Package 'uwedragon'

October 12, 2022

Type Package

Title Data Research, Access, Governance Network : Statistical Disclosure Control

Version 0.1.0
Author Ben Derrick
Maintainer Ben Derrick ben.derrick@uwe.ac.uk
Description A tool for checking how much information is disclosed when reporting summary statistics.
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.2.9000
Imports gtools
NeedsCompilation no
Repository CRAN
Date/Publication 2022-03-02 19:40:01 UTC

R topics documented:

disguise . 1
SDCdragon . 3
solutions . 3
Index 6
disguise Disguise the sample mean and sample deviation

Description

Disguises the sample mean and standard deviation via a choice of methods.

Usage

disguise(usersample, method = 2)

Arguments

usersample A vector of all individual sample values.
method Approach for disguising mean and standard deviation. $($ default $=1)$

Details

*Method 1 *

Randomly split the sample into two (approx. equal size) samples A, and B. For sample A calculate and report mean. For sample B calculate and standard deviation.
Method 2 (default)
Take a sample of size N with replacement; calculate and report mean. Repeat to calculate and report standard deviation.
Method 3
Generate a random number (RN1) between N/2 and N. Sample with replacement a sample size of RN1; calculate and report mean. Generate a random number (RN2) between N/2 and N. Sample with replacement a sample size of RN2; calculate and report standard deviation.
Method 4
As Method 3, but sampling without replacement.

Value

Outputs disguised mean and disguised standard deviation.

References

Derrick, B., Green, L., Kember, K., Ritchie, F. \& White P, 2022, Safety in numbers: Minimum thresholding, Maximum bounds, and Little White Lies. Scottish Economic Society Annual Conference, University of Glasgow, 25th-27th April 2022

Examples

```
usersample<-c(1, 1, 2, 3,4,4,5)
disguise(usersample,method=1)
disguise(usersample,method=2)
disguise(usersample,method=3)
disguise(usersample,method=4)
```

SDCdragon Statistical Data Control. Data Research, Access, Governance Network.

Description

A tool for checking how much information is disclosed when reporting summary statistics

solutions \quad| Find individual sample values from the sample mean and standard |
| :--- |
| deviation |

Description

For integer based scales, finds possible solutions for each value within a sample. This is revealed upon providing sample size, minimum possible value, maximum possible value, mean, standard deviation (and optionally median).

Usage

solutions(
n ,
min_poss,
max_poss,
usermean,
usersd,
meandp = NULL,
sddp = NULL,
usermed = NULL
)

Arguments

n	Sample size. min_poss
Minimum possible value. If sample minimum is disclosed, this can be inserted here, otherwise use the theoretical minimum. If there is no theoretical maximum 'Inf' can be inserted.	
max_poss	Maximum possible value. If sample maximum is disclosed, this can be inserted here, otherwise use the theoretical maximum. If there is no theoretical minimum '-Inf' can be inserted.
usermean	Sample mean.
usersd	Sample standard deviation, i.e. $n-1$ denominator. (optional, default=NULL) Number of decimal places mean is reported to, only meandp

$\begin{array}{ll}\text { sddp } & \text { (optional, default=NULL) Number of decimal places standard deviation is re- } \\ \text { ported to, only required if including trailing zeroes. } \\ \text { usermed } & \text { (optional, default=NULL) Sample median. }\end{array}$

Details

For use with data measured on a scale with 1 unit increments. Samuelson's inequality [1] used to further restrict the minimum and maximum. All possible combinations within this inequality are calculated [2] for factorial(n+k-1)/(factorial(k)*factorial(n-1))<65,000,000.
No restriction on number of decimal places input. Reporting less than two decimal places will reduce the chances of unique solution to all sample values being uncovered [3]

Additional options to specify number of digits following the decimal place that are reported, required for trailing zeroes.

Value

Outputs possible combinations of original integer sample values.

References

[1] Samuelson, P.A, 1968, How deviant can you be? Journal of the American Statistical Association, Vol 63, 1522-1525.
[2] Allenby, R.B. and Slomson, A., 2010. How to count: An introduction to combinatorics. Chapman and Hall/CRC.
[3] Derrick, B., Green, L., Kember, K., Ritchie, F. \& White P, 2022, Safety in numbers: Minimum thresholding, Maximum bounds, and Little White Lies. Scottish Economic Society Annual Conference, University of Glasgow, 25th-27th April 2022

Examples

```
# EXAMPLE 1
# Seven observations are taken from a five-point Likert scale (coded 1 to 5).
# The reported mean is 2.857 and the reported standard deviation is 1.574.
solutions(7,1,5,2.857,1.574)
# For this mean and standard deviation there are two possible distributions:
# 1
# 1 2 2 2 2 2 3 5
# Optionally adding median value of 3.
solutions(7,1,5,2.857,1.574, usermed=3)
# uniquely reveals the raw sample values:
# 1 1 1 2 2 3
```

```
# EXAMPLE 2
# The mean is '4.00'
# The standard deviation is '2.00'.
# Narrower set of solutions found specifying 2dp including trailing zeroes.
solutions(3,-Inf,Inf,4.00, 2.00, 2, 2)
# uniquely reveals the raw sample values:
# 2 4 6
```


Index

disguise, 1
SDCdragon, 3
solutions, 3

