoring.
‘When the total number of incorrect (sum of affected and unaffected) is exceeded,
the variant’s score is set to 0, regardless of the number of points for or against.
This simplifies scoring and allows for fast filtering of poor quality variants. De-
fault is 4.

Details

There are several return options possible.
* If affected.only is TRUE, the final scores will be reported for only rows where the reference
individual is affected (default = True).
* If return.means is TRUE, the average scores for the rows will be reported. (default = TRUE)

o If return.sums is True, the sum of the scores for all the rows will be reported. (default = False)
NOTE: if affected.only = True, the averages and sums are calculated using only the affected
reference individuals.

Value

A labelled vector with names: score, score.for, score.against

score.pedigree 13

Examples

mat.namel <- system.file("extdata/1234_ex2.mat", package = "KinformR")
tsv.namel <- system.file("extdata/1234_ex2.tsv", package = "KinformR")
mat.df <- read.relation.mat(mat.namel)

ind.df <- read.indiv(tsv.namel)

ind.df.status <- score.variant.status(ind.df)

score.default <- score.fam(mat.df, ind.df.status)

score.pedigree Take the encoded information about the pedigrees and calculate pen-
etrance.

Description

Determine a value score of families by comparing their relationship structure. More distant rela-
tionships between affecteds (e.g. affected cousins) is more valuable that close relationships (e.g.
affected siblings) as there is less IBD and therefore a smaller search space.

Usage

score.pedigree(h)

Arguments

h A data frame containing the encoded pedigree information

Details
Simplifying assumptions:

¢ Autosomal dominant
* No ambiguous statuses

* No more than two sequential generations of unknown carrier status (non-obligate carrier vs.
non-carrier). Generalized support of arbitrary tree structures gets a lot more complicated,
especially for the likelihood function.

» Exclude big giant trees of unaffecteds - related to above. Will slightly bias the result toward
higher penetrance.

* Exclude subjects younger than age of onset

Value

A data frame containing the theoretical scoring of the power of a family assuming you were able to
collect everyone on the simplified pedigree, as well as a current scoreing, examining only those for
whom you currently have DNA.

14 score.variant.status

Examples

example.pedigree.file <-system.file('extdata/example_pedigree_encoding.tsv',
package = 'KinformR')

example.pedigree.df <- read.pedigree(example.pedigree.file)

penetrance.df <- score.pedigree(example.pedigree.df)

score.variant.status Take the dataframe with variants and status and determine which indi-

vudals are scored correctly and which are scored incorrectly. Assign
an A.c, A.i, U.c, U.i, unk

Description

Variants can be encoded as binary (0 or 1, genotypes 0/0 or 0/1, or phased genotypes 0l0 OI1). Note
the program assumes alt is the disease allele. homozygous alts are allowed.

Usage

score.variant.status(indiv.df, theoretical.max = FALSE)

Arguments

indiv.df A dataframe with the format: name status variant MS-5678-1001 A 0/1
theoretical.max

Should the theoretical maxima be returned instead of the observed values? When
true, the scoring assumes correct variant-status pair for each individual. Default

is FALSE.
Details
theoretical.max - bool, default is FALSE when TRUE, function encodes the theoretical max, using
a dummy perfect associatng variant generated to see what a family could score. TODO - switch to
numbers 1-4 and -1?

Value

Copy of input dataframe, with dataframe with the status categroies added as a new column "stat-
var.cat"

subset.mat 15

subset.mat Take the matrix and subset out only the encoded individuals that are
present in the status dataframe.

Description

Take the matrix and subset out only the encoded individuals that are present in the status dataframe.

Usage

S3 method for class 'mat'
subset(mat.df, status.df)

Arguments

mat.df The full matrix file to subset

status.df The list of sampled individuals, matrix is subset to only these individuals.
Value

A subset of the input matrix.

Index

add.fam.scores, 2
assign.a, 3
assign.status, 3
assign.u, 4

build.relation.dict, 4
calc.rv.score, 5
encode.rows, 6

ibd, 7

penetrance, 8

read.indiv, 8
read.pedigree, 9
read.relation.mat, 10
read.var.table, 10

score, 11

score.fam, 11
score.pedigree, 13
score.variant.status, 14
subset.mat, 15

16

	add.fam.scores
	assign.a
	assign.status
	assign.u
	build.relation.dict
	calc.rv.score
	encode.rows
	ibd
	penetrance
	read.indiv
	read.pedigree
	read.relation.mat
	read.var.table
	score
	score.fam
	score.pedigree
	score.variant.status
	subset.mat
	Index

