
Package ‘villager’
October 12, 2022

Title A Framework for Designing and Running Agent Based Models

Version 1.1.1

Description This is a package for creating and running Agent Based Models (ABM). It pro-
vides a set of base classes with core functionality to allow bootstrapped models. For more inten-
sive modeling, the supplied classes can be extended to fit researcher needs.

License MIT + file LICENSE

Encoding UTF-8

LazyData false

RoxygenNote 7.1.1

Depends R (>= 3.5.0)

Imports readr, R6, uuid

Suggests covr, dplyr, knitr, leaflet, plotly, remotes, rmarkdown,
testthat,

URL https://github.com/zizroc/villager/

BugReports https://github.com/zizroc/villager/issues/

VignetteBuilder knitr

NeedsCompilation no

Author Thomas Thelen [aut, cre],
Gerardo Aldana [aut],
Marcus Thomson [aut],
Toni Gonzalez [aut]

Maintainer Thomas Thelen <thelen@nceas.ucsb.edu>

Repository CRAN

Date/Publication 2022-04-15 10:20:02 UTC

R topics documented:
data_writer . 2
model_data . 3

1

https://github.com/zizroc/villager/
https://github.com/zizroc/villager/issues/

2 data_writer

resource . 4
resource_manager . 5
simulation . 7
village . 8
village_state . 10
winik . 11
winik_manager . 14

Index 18

data_writer Data Writer

Description

A class responsible for the simulation data to disk.

Details

This class can be subclasses to provide advanced data writing to other data sources. This should
also be subclassed if the winik and resource classes are subclasses, to write any addional fields to
the data source.

Methods

write() Writes the winik and resources to disk.

Create a new data writer.

Public fields

results_directory The folder where the simulation resulst are written to

winik_filename The location where the winiks are written to

resource_filename The location where the resources are written to

Methods

Public methods:
• data_writer$new()

• data_writer$write()

• data_writer$clone()

Method new(): Creates a new data writer object that has optional paths for data files.

Usage:
data_writer$new(
results_directory = "results",
winik_filename = "winiks.csv",
resource_filename = "resources.csv"

)

model_data 3

Arguments:

results_directory The directory where the results file is written to

winik_filename The name of the file for the winik data

resource_filename The name of the file for the resource data

Returns: A new winik object Writes a village’s state to disk.

Method write(): Takes a state an the name of a village and writes the winiks and resources to
disk

Usage:

data_writer$write(state, village_name)

Arguments:

state The village’s village_state that’s being written

village_name The name of the village. This is used to create the data directory

Returns: None

Method clone(): The objects of this class are cloneable with this method.

Usage:

data_writer$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

model_data R6 Class representing data that’s external from resources and winiks

Description

R6 Class representing data that’s external from resources and winiks

R6 Class representing data that’s external from resources and winiks

Details

It contains a single variable, ’events’ for when the data holds a list of events

Public fields

events Any events that need to be tracked

4 resource

Methods

Public methods:
• model_data$new()

• model_data$clone()

Method new(): Creates a new model_data object

Usage:
model_data$new()

Returns: A new model data object

Method clone(): The objects of this class are cloneable with this method.

Usage:
model_data$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

resource resource

Description

This is an object that represents a single resource.

Methods

initialize() Create a new resource

as_table() Represents the current state of the resource as a tibble

Creates a new resource.

Public fields

name The name of the resource

quantity The quantity of the resource that exists

Methods

Public methods:
• resource$new()

• resource$as_table()

• resource$clone()

Method new(): Creates a new resource object

Usage:

resource_manager 5

resource$new(name = NA, quantity = 0)

Arguments:

name The name of the resource
quantity The quantity present Returns a data.frame representation of the resource

Method as_table():

Usage:
resource$as_table()

Returns: A data.frame of resources

Method clone(): The objects of this class are cloneable with this method.

Usage:
resource$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

resource_manager Resource Manager

Description

This object manages all of the resources in a village.

Methods

initialize() Creates a new manager

get_resources() Gets all of the resources that the manager has

get_resource() Retrieves a resource from the manager

add_resource() Adds a resource to the manager

remove_resource() Removes a resource from the manager

get_resource_index() Retrieves the index of the resource

get_states() Returns a list of states

load() Loads a csv file of resources and adds them to the manager.

Public fields

resources A list of resource objects

resource_class The class used to represent resources Creates a new , empty, resource manager
for a village.

6 resource_manager

Methods

Public methods:
• resource_manager$new()

• resource_manager$get_resources()

• resource_manager$get_resource()

• resource_manager$add_resource()

• resource_manager$remove_resource()

• resource_manager$get_resource_index()

• resource_manager$get_states()

• resource_manager$load()

• resource_manager$clone()

Method new(): Get a new instance of a resource_manager

Usage:
resource_manager$new(resource_class = villager::resource)

Arguments:
resource_class The class being used to describe the resources being managed Gets all of the

managed resources

Method get_resources():
Usage:
resource_manager$get_resources()

Returns: A list of resources Gets a resource given a resource name

Method get_resource():
Usage:
resource_manager$get_resource(name)

Arguments:
name The name of the requested resource

Returns: A resource object Adds a resource to the manager.

Method add_resource():
Usage:
resource_manager$add_resource(new_resource)

Arguments:
new_resource The resource to add

Returns: None Removes a resource from the manager

Method remove_resource():
Usage:
resource_manager$remove_resource(name)

Arguments:

simulation 7

name The name of the resource being removed

Returns: None Returns the index of a resource in the internal resource list

Method get_resource_index():
Usage:
resource_manager$get_resource_index(name)

Arguments:
name The name of the resource being located

Returns: The index in the list, or R’s default return value Returns a data.frame where each row
is a resource.

Method get_states():
Usage:
resource_manager$get_states()

Details: Subclasses should not have to override this method because it takes all member vari-
ables into account

Returns: A single data.frame Loads a csv file of resources into the manager

Method load():
Usage:
resource_manager$load(file_name)

Arguments:
file_name The path to the csv file

Returns: None

Method clone(): The objects of this class are cloneable with this method.

Usage:
resource_manager$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

simulation simulation

Description

Advances one or more villages through time

Methods

run_model() Runs the simulation

Creates a new Simulation instance

8 village

Public fields

length The total number of time steps that the simulation runs for

villages A list of villages that the simulator will run

writer An instance of a data_writer class for writing village data to disk

Methods

Public methods:
• simulation$new()

• simulation$run_model()

• simulation$clone()

Method new(): Creates a new simulation object to control the experiment

Usage:
simulation$new(length, villages, writer = villager::data_writer$new())

Arguments:

length The number of steps the simulation takes
villages A list of villages that will be simulated
writer The data writer to be used with the villages Runs the simulation

Method run_model():
Usage:
simulation$run_model()

Returns: None

Method clone(): The objects of this class are cloneable with this method.

Usage:
simulation$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

village Village

Description

This is an object that represents the state of a village at a particular time.

Details

This class acts as a type of record that holds the values of the different village variables. This class
can be subclassed to include more variables that aren’t present.

village 9

Methods

initialize() Creates a new village

propagate() Advances the village a single time step

set_initial_state() Initializes the initial state of the village

Public fields

name An optional name for the village

initial_condition A function that sets the initial state of the village

current_state The village’s current state

previous_state The village’s previous state

models A list of functions or a single function that should be run at each timestep

model_data Optional data that models may need

winik_mgr The manager that handles all of the winiks

resource_mgr The manager that handles all of the resources Initializes a village

Methods

Public methods:
• village$new()

• village$propagate()

• village$set_initial_state()

• village$clone()

Method new(): This method is meant to set the variables that are needed for a village to propa-
gate through time.

Usage:
village$new(
name,
initial_condition,
models = list(),
winik_class = villager::winik,
resource_class = villager::resource

)

Arguments:

name An optional name for the village
initial_condition A function that gets called on the first time step
models A list of functions or a single function that should be run at each time step
winik_class The class that’s being used to represent agents
resource_class The class being used to describe the resources Propagates the village a single

time step

Method propagate():

10 village_state

Usage:
village$propagate(current_step)

Arguments:

current_step The current time step

Details: This method is used to advance the village a single time step. It should NOT be used
to set initial conditions. See the set_initial_state method.

Returns: None Runs the user defined function that sets the initial state of the village

Method set_initial_state(): Runs the initial condition model

Usage:
village$set_initial_state()

Method clone(): The objects of this class are cloneable with this method.

Usage:
village$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

village_state village_state

Description

This is an object that represents the state of a village at a particular time.

Details

This class acts as a type of record that holds the values of the different village variables. This class
can be subclassed to include more variables that aren’t present.

Methods

Creates a new State

Public fields

step The time step that the state is relevant to

winik_states A list of winik states

resource_states A list of resource states

winik 11

Methods

Public methods:
• village_state$new()

• village_state$clone()

Method new(): Initializes all of the properties in the state to the ones passed in. This should be
called by subclasses during initialization.

Usage:
village_state$new(
step = 0,
winik_states = vector(),
resource_states = vector()

)

Arguments:
step The time step that the state is relevant to
winik_states A vector of tibbles representing the states of the winiks
resource_states A vector of tibbles representing the states of the resources
Details: When adding a new property, make sure to add it to the tibble representation.

Method clone(): The objects of this class are cloneable with this method.
Usage:
village_state$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

winik Winik

Description

This is an object that represents a villager (winik).

Details

This class acts as an abstraction for handling villager-level logic. It can take a number of functions
that run at each timestep. It also has an associated

Methods

as_table() Represents the current state of the winik as a tibble
get_age() Returns age in terms of years
get_gender()

get_days_sincelast_birth() Get the number of days since the winik last gave birth
initialize() Create a new winik
propagate() Runs every day

Create a new winik

12 winik

Public fields

identifier A unique identifier that can be used to identify and find the winik

first_name The winik’s first name

last_name The winik’s last name

age The winik’s age

mother_id The identifier of the winik’s mother

father_id The identifier of the winik’s father

profession The winik’s profession

partner The identifier of the winik’s partner

gender The winik’s gender

alive A boolean flag that represents whether the villager is alive or dead

children A list of children identifiers

health A percentage value of the winik’s current health

Methods

Public methods:
• winik$new()

• winik$is_alive()

• winik$get_days_since_last_birth()

• winik$add_child()

• winik$as_table()

• winik$clone()

Method new(): Used to created new winik objects.

Usage:
winik$new(
identifier = NA,
first_name = NA,
last_name = NA,
age = 0,
mother_id = NA,
father_id = NA,
partner = NA,
children = vector(mode = "character"),
gender = NA,
profession = NA,
alive = TRUE,
health = 100

)

Arguments:
identifier The winik’s identifier
first_name The winik’s first name

winik 13

last_name The winik’s last naem
age The age of the winik
mother_id The identifier of the winik’s monther
father_id The identifier of the winik’ father
partner The identifier of the winik’s partner
children An ordered list of of the children from this winik
gender The gender of the winik
profession The winik’s profession
alive Boolean whether the winik is alive or not
health A percentage value of the winik’s current health
Returns: A new winik object A function that returns true or false whether the villager dies This
is run each day

Method is_alive():
Usage:
winik$is_alive()

Returns: A boolean whether the winik is alive (true for yes) Gets the number of days from the
last birth. This is also the age of the most recently born winik

Method get_days_since_last_birth():
Usage:
winik$get_days_since_last_birth()

Returns: The number of days since last birth Connects a child to the winik. This method
ensures that the ’children’ vector is ordered.

Method add_child():
Usage:
winik$add_child(child)

Arguments:
child The Winik object representing the child
Returns: None Returns a data.frame representation of the winik

Method as_table(): I hope there’s a more scalable way to do this in R; Adding every new
attribute to this function isn’t practical

Usage:
winik$as_table()

Details: The village_state holds a copy of all of the villagers at each timestep; this method is
used to turn the winik properties into the object inserted in the village_state.
Returns: A data.frame representation of the winik

Method clone(): The objects of this class are cloneable with this method.
Usage:
winik$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

14 winik_manager

winik_manager Winik Manager

Description

A class that abstracts the management of aggregations of Winik classes. Each village should have
an instance of a winik_manager to interface the winiks inside.

Methods

add_winik() Adds a single winik to the manager.

get_average_age() Returns the average age, in years, of all the winiks.

get_living_winiks() Gets a list of all the winiks that are currently alive.

get_states() Returns a data.frame consisting of all of the managed winiks.

get_winik() Retrieves a particular winik from the manager.

get_winik_index() Retrieves the index of a winik.

initialize() Creates a new manager instance.

load() Loads a csv file defining a population of winiks and places them in the manager.

remove_winik() Removes a winik from the manager

Creates a new winik manager instance.

Public fields

winiks A list of winiks objects that the winik manager manages.

winik_class A class describing winiks. This is usually the default villager supplied ’winik’ class

Methods

Public methods:
• winik_manager$new()

• winik_manager$get_winik()

• winik_manager$get_living_winiks()

• winik_manager$add_winik()

• winik_manager$remove_winik()

• winik_manager$get_states()

• winik_manager$get_winik_index()

• winik_manager$connect_winiks()

• winik_manager$get_living_population()

• winik_manager$get_average_age()

• winik_manager$add_children()

• winik_manager$load()

• winik_manager$clone()

winik_manager 15

Method new():
Usage:
winik_manager$new(winik_class = villager::winik)

Arguments:
winik_class The class that’s being used to represent agents being managed Given the identifier

of a winik, sort through all of the managed winiks and return it if it exists.

Method get_winik(): Return the R6 instance of a winik with identiifier ’winik_identifier’.

Usage:
winik_manager$get_winik(winik_identifier)

Arguments:
winik_identifier The identifier of the requested winik.

Returns: An R6 winik object Returns a list of all the winiks that are currently alive.

Method get_living_winiks():
Usage:
winik_manager$get_living_winiks()

Returns: A list of living winiks Adds a winik to the manager.

Method add_winik():
Usage:
winik_manager$add_winik(new_winik)

Arguments:
new_winik The winik to add to the manager

Returns: None Removes a winik from the manager

Method remove_winik():
Usage:
winik_manager$remove_winik(winik_identifier)

Arguments:
winik_identifier The identifier of the winik being removed

Returns: None Returns a data.frame of winiks

Method get_states():
Usage:
winik_manager$get_states()

Details: Each row of the data.frame represents a winik object

Returns: A single data.frame of all winiks Returns the index of a winik in the internal winik
list

Method get_winik_index():
Usage:

16 winik_manager

winik_manager$get_winik_index(winik_identifier)

Arguments:

winik_identifier The identifier of the winik being located

Returns: The index in the list, or R’s default return value Connects two winiks together as
mates

Method connect_winiks():
Usage:
winik_manager$connect_winiks(winik_a, winik_b)

Arguments:

winik_a A winik that will be connected to winik_b
winik_b A winik that will be connected to winik_a Returns the total number of winiks that are

alive

Method get_living_population():
Usage:
winik_manager$get_living_population()

Returns: The numnber of living winiks Returns the averag age, in years, of all of the winiks

Method get_average_age():
Usage:
winik_manager$get_average_age()

Details: This is an example of the kind of logic that the manager might handle. In this case,
the manager is performing calculations about its aggregation (winiks). Note that the 364 days
needs to work better

Returns: The average age in years Takes all of the winiks in the manager and reconstructs the
children

Method add_children():
Usage:
winik_manager$add_children()

Details: This is typically called when loading winiks from disk for the first time. When children
are created during the simulation, the family connections are made through the winik class and
added to the manager via add_winik.

Returns: None Loads winiks from disk.

Method load():
Usage:
winik_manager$load(file_name)

Arguments:

file_name The location of the file holding the winiks.

Details: Populates the winik manager with a set of winiks defined in a csv file.

winik_manager 17

Returns: None

Method clone(): The objects of this class are cloneable with this method.

Usage:
winik_manager$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Index

data_writer, 2

model_data, 3

resource, 4
resource_manager, 5

simulation, 7

village, 8
village_state, 10

winik, 11
winik_manager, 14

18

	data_writer
	model_data
	resource
	resource_manager
	simulation
	village
	village_state
	winik
	winik_manager
	Index

