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1 Introduction

Package parallel was first included in R 2.14.0. It builds on the work done for CRAN packages
multicore (Urbanek, 2009–2014) and snow (Tierney et al., 2003–present) and provides drop-
in replacements for most of the functionality of those packages, with integrated handling of
random-number generation.

Parallelism can be done in computation at many different levels: this package is principally con-
cerned with ‘coarse-grained parallelization’. At the lowest level, modern CPUs can do several
basic operations simultaneously (e.g. integer and floating-point arithmetic), and several imple-
mentations of external BLAS libraries use multiple threads to do parts of basic vector/matrix
operations in parallel. Several contributed R packages use multiple threads at C level via

OpenMP or pthreads.

This package handles running much larger chunks of computations in parallel. A typical example
is to evaluate the same R function on many different sets of data: often simulated data as in
bootstrap computations (or with ‘data’ being the random-number stream). The crucial point
is that these chunks of computation are unrelated and do not need to communicate in any way.
It is often the case that the chunks take approximately the same length of time. The basic
computational model is

(a) Start up M ‘worker’ processes, and do any initialization needed on the workers.

(b) Send any data required for each task to the workers.

(c) Split the task into M roughly equally-sized chunks, and send the chunks (including the R

code needed) to the workers.

(d) Wait for all the workers to complete their tasks, and ask them for their results.

(e) Repeat steps (b–d) for any further tasks.

(f) Shut down the worker processes.

Amongst the initializations which may be needed are to load packages and initialize the random-
number stream.

There are implementations of this model in the functions mclapply and parLapply as near-
drop-in replacements for lapply.

A slightly different model is to split the task into M1 > M chunks, send the first M chunks to
the workers, then repeatedly wait for any worker to complete and send it the next remaining
task: see the section on ‘load balancing’.
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In principle the workers could be implemented by threads1 or lightweight processes, but in the
current implementation they are full processes. They can be created in one of three ways:

1. Via system("Rscript") or similar to launch a new process on the current machine or a
similar machine with an identical R installation. This then needs a way to communicate
between master and worker processes, which is usually done via sockets.

This should be available on all R platforms, although it is conceivable that zealous security
measures could block the inter-process communication via sockets. Users of Windows and
macOS may expect pop-up dialog boxes from the firewall asking if an R process should
accept incoming connections.

Following snow, a pool of worker processes listening via sockets for commands from the
master is called a ‘cluster’ of nodes.

2. Via forking. Fork is a concept2 from POSIX operating systems, and should be available
on all R platforms except Windows. This creates a new R process by taking a complete
copy of the master process, including the workspace and state of the random-number
stream. However, the copy will (in any reasonable OS) share memory pages with the
master until modified so forking is very fast.

The use of forking was pioneered by package multicore.

Note that as it does share the complete process, it also shares any GUI elements, for
example an R console and on-screen devices. This can cause havoc.3

There needs to be a way to communicate between master and worker. Once again there
are several possibilities since master and workers share memory. In multicore the initial
fork sends an R expression to be evaluated to the worker, and the master process opens a
pipe for reading that is used by the worker to return the results. Both that and creating
a cluster of nodes communicating via sockets are supported in package parallel.

3. Using OS-level facilities to set up a means to send tasks to other members of a group of
machines. There are several ways to do that, and for example package snow can make use
of MPI (‘message passing interface’) using R package Rmpi. Communication overheads
can dominate computation times in this approach, so it is most often used on tightly-
coupled networks of computers with high-speed interconnects.

CRAN packages following this approach include GridR (using Condor or Globus) and
Rsge (using SGE, currently called ‘Oracle Grid Engine’).

It will not be considered further in this vignette, but those parts of parallel which provide
snow-like functions will accept snow clusters including MPI clusters.

The landscape of parallel computing has changed with the advent of shared-memory computers
with multiple (and often many) CPU cores. Until the late 2000’s parallel computing was mainly
done on clusters of large numbers of single- or dual-CPU computers: nowadays even laptops have
two or four cores, and servers with 8, 32 or more cores are commonplace. It is such hardware
that package parallel is designed to exploit. It can also be used with several computers running
the same version of R connected by (reasonable-speed) ethernet: the computers need not be
running the same OS.

Note that all these methods of communication use serialize/unserialize to send R objects
between processes. This has limits (typically hundreds of millions of elements) which a well-
designed parallelized algorithm should not approach.

1only ‘in principle’ since the R interpreter is not thread-safe.
2https://en.wikipedia.org/wiki/Fork_(operating_system)
3Some precautions are taken on macOS: for example the event loops for R.app and the quartz device are

inhibited in the child. This information is available at C level in the Rboolean variable R_isForkedChild.
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2 Numbers of CPUs/cores

In setting up parallel computations it can be helpful to have some idea of the number of CPUs
or cores available, but this is a rather slippery concept. Nowadays almost all physical CPUs
contain two or more cores that run more-or-less independently (they may share parts of the
cache memory, and they do share access to RAM). However, on some processors these cores
may themselves be able to run multiple tasks simultaneously, and some OSes (e.g. Windows)
have the concept of logical CPUs which may exceed the number of cores.

Note that all a program can possibly determine is the total number of CPUs and/or cores
available. This is not necessarily the same as the number of CPUs available to the current

user which may well be restricted by system policies on multi-user systems. Nor does it give
much idea of a reasonable number of CPUs to use for the current task: the user may be running
many R processes simultaneously, and those processes may themselves be using multiple threads
through a multi-threaded BLAS, compiled code using OpenMP or other low-level forms of
parallelism. We have even seen instances of multicore’s mclapply being called recursively,4

generating 2n+ n2 processes on a machine estimated to have n = 16 cores.

But in so far as it is a useful guideline, function detectCores() tries to determine the number
of CPU cores in the machine on which R is running: it has ways to do so on all known current R

platforms. What exactly it measures is OS-specific: we try where possible to report the number
of logical cores available.

On Windows the default is to report the number of logical CPUs. On modern hardware (e.g.
Intel Core i7 ) the latter may not be unreasonable as hyper-threading does give a significant
extra throughput. What detectCores(logical = FALSE) reports is OS-version-dependent: on
recent versions of Windows it reports the number of physical cores but on older versions it
might report the number of physical CPU packages.

3 Analogues of apply functions

By far the most common direct applications of packages multicore and snow have been to
provide parallelized replacements of lapply, sapply, apply and related functions.

As analogues of lapply there are

parLapply(cl, x, FUN, ...)

mclapply(X, FUN, ..., mc.cores)

where mclapply is not available5 on Windows and has further arguments discussed on its help
page. They differ slightly in philosophy: mclapply sets up a pool of mc.cores workers just
for this computation, whereas parLapply uses a less ephemeral pool specified by the object
cl created by a call to makeCluster (which inter alia specifies the size of the pool). So the
workflow is

cl <- makeCluster(<size of pool>)

# one or more parLapply calls

stopCluster(cl)

For matrices there are the rarely used parApply and parCapply functions, and the more com-
monly used parRapply, a parallel row apply for a matrix.

4parallel::mclapply detects this and runs nested calls serially.
5except as a stub which simply calls lapply.
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4 SNOW Clusters

The package contains a slightly revised copy of much of snow, and the functions it contains can
also be used with clusters created by snow (provided the package is on the search path).

Two functions are provided to create SNOW clusters, makePSOCKcluster (a streamlined version
of snow::makeSOCKcluster) and (except on Windows) makeForkCluster. They differ only in
the way they spawn worker processes: makePSOCKcluster uses Rscript to launch further copies
of R (on the same host or optionally elsewhere) whereas makeForkCluster forks the workers
on the current host (which thus inherit the environment of the current session).

These functions would normally be called via makeCluster.

Both stdout() and stderr() of the workers are redirected, by default being discarded but
they can be logged using the outfile option. Note that the previous sentence refers to the
connections of those names, not the C-level file handles. Thus properly written R packages
using Rprintf will have their output redirected, but not direct C-level output.

A default cluster can be registered by a call to setDefaultCluster(): this is then used when-
ever one of the higher-level functions such as parApply is called without an explicit cluster.
A little care is needed when repeatedly re-using a pool of workers, as their workspaces will
accumulate objects from past usage, and packages may get added to the search path.

If clusters are to be created on a host other than the current machine (‘localhost’), makeCluster
may need to be be given more information in the shape of extra arguments.

• If the worker machines are not set up in exactly the same way as the master (for example
if they are of a different architecture), use homogeneous = FALSE and perhaps set rscript
to the full path to Rscript on the workers.

• The worker machines need to know how to communicate with the master: normally this
can be done using the hostname found by Sys.info(), but on private networks this need
not be the case and master may need to be supplied as a name or IP address, e.g. master
= "192.168.1.111".

• By default ssh is used to launch R on the workers. If it is known by some other name,
use e.g. rshcmd = "plink.exe" for a Windows box using PUTTY. SSH should be set up
to use silent authentication: setups which require a password to be supplied may or may
not work.

• Socket communication is done over port a randomly chosen port in the range 11000:11999:
site policies might require some other port to be used, in which case set argument port

or environment variable R_PARALLEL_PORT.

5 Forking

Except on Windows, the package contains a copy of multicore: there a few names with the
added prefix mc, e.g. mccollect and mcparallel. (Package multicore used these names, but
also the versions without the prefix which are too easily masked: e.g. package lattice used to
have a function parallel.)

The low-level functions from multicore are provided but not exported from the namespace.

There are high-level functions mclapply and pvec: unlike the versions in multicore these default
to 2 cores, but this can be controlled by setting options("mc.cores"), and that takes its default
from environment variable MC_CORES when the package is loaded. (Setting this to 1 inhibits
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parallel operation: there are stub versions of these functions on Windows which force mc.cores

= 1.)

Functions mcmapply and mcMap provide analogues of mapply and Map.

Note the earlier comments about using forking in a GUI environment.

The parent and forked R processes share the per-session temporary directory tempdir(), which
can be a problem as a lot of code has assumed it is private to the R process. Further, prior
to R 2.14.1 it was possibly for tempfile in two processes to select the same filename in that
temporary directory, and do it sufficiently simultaneously that neither saw it as being in use.

The forked workers share file handles with the master: this means that any output from the
worker should go to the same place as ‘stdout’ and ‘stderr’ of the master process. (This does
not work reliably on all OSes: problems have also been noted when forking a session that is
processing batch input from ‘stdin’.) Setting argument mc.silent = TRUE silences ‘stdout’
for the child: ‘stderr’ is not affected.

Sharing file handles also impacts graphics devices as forked workers inherit all open graphics
devices of the parent: they should not attempt to make use of them.

6 Random-number generation

Some care is needed with parallel computation using (pseudo-)random numbers: the pro-
cesses/threads which run separate parts of the computation need to run independent (and
preferably reproducible) random-number streams. One way to avoid any difficulties is (where
possible) to do all the randomization in the master process: this is done where possible in
package boot (version 1.3-1 and later).

When an R process is started up it takes the random-number seed from the object .Random.seed
in a saved workspace or constructs one from the clock time and process ID when random-number
generation is first used (see the help on RNG). Thus worker processes might get the same seed
because a workspace containing .Random.seed was restored or the random number generator
has been used before forking: otherwise these get a non-reproducible seed (but with very high
probability a different seed for each worker).

The alternative is to set separate seeds for each worker process in some reproducible way from
the seed in the master process. This is generally plenty safe enough, but there have been worries
that the random-number streams in the workers might somehow get into step. One approach is
to take the seeds a long way apart in the random-number stream: note that random numbers
taken a long (fixed) distance apart in a single stream are not necessarily (and often are not) as
independent as those taken a short distance apart. Yet another idea (as used by e.g. JAGS) is
to use different random-number generators for each separate run/process.

Package parallel contains an implementation of the ideas of L’Ecuyer et al. (2002): this uses a
single RNG and make streams with seeds 2127 steps apart in the random number stream (which
has period approximately 2191). This is based on the generator of L’Ecuyer (1999); the reason
for choosing that generator6 is that it has a fairly long period with a small seed (6 integers),
and unlike R’s default "Mersenne-Twister" RNG, it is simple to advance the seed by a fixed

6apart from the commonality of authors!
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number of steps. The generator is the combination of two:

xn = 1403580× xn−2 − 810728× xn−3 mod (232 − 209)

yn = 527612× yn−1 − 1370589× yn−3 mod (232 − 22853)

zn = (xn − yn) mod 4294967087

un = zn/4294967088 unless zn = 0

The ‘seed’ then consists of (xn−3, xn−2, xn−1, yn−3, yn−2, yn−1), and the recursion for each of xn

and yn can have pre-computed coefficients for k steps ahead. For k = 2127, the seed is advanced
by k steps by R call .Random.seed <- nextRNGStream(.Random.seed).

The L’Ecuyer (1999) generator is available via RNGkind("L'Ecuyer-CMRG"). Thus using the
ideas of L’Ecuyer et al. (2002) is as simple as

> RNGkind("L'Ecuyer-CMRG")

> set.seed(2002) # something

> M <- 16 ## start M workers

> s <- .Random.seed

> for (i in 1:M) {

+ s <- nextRNGStream(s)

+ # send s to worker i as .Random.seed

+ }

and this is is implemented for SNOW clusters in function clusterSetRNGStream, and as part
of mcparallel and mclapply (by default).

Apart from streams (2127 steps apart), there is the concept of sub-streams starting from seeds
276 steps apart. Function nextRNGSubStream advances to the next substream.

A direct R interface to the (clunkier) original C implementation is available in CRAN package
rlecuyer (Sevcikova and Rossini, 2004–present). That works with named streams, each of which
have three 6-element seeds associated with them. This can easily be emulated in R by storing
.Random.seed at suitable times. There is another interface using S4 classes in package rstream

(Leydold, 2005–present).

7 Load balancing

The introduction mentioned a different strategy which dynamically allocates tasks to workers:
this is sometimes known as ‘load balancing’ and is implemented in mclapply(mc.preschedule

= FALSE), clusterApplyLB and wrappers.

Load balancing is potentially advantageous when the tasks take quite dissimilar amounts of
computation time, or where the nodes are of disparate capabilities. But some caveats are in
order:

(a) Random number streams are allocated to nodes, so if the tasks involve random numbers
they are likely to be non-repeatable (as the allocation of tasks to nodes depends on the
workloads of the nodes). It would however take only slightly more work to allocate a
stream to each task.

(b) More care is needed is allocating the tasks. If 1000 tasks need to be allocated to 10 nodes,
the standard approach send chunks of 100 tasks to each of the nodes. The load-balancing
approach sends tasks one at a time to a node, and the communication overhead may be
high. So it makes sense to have substantially more tasks than nodes, but not by a factor of
100 (and maybe not by 10).
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8 Setting the CPU Affinity with mclapply

The parameter affinity.list of the mclapply function can be used to run elements of the
input vector X of mclapply on specific CPUs. affinity.list is a vector (atomic or list)
containing the CPU affinity mask for each element of X, it describes on which CPU (core or
hyper-thread unit) a given item is allowed to run, see ? mcaffinity. This can be helpful, if
the elements of X (parallel jobs) have a high variance of completion time or if the hardware
architecture is heterogeneous. It also enables the development of scheduling strategies for opti-
mizing the overall runtime of independent parallel jobs. If affinity.list is set, the mc.cores

parameter is replaced with the number of CPU ids used in the affinity masks. To use this
parameter prescheduling has to be deactivated (mc.preschedule = FALSE). For each value of
the input vector X a separate job is forked. The master process only forks one child process
for each selected CPU at once, to ensure that the number of forked jobs does not exceed the
number of selected CPUs. As soon as a child process has finished, the next available job for the
CPU is forked.

The following code example demonstrates how the execution time can be reduced by assigning
the elements of X to specific CPUs, not on Windows, where mc.cores must remain at 1.

> ## Exemplary variance filter executed on three different matrices in parallel.

> ## Can be used in gene expression analysis as a prefilter

> ## for the number of covariates.

>

> library(parallel)

> n <- 300 # observations

> p <- 20000 # covariates

> ## Different sized matrices as filter inputs

> ## Matrix A and B form smaller work loads

> ## while matrix C forms a bigger workload (2*p)

> library(stats)

> A <- matrix(replicate( p, rnorm(n, sd = runif(1, 0.1, 10))), n, p)

> B <- matrix(replicate( p, rnorm(n, sd = runif(1, 0.1, 10))), n, p)

> C <- matrix(replicate(2*p, rnorm(n, sd = runif(1, 0.1, 10))), n, 2*p)

> varFilter <- function (X, nSim = 20) {

+ for (i in 1:nSim) {

+ train <- sample(nrow(X), 2 / 3 * nrow(X))

+ colVars <- apply(X[train, ], 2, var)

+ keep <- names(head(sort(colVars, decreasing = TRUE), 100))

+ # myAlgorithm(X[, keep])

+ }

+ }

> ## Runtime comparison -----------------------------------

>

> ## mclapply with affinity.list

> ## CPU mapping: A and B run on CPU 1 while C runs on CPU 2:

> affinity <- c(1,1,2)

> system.time(

+ mclapply(X = list(A,B,C), FUN = varFilter,

+ mc.preschedule = FALSE, affinity.list = affinity))

> ## user system elapsed

> ## 34.909 0.873 36.720

>

>

> ## mclapply without affinity.list

7



> system.time(

+ mclapply(X = list(A,B,C), FUN = varFilter, mc.cores = 2,

+ mc.preschedule = FALSE) )

> ## user system elapsed

> ## 72.893 1.588 55.982

>

>

> ## mclapply with prescheduling

> system.time(

+ mclapply(X = list(A,B,C), FUN = varFilter, mc.cores = 2,

+ mc.preschedule = TRUE) )

> ## user system elapsed

> ## 53.455 1.326 53.399

Instead of using affinity.list for runtime optimization, it can also be used to simply restrict
the computation to specific CPUs as in the following example.

> ## Restricts all elements of X to run on CPU 1 and 2.

> X <- list(1, 2, 3)

> affinity.list <- list(c(1,2), c(1,2), c(1,2))

> mclapply(X = X, FUN = function (i) i*i,

+ mc.preschedule = FALSE, affinity.list = affinity.list)

9 Portability considerations

People wanting to provide parallel facilities in their code need to decide how hard they want to
try to be portable and efficient: no approach works optimally on all platforms.

Using mclapply is usually the simplest approach, but will run serial versions of the code on
Windows. This may suffice where parallel computation is only required for use on a single
multi-core Unix-alike server—for mclapply can only run on a single shared-memory system.
There is fallback to serial use when needed, by setting mc.cores = 1.

Using parLapply will work everywhere that socket communication works, and can be used, for
example, to harness all the CPU cores in a lab of machines that are not otherwise in use. But
socket communication may be blocked even when using a single machine and is quite likely to
be blocked between machines in a lab. There is not currently any fallback to serial use, nor
could there easily be (as the workers start with a different R environment from the one current
on the master).

An example of providing access to both approaches as well as serial code is package boot, version
1.3-3 or later.

10 Extended examples

> library(parallel)

Probably the most common use of coarse-grained parallelization in statistics is to do multiple
simulation runs, for example to do large numbers of bootstrap replicates or several runs of an
MCMC simulation. We show an example of each.

Note that some of the examples will only work serially on Windows and some actually are
computer-intensive.
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10.1 Bootstrapping

Package boot (Canty and Ripley, 1999–present) is support software for the monograph by Davi-
son and Hinkley (1997). Bootstrapping is often used as an example of easy parallelization, and
some methods of producing confidence intervals require many thousands of bootstrap samples.
As from version 1.3-1 the package itself has parallel support within its main functions, but we
illustrate how to use the original (serial) functions in parallel computations.

We consider two examples using the cd4 dataset from package boot where the interest is in
the correlation between before and after measurements. The first is a straight simulation, often
called a parametric bootstrap. The non-parallel form is

> library(boot)

> cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v)

> cd4.mle <- list(m = colMeans(cd4), v = var(cd4))

> cd4.boot <- boot(cd4, corr, R = 999, sim = "parametric",

+ ran.gen = cd4.rg, mle = cd4.mle)

> boot.ci(cd4.boot, type = c("norm", "basic", "perc"),

+ conf = 0.9, h = atanh, hinv = tanh)

To do this with mclapply we need to break this into separate runs, and we will illustrate two
runs of 500 simulations each:

> cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v)

> cd4.mle <- list(m = colMeans(cd4), v = var(cd4))

> run1 <- function(...) boot(cd4, corr, R = 500, sim = "parametric",

+ ran.gen = cd4.rg, mle = cd4.mle)

> mc <- 2 # set as appropriate for your hardware

> ## To make this reproducible:

> set.seed(123, "L'Ecuyer")

> cd4.boot <- do.call(c, mclapply(seq_len(mc), run1) )

> boot.ci(cd4.boot, type = c("norm", "basic", "perc"),

+ conf = 0.9, h = atanh, hinv = tanh)

There are many ways to program things like this: often the neatest is to encapsulate the
computation in a function, so this is the parallel form of

> do.call(c, lapply(seq_len(mc), run1))

To run this with parLapply we could take a similar approach by

> run1 <- function(...) {

+ library(boot)

+ cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v)

+ cd4.mle <- list(m = colMeans(cd4), v = var(cd4))

+ boot(cd4, corr, R = 500, sim = "parametric",

+ ran.gen = cd4.rg, mle = cd4.mle)

+ }

> cl <- makeCluster(mc)

> ## make this reproducible

> clusterSetRNGStream(cl, 123)

> library(boot) # needed for c() method on master

> cd4.boot <- do.call(c, parLapply(cl, seq_len(mc), run1) )

> boot.ci(cd4.boot, type = c("norm", "basic", "perc"),

+ conf = 0.9, h = atanh, hinv = tanh)

> stopCluster(cl)
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Note that whereas with mclapply all the packages and objects we use are automatically available
on the workers, this is not in general7 the case with the parLapply approach. There is often
a delicate choice of where to do the computations: for example we could compute cd4.mle on
the workers (as above) or on the master and send the value to the workers. We illustrate the
latter by the following code

> cl <- makeCluster(mc)

> cd4.rg <- function(data, mle) MASS::mvrnorm(nrow(data), mle$m, mle$v)

> cd4.mle <- list(m = colMeans(cd4), v = var(cd4))

> clusterExport(cl, c("cd4.rg", "cd4.mle"))

> junk <- clusterEvalQ(cl, library(boot)) # discard result

> clusterSetRNGStream(cl, 123)

> res <- clusterEvalQ(cl, boot(cd4, corr, R = 500,

+ sim = "parametric", ran.gen = cd4.rg, mle = cd4.mle))

> library(boot) # needed for c() method on master

> cd4.boot <- do.call(c, res)

> boot.ci(cd4.boot, type = c("norm", "basic", "perc"),

+ conf = 0.9, h = atanh, hinv = tanh)

> stopCluster(cl)

Running the double bootstrap on the same problem is far more computer-intensive. The stan-
dard version is

> R <- 999; M <- 999 ## we would like at least 999 each

> cd4.nest <- boot(cd4, nested.corr, R=R, stype="w", t0=corr(cd4), M=M)

> ## nested.corr is a function in package boot

> op <- par(pty = "s", xaxs = "i", yaxs = "i")

> qqplot((1:R)/(R+1), cd4.nest$t[, 2], pch = ".", asp = 1,

+ xlab = "nominal", ylab = "estimated")

> abline(a = 0, b = 1, col = "grey")

> abline(h = 0.05, col = "grey")

> abline(h = 0.95, col = "grey")

> par(op)

> nominal <- (1:R)/(R+1)

> actual <- cd4.nest$t[, 2]

> 100*nominal[c(sum(actual <= 0.05), sum(actual < 0.95))]

which took about 55 secs on one core of an 8-core Linux server.

Using mclapply we could use

> mc <- 9

> R <- 999; M <- 999; RR <- floor(R/mc)

> run2 <- function(...)

+ cd4.nest <- boot(cd4, nested.corr, R=RR, stype="w", t0=corr(cd4), M=M)

> cd4.nest <- do.call(c, mclapply(seq_len(mc), run2, mc.cores = mc) )

> nominal <- (1:R)/(R+1)

> actual <- cd4.nest$t[, 2]

> 100*nominal[c(sum(actual <= 0.05), sum(actual < 0.95))]

which ran in 11 secs (elapsed) using all of that server.

10.2 MCMC runs

Ripley (1988) discusses the maximum-likelihood estimation of the Strauss process, which is

7it is with clusters set up with makeForkCluster.
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done by solving a moment equation
EcT = t

where T is the number of R-close pairs and t is the observed value, 30 in the following example.
A serial approach to the initial exploration might be

> library(spatial)

> towns <- ppinit("towns.dat")

> tget <- function(x, r=3.5) sum(dist(cbind(x$x, x$y)) < r)

> t0 <- tget(towns)

> R <- 1000

> c <- seq(0, 1, 0.1)

> ## res[1] = 0

> res <- c(0, sapply(c[-1], function(c)

+ mean(replicate(R, tget(Strauss(69, c=c, r=3.5))))))

> plot(c, res, type="l", ylab="E t")

> abline(h=t0, col="grey")

which takes about 20 seconds today, but many hours when first done in 1985. A parallel version
might be

> run3 <- function(c) {

+ library(spatial)

+ towns <- ppinit("towns.dat") # has side effects

+ mean(replicate(R, tget(Strauss(69, c=c, r=3.5))))

+ }

> cl <- makeCluster(10, methods = FALSE)

> clusterExport(cl, c("R", "towns", "tget"))

> res <- c(0, parSapply(cl, c[-1], run3)) # 10 tasks

> stopCluster(cl)

which took about 4.5 secs, plus 2 secs to set up the cluster. Using a fork cluster (not on
Windows) makes the startup much faster and setup easier:

> cl <- makeForkCluster(10) # fork after the variables have been set up

> run4 <- function(c) mean(replicate(R, tget(Strauss(69, c=c, r=3.5))))

> res <- c(0, parSapply(cl, c[-1], run4))

> stopCluster(cl)

As one might expect, the mclapply version is slightly simpler:

> run4 <- function(c) mean(replicate(R, tget(Strauss(69, c=c, r=3.5))))

> res <- c(0, unlist(mclapply(c[-1], run4, mc.cores = 10)))

If you do not have as many as 10 cores, you might want to consider load-balancing in a
task like this as the time taken per simulation does vary with c. This can be done using
mclapply(mc.preschedule = FALSE) or parSapplyLB. The disadvantage is that the results
would not be reproducible (which does not matter here).

10.3 Package installation

With over 4000 R packages available, it is often helpful to do a comprehensive install in parallel.
We provide facilities to do so in install.packages via a parallel make, but that approach may
not be suitable.8 Some of the tasks take many times longer than others, and we do not know
in advance which these are.

8A parallel make might not be available, and we have seen a couple of instances of package installation not

working correctly when run from make.
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We illustrate an approach using package parallel which is used on part of the CRAN check farm.
Suppose that there is a function do_one(pkg) which installs a single package and then returns.
Then the task is to run do_one on as many of the M workers as possible whilst ensuring that all
of the direct and indirect dependencies of pkg are installed before pkg itself. As the installation
of a single package can block several others, we do need to allow the number of installs running
simultaneously to vary: the following code achieves that, but needs to use low-level functions
to do so.

> pkgs <- "<names of packages to be installed>"

> M <- 20 # number of parallel installs

> M <- min(M, length(pkgs))

> library(parallel)

> unlink("install_log")

> cl <- makeCluster(M, outfile = "install_log")

> clusterExport(cl, c("tars", "fakes", "gcc")) # variables needed by do_one

> ## set up available via a call to available.packages() for

> ## repositories containing all the packages involved and all their

> ## dependencies.

> DL <- utils:::.make_dependency_list(pkgs, available, recursive = TRUE)

> DL <- lapply(DL, function(x) x[x %in% pkgs])

> lens <- sapply(DL, length)

> ready <- names(DL[lens == 0L])

> done <- character() # packages already installed

> n <- length(ready)

> submit <- function(node, pkg)

+ parallel:::sendCall(cl[[node]], do_one, list(pkg), tag = pkg)

> for (i in 1:min(n, M)) submit(i, ready[i])

> DL <- DL[!names(DL) %in% ready[1:min(n, M)]]

> av <- if(n < M) (n+1L):M else integer() # available workers

> while(length(done) < length(pkgs)) {

+ d <- parallel:::recvOneResult(cl)

+ av <- c(av, d$node)

+ done <- c(done, d$tag)

+ OK <- unlist(lapply(DL, function(x) all(x %in% done) ))

+ if (!any(OK)) next

+ p <- names(DL)[OK]

+ m <- min(length(p), length(av)) # >= 1

+ for (i in 1:m) submit(av[i], p[i])

+ av <- av[-(1:m)]

+ DL <- DL[!names(DL) %in% p[1:m]]

+ }

10.4 Passing ...

The semantics of ... do not fit well with parallel operation, since lazy evaluation may be delayed
until the tasks have been sent to the workers. This is no problem in the forking approach, as
the information needed for lazy evaluation will be present in the forked workers.

For snow-like clusters the trick is to ensure that ... has any promises forced whilst the infor-
mation is still available. This is how boot does it:

> fn <- function(r) statistic(data, i[r, ], ...)

> RR <- sum(R)

> res <- if (ncpus > 1L && (have_mc || have_snow)) {
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+ if (have_mc) {

+ parallel::mclapply(seq_len(RR), fn, mc.cores = ncpus)

+ } else if (have_snow) {

+ list(...) # evaluate any promises

+ if (is.null(cl)) {

+ cl <- parallel::makePSOCKcluster(rep("localhost", ncpus))

+ if(RNGkind()[1L] == "L'Ecuyer-CMRG")

+ parallel::clusterSetRNGStream(cl)

+ res <- parallel::parLapply(cl, seq_len(RR), fn)

+ parallel::stopCluster(cl)

+ res

+ } else parallel::parLapply(cl, seq_len(RR), fn)

+ }

+ } else lapply(seq_len(RR), fn)

Note that ... is an argument to boot, and so after

> list(...) # evaluate any promises

it refers to objects within the evaluation frame of boot and hence the environment of fn which
will therefore be sent to the workers along with fn.

11 Differences from earlier versions

The support of parallel RNG differs from snow: multicore had no support.

11.1 Differences from multicore

multicore had quite elaborate code to inhibit the Aqua event loop for R.app and the event loop
for the quartz graphics device. This has been replaced by recording a flag in the R executable
for a child process.

Functions fork and kill have mc prefixes and are not exported. This avoids confusion with
other packages (such as package fork), and note that mckill is not as general as tools::pskill.

Aliased functions collect and parallel are no longer provided.

11.2 Differences from snow

snow set a timeout that exceeded the maximum value required by POSIX, and did not provide
a means to set the timeout on the workers. This resulted in process interlocks on Solaris.

makeCluster creates MPI clusters by calling snow.

makePSOCKcluster has been streamlined, as package parallel is in a known location on all
systems, and Rscript is these days always available. Logging of workers is set up to append to
the file, so multiple processes can be logged.

parSapply has been brought into line with sapply.

clusterMap() gains SIMPLIFY and USE.NAMES arguments to make it a parallel version of mapply
and Map.

The timing interface has not been copied.
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