Package 'timbeR'

October 14, 2022
Title Calculate Wood Volumes from Taper Functions
Version 2.0.1
Description Functions for estimation of wood volumes, number of logs, diame-
ters along the stem and heights at which certain diameters occur, based on taper functions and other parameters. References: McTague, J. P., \& Weiskittel, A. (2021). doi:10.1139/cjfr-2020-0326.
Depends $\mathrm{R}(>=3.3)$
Imports dplyr, ggplot2, cowplot, tidyr, tibble, magrittr, miniUI, shiny
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Suggests rmarkdown, knitr, minpack.lm, purrr
VignetteBuilder knitr
NeedsCompilation no
Author Sergio Costa [aut, cre, cph] (https://orcid.org/0000-0001-5432-317X)
Maintainer Sergio Costa sergio.vscf@gmail.com
Repository CRAN
Date/Publication 2022-04-11 14:10:02 UTC

R topics documented:

bi_di 2
bi_hi 3
bi_logs 4
bi_logs_plot 6
bi_vol 8
kozak_di 10
kozak_hi 11
kozak_logs 12
kozak_logs_plot 14
kozak_vol 16
poly5_di 18
poly5_hi 19
poly5_logs 20
poly5_logs_plot 22
poly5_vol 24
select_and_remove 25
taper_bi 26
taper_kozak 27
tree_scaling 28
Index 29
bi_di Estimate the diameter at a given height based on a fitted Bi (2000) taper equation.

Description

Estimates the diameter at a given height of a tree from the diameter at breast height, total height and the coefficients of the Bi taper function.

Usage

bi_di(dbh, h, hi, coef)

Arguments

dbh tree diameter at breast height, in centimeters.
h total tree height, in meters.
hi height at which the diameter will be calculated, in meters.
coef numerical vector containing seven coefficients of the Bi taper function.

Details

the Bi (2000) variable-form taper function is represented mathematically by the following expression
$\mathrm{di} \sim \mathrm{dbh} *(\log (\sin ((\mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h}))) /(\log (\sin ((\mathrm{pi} / 2) *(1.3 / \mathrm{h})))))^{\wedge}(\mathrm{b} 0+\mathrm{b} 1 * \sin ((\mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h}))+\mathrm{b} 2$ $* \cos ((3 * \mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h}))+\mathrm{b} 3 *(\sin ((\mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h})) /(\mathrm{hi} / \mathrm{h}))+\mathrm{b} 4 * \mathrm{dbh}+\mathrm{b} 5 *(\mathrm{hi} / \mathrm{h}) * \mathrm{dbh}{ }^{\wedge} 0.5+\mathrm{b} 6$ * $\left.(\mathrm{hi} / \mathrm{h}) * \mathrm{~h}^{\wedge} 0.5\right)$

Value

a numeric value indicating the diameter at the given height.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
bi <- nlsLM(di ~ taper_bi(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6),
data=tree_scaling,
start=list(b0=1.8,b1=-0.2,b2=-0.04,b3=-0.9,b4=-0.0006,b5=0.07,b6=-.14))
coef_bi <- coef(bi)
dbh <- 25
h <- 20
hi <- 15
bi_di(dbh, h, hi, coef_bi)
```

bi_hi Estimate the height at which a given diameter occurs in a tree, based on a fitted Bi (2000) taper equation.

Description

Estimates the height at which a given diameter occurs in a tree, from the diameter at breast height, total height and coefficients of the Bi taper function.

Usage

bi_hi(dbh, h, di, coef)

Arguments

dbh
h
di diameter whose height of occurrence will be estimated, in centimeters.
coef numerical vector containing seven coefficients of the Bi taper equation

Details

the Bi (2000) variable-form taper function is represented mathematically by the following expression
$\mathrm{di} \sim \mathrm{dbh} *(\log (\sin ((\mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h}))) /(\log (\sin ((\mathrm{pi} / 2) *(1.3 / \mathrm{h})))))^{\wedge}(\mathrm{b} 0+\mathrm{b} 1 * \sin ((\mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h}))+\mathrm{b} 2$

* $\cos ((3 * \mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h}))+\mathrm{b} 3 *(\sin ((\mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h})) /(\mathrm{hi} / \mathrm{h}))+\mathrm{b} 4 * \mathrm{dbh}+\mathrm{b} 5 *(\mathrm{hi} / \mathrm{h}) * \mathrm{dbh} \wedge 0.5+\mathrm{b} 6$
* (hi/h) * $h^{\wedge} 0.5$)

Value

a numeric value indicating the height at which the given diameter occurs.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
            hih = hi/h)
bi <- nlsLM(di ~ taper_bi(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6),
data=tree_scaling,
start=list(b0=1.8,b1=-0.2,b2=-0.04,b3=-0.9,b4=-0.0006,b5=0.07,b6=-.14))
coef_bi <- coef(bi)
dbh <- 25
h <- 20
di <- 5
bi_hi(dbh, h, di, coef_bi)
```

bi_logs Simulate log extraction using a Bi (2000) variable-form taper equation that describes the taper of the tree.

Description

Simulate the extraction of logs from a tree from its measurements, taper function (Bi (2000) variableform taper equation), trunk quality characteristics and harvest parameters such as stump height and assortments.

Usage

```
bi_logs(
        dbh,
        h,
        coef,
    assortments,
    stump_height,
    downgrade,
    broken,
    defect_height,
    eliminate,
    total_volume,
    only_vol
)
```


Arguments

dbh tree diameter at breast height, in centimeters.
h total tree height, in meters.
coef numerical vector containing seven coefficients of the Bi taper equation.
assortments a data.frame with five columns and n rows, where n is the number of different wood assortments to be obtained from the tree stem. The first column must contain the names of the assortments, the second, numerical, contains the minimum diameters at the small end of the logs, in centimeters. The third column, numerical, contains the minimum lengths of the logs, in meters. The fourth column, numerical, contains the maximum lengths of the logs, in meters. The fifth column, numerical, contains the values in centimeters referring to the loss of wood due to cutting logs. The algorithm prioritizes the extraction of assortments along the stem in the order presented in the data.frame, starting from the first line, to the last.
stump_height tree cutting height, in meters. Default is 0 .
downgrade if TRUE, the algorithm,from the defect_height onwards, simulates log extraction only for the last assortment in the assortments data.frame. Default is FALSE.
broken if TRUE, the algorithm will simulate the extraction of logs only up to the defect_height. Default is FALSE.
defect_height the height, in meters, from which the logs will be downgraded (if downgrade is TRUE) or log extraction simulation will be stopped (if broken is TRUE). Default is 0 for downgrade $=$ TRUE (the whole tree is downgraded) and $\mathrm{h} *$ 0.5 for broken = TRUE (the tree is broken from half its original/estimated total height).
eliminate if TRUE, the algorithm does not get logs for any assortment present in the assortments table. All will be zero. Default is FALSE.
total_volume if TRUE, it adds an additional column to the results data.frame with the estimate of the total volume of the tree, from the ground height to h if broken argument is FALSE, or to defect_height if broken is TRUE. Default is FALSE.

$$
\begin{array}{ll}
\text { only_vol } & \text { if TRUE returns only volumes (does not return the number of logs). Default is } \\
\text { FALSE. }
\end{array}
$$

Details

when the broken and downgrade arguments are set to TRUE, the defect_height value is considered as the break height of the tree, and the entire tree is downgraded.

Value

a list of two data.frames, the first (volumes) with the calculated volumes per assortment, and the second (logs) with the number of logs per assortment.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
bi <- nlsLM(di ~ taper_bi(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6),
data=tree_scaling,
start=list(b0=1.8,b1=-0.2,b2=-0.04,b3=-0.9,b4=-0.0006,b5=0.07,b6=-.14))
coef_bi <- coef(bi)
dbh <- 25
h <- 20
assortments <- data.frame(
    NAME = c('15-25','4-15'),
    SED = c(15,4),
    MINLENGTH = c(2.65,2),
    MAXLENGTH = c(2.65,4.2),
    LOSS = c(5,5)
)
bi_logs(dbh, h, coef_bi, assortments)
```

bi_logs_plot Visualize the simulation of log cutting along the stem using a Bi (2000) variable-form taper equation.

Description

Plot the shape of the tree and visualize the extracted logs based on the tree measurements, assortments data.frame, and the Bi (2000) variable-form taper equation.

Usage

```
bi_logs_plot(
    dbh,
    h,
    coef,
    assortments,
    stump_height,
    downgrade,
    broken,
    defect_height,
    lang
)
```


Arguments

\(\left.\begin{array}{ll}dbh

h

coef \& tree diameter at breast height, in centimeters.

total tree height, in meters.

numerical vector containing seven coefficients of the Bi variable-form taper

equation.\end{array}\right\}\)| a data.frame with five columns and n rows, where n is the number of different |
| :--- |
| wood assortments to be obtained from the tree stem. The first column must con- |
| tain the names of the assortments, the second, numerical, contains the minimum |
| diameters at the small end of the logs, in centimeters. The third column, numer- |
| ical, contains the minimum lengths of the logs, in meters. The fourth column, |
| numerical, contains the maximum lengths of the logs, in meters. The fifth col- |
| umn, numerical, contains the values in centimeters referring to the loss of wood |
| due to cutting logs. The algorithm prioritizes the extraction of assortments along |
| the stem in the order presented in the data.frame, starting from the first line, to |
| the last. |

Details

check the bi_logs function help for more details.

Value

a ggplot object.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
bi <- nlsLM(di ~ taper_bi(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6),
data=tree_scaling,
start=list(b0=1.8,b1=-0.2,b2=-0.04,b3=-0.9,b4=-0.0006,b5=0.07,b6=-.14))
coef_bi <- coef(bi)
dbh <- 25
h <- 20
assortments <- data.frame(
    NAME = c('15-25','4-15'),
    SED = c(15,4),
    MINLENGTH = c(2.65,2),
    MAXLENGTH = c(2.65,4.2),
    LOSS = c(5,5)
)
bi_logs_plot(dbh, h, coef_bi, assortments)
```

bi_vol Estimate the total or partial volume of the tree, based on a fitted Bi (2000) taper function.

Description

Estimates the total or partial volume of the tree from the diameter at breast height, total height, initial section height, final section height and coefficients of the Bi (2000) taper equation.

Usage

bi_vol(dbh, h, coef, hi, h0)

Arguments

dbh	tree diameter at breast height, in centimeters.
h	total tree height, in meters.
coef	numerical vector containing seven coefficients of the Bi taper equation. hi
he	final height of the tree section whose volume will be calculated, in meters. De- fault is the total tree height (h).
initial height of the tree section whose volume will be calculated, in meters.	
Default is 0 (ground height).	

Details

the Bi (2000) variable-form taper function is represented mathematically by the following expression
$\mathrm{di} \sim \mathrm{dbh} *(\log (\sin ((\mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h}))) /(\log (\sin ((\mathrm{pi} / 2) *(1.3 / \mathrm{h})))))^{\wedge}(\mathrm{b} 0+\mathrm{b} 1 * \sin ((\mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h}))+\mathrm{b} 2$ $* \cos ((3 * \mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h}))+\mathrm{b} 3 *(\sin ((\mathrm{pi} / 2) *(\mathrm{hi} / \mathrm{h})) /(\mathrm{hi} / \mathrm{h}))+\mathrm{b} 4 * \mathrm{dbh}+\mathrm{b} 5 *(\mathrm{hi} / \mathrm{h}) * \mathrm{dbh} \wedge 0.5+\mathrm{b} 6$ * (hi/h) * ${ }^{\wedge}{ }^{\wedge} 0.5$)

Value

a numeric value indicating the total or partial volume of the tree.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
bi <- nlsLM(di ~ taper_bi(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6),
data=tree_scaling,
start=list(b0=1.8,b1=-0.2,b2=-0.04,b3=-0.9,b4=-0.0006,b5=0.07,b6=-.14))
coef_bi <- coef(bi)
dbh <- 25
h <- 20
bi_vol(dbh, h, coef_bi)
hi = 15
h0 = . }
bi_vol(dbh, h, coef_bi, hi, h0)
```

Estimate the diameter at a given height based on a fitted Kozak (2004) taper equation.

Description

Estimates the diameter at a given height of a tree from the diameter at breast height, total height and the coefficients of the Kozak (2004) taper function.

Usage

kozak_di(dbh, h, hi, coef, p)

Arguments

dbh
h
hi height at which the diameter will be calculated, in meters.
coef numerical vector containing nine coefficients of the Kozak taper function.
p tree diameter at breast height, in centimeters. total tree height, in meters.
numerical value representing the first inflection point calculated in the segmented model of Max and Burkhart (1976).

Details

the Kozak (2004) variable-form taper function is represented mathematically by the following expression
$\operatorname{di} \sim \mathrm{b} 0^{*}(\mathrm{dbh} \wedge \mathrm{b} 1)\left(h^{\wedge} b 2\right)\left(\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 4)\right) /\left(1-\left(\mathrm{p}^{\wedge}(1 / 3)\right)\right)\right)^{\wedge}\left(\mathrm{b} 3^{*}(\mathrm{hi} / \mathrm{h})^{\wedge} 4+\mathrm{b} 4^{*}(1 / \exp (\mathrm{dbh} / \mathrm{h}))+\mathrm{b} 5^{*}\left(\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 4)\right) /(1-\right.\right.$ $\left.\left.\left.\left(\mathrm{p}^{\wedge}(1 / 3)\right)\right)\right)^{\wedge} 0.1+\mathrm{b} 6 *(1 / \mathrm{dbh})+\mathrm{b} 7 *\left(\mathrm{~h}^{\wedge}\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 3)\right)\right)+\mathrm{b} 8^{*}\left(\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 4)\right) /\left(1-\left(\mathrm{p}^{\wedge}(1 / 3)\right)\right)\right)\right)$

Value

a numeric value indicating the diameter at the given height.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
    hih = hi/h)
kozak <- nlsLM(di ~ taper_kozak(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6, b7, b8, p),
    start=list(b0=1.00,b1=.97,b2=.03,b3=.49,b4=-
    0.87,b5=0.50,b6=3.88,b7=0.03,b8=-0.19, p = .1),
```

```
        data = tree_scaling,
        control = nls.lm.control(maxiter = 1000, maxfev = 2000)
    )
    coef_kozak <- coef(kozak)[-10]
    p_kozak <- coef(kozak)[10]
    h <- 20
    dbh <- 25
    di <- 5
    kozak_di(dbh, h, di, coef_kozak, p_kozak)
```

kozak_hi Estimate the height at which a given diameter occurs in a tree, based
on a fitted Kozak (2004) taper equation.

Description

Estimates the height at which a given diameter occurs in a tree, from the diameter at breast height, total height and coefficients of the Kozak (2004) taper function.

Usage

kozak_hi(dbh, h, di, coef, p)

Arguments

dbh tree diameter at breast height, in centimeters.
h
total tree height, in meters.
di diameter whose height of occurrence will be estimated, in centimeters.
coef numerical vector containing nine coefficients of the Kozak taper equation
p numerical value representing the first inflection point calculated in the segmented model of Max and Burkhart (1976).

Details

the Kozak (2004) variable-form taper function is represented mathematically by the following expression
$\operatorname{di} \sim \mathrm{b} 0^{*}(\mathrm{dbh} \wedge \mathrm{b} 1)\left(h^{\wedge} b 2\right)\left(\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 4)\right) /\left(1-\left(\mathrm{p}^{\wedge}(1 / 3)\right)\right)\right)^{\wedge}\left(\mathrm{b} 3^{*}(\mathrm{hi} / \mathrm{h})^{\wedge} 4+\mathrm{b} 4^{*}(1 / \exp (\mathrm{dbh} / \mathrm{h}))+\mathrm{b} 5^{*}\left(\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 4)\right) /(1-\right.\right.$ $\left.\left.\left.\left(\mathrm{p}^{\wedge}(1 / 3)\right)\right)\right)^{\wedge} 0.1+\mathrm{b} 6^{*}(1 / \mathrm{dbh})+\mathrm{b} 7^{*}\left(\mathrm{~h}^{\wedge}\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 3)\right)\right)+\mathrm{b} 8^{*}\left(\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 4)\right) /\left(1-\left(\mathrm{p}^{\wedge}(1 / 3)\right)\right)\right)\right)$

Value

as numeric value indicating the height at which the given diameter occurs.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
kozak <- nlsLM(di ~ taper_kozak(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6, b7, b8, p),
        start=list(b0=1.00,b1=.97,b2=.03,b3=.49,b4=-
                                    0.87,b5=0.50,b6=3.88,b7=0.03,b8=-0.19, p = . 1),
        data = tree_scaling,
        control = nls.lm.control(maxiter = 1000, maxfev = 2000)
)
coef_kozak <- coef(kozak)[-10]
p_kozak <- coef(kozak)[10]
h <- 20
dbh <- 25
hi <- 15
kozak_hi(dbh, h, hi, coef_kozak, p_kozak)
```

kozak_logs Simulate log extraction using a Kozak (2004) variable-form taper equation that describes the taper of the tree.

Description

Simulate the extraction of logs from a tree from its measurements, taper function (Kozak (2004) variable-form taper equation), trunk quality characteristics and harvest parameters such as stump height and assortments.

Usage

kozak_logs(
dbh,
h,
coef,
p,
assortments,
stump_height, downgrade, broken,

```
    defect_height,
    eliminate,
    total_volume,
    only_vol
)
```


Arguments

dbh
h total tree height, in meters.
coef numerical vector containing nine coefficients of the Kozak taper equation.
$\mathrm{p} \quad$ numerical value representing the first inflection point calculated in the segmented model of Max and Burkhart (1976).
assortments a data.frame with five columns and n rows, where n is the number of different wood assortments to be obtained from the tree stem. The first column must contain the names of the assortments, the second, numerical, contains the minimum diameters at the small end of the logs, in centimeters. The third column, numerical, contains the minimum lengths of the logs, in meters. The fourth column, numerical, contains the maximum lengths of the logs, in meters. The fifth column, numerical, contains the values in centimeters referring to the loss of wood due to cutting logs. The algorithm prioritizes the extraction of assortments along the stem in the order presented in the data.frame, starting from the first line, to the last.
stump_height tree cutting height, in meters. Default is 0 .
downgrade if TRUE, the algorithm, from the defect_height onwards, simulates log extraction only for the last assortment in the assortments data.frame. Default is FALSE.
broken if TRUE, the algorithm will simulate the extraction of logs only up to the defect_height. Default is FALSE.
defect_height the height, in meters, from which the logs will be downgraded (if downgrade is TRUE) or log extraction simulation will be stopped (if broken is TRUE). Default is 0 for downgrade $=$ TRUE (the whole tree is downgraded) and $\mathrm{h} *$ 0.5 for broken = TRUE (the tree is broken from half its original/estimated total height).
eliminate if TRUE, the algorithm does not get logs for any assortment present in the assortments table. All will be zero. Default is FALSE.
total_volume if TRUE, it adds an additional column to the results data.frame with the estimate of the total volume of the tree, from the ground height to h if broken argument is FALSE, or to defect_height if broken is TRUE. Default is FALSE.
only_vol if TRUE returns only volumes (does not return the number of logs). Default is FALSE.

Details

when the broken and downgrade arguments are set to TRUE, the defect_height value is considered as the break height of the tree, and the entire tree is downgraded.

Value

a list of two data.frames, the first (volumes) with the calculated volumes per assortment, and the second (logs) with the number of logs per assortment.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
            hih = hi/h)
kozak <- nlsLM(di ~ taper_kozak(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6, b7, b8, p),
            start=list(b0=1.00,b1=.97,b2=.03,b3=.49,b4=-
                                    0.87,b5=0.50,b6=3.88,b7=0.03,b8=-0.19, p = .1),
            data = tree_scaling,
            control = nls.lm.control(maxiter = 1000, maxfev = 2000)
)
coef_kozak <- coef(kozak)[-10]
p_kozak <- coef(kozak)[10]
h <- 20
dbh <- 25
assortments <- data.frame(
    NAME = c('15-25','4-15'),
    SED = c(15,4),
    MINLENGTH = c(2.65,2),
    MAXLENGTH = c(2.65,4.2),
    LOSS = c(5,5)
)
kozak_logs(dbh, h, coef_kozak, p_kozak, assortments)
```

kozak_logs_plot Visualize the simulation of log cutting along the stem using a Kozak (2004) variable-form taper equation.

Description

Plot the shape of the tree and visualize the extracted logs based on the tree measurements, assortments data.frame, and the Kozak (2004) variable-form taper equation.

```
Usage
    kozak_logs_plot(
        dbh,
        h,
        coef,
        p,
        assortments,
        stump_height,
        downgrade,
        broken,
        defect_height,
        lang
    )
```


Arguments

dbh tree diameter at breast height, in centimeters.
h total tree height, in meters.
coef numerical vector containing seven coefficients of the Kozak variable-form taper equation.
p numerical value representing the first inflection point calculated in the segmented model of Max and Burkhart (1976).
assortments a data.frame with five columns and n rows, where n is the number of different wood assortments to be obtained from the tree stem. The first column must contain the names of the assortments, the second, numerical, contains the minimum diameters at the small end of the logs, in centimeters. The third column, numerical, contains the minimum lengths of the logs, in meters. The fourth column, numerical, contains the maximum lengths of the logs, in meters. The fifth column, numerical, contains the values in centimeters referring to the loss of wood due to cutting logs. The algorithm prioritizes the extraction of assortments along the stem in the order presented in the data.frame, starting from the first line, to the last.
stump_height tree cutting height, in meters. Default is 0 .
downgrade if TRUE, the algorithm, from the defect_height onwards, simulates log extraction only for the last assortment in the assortments data.frame. Default is FALSE.
broken if TRUE, the algorithm will simulate the extraction of logs only up to the defect_height. Default is FALSE.
defect_height the height, in meters, from which the logs will be downgraded (if downgrade is TRUE) or log extraction simulation will be stopped (if broken is TRUE). Default is $h * 0.5$.
lang language in which plot labels will be displayed. Current options are 'en' and 'pt-BR'. Default is 'en'.

Details

check the kozak_logs function help for more details.

Value

a ggplot object.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
            hih = hi/h)
kozak <- nlsLM(di ~ taper_kozak(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6, b7, b8, p),
            start=list(b0=1.00,b1=.97,b2=.03,b3=.49,b4=-
                                    0.87,b5=0.50,b6=3.88,b7=0.03,b8=-0.19, p = .1),
            data = tree_scaling,
            control = nls.lm.control(maxiter = 1000, maxfev = 2000)
)
coef_kozak <- coef(kozak)[-10]
p_kozak <- coef(kozak)[10]
h <- 20
dbh <- 25
assortments <- data.frame(
    NAME = c('15-25','4-15'),
    SED = c(15,4),
    MINLENGTH = c(2.65,2),
    MAXLENGTH = c(2.65,4.2),
    LOSS = c(5,5)
)
kozak_logs(dbh, h, coef_kozak, p_kozak, assortments)
```

kozak_vol

Estimate the total or partial volume of the tree, based on a fitted Kozak (2004) taper function.

Description

Estimates the total or partial volume of the tree from the diameter at breast height, total height, initial section height, final section height and coefficients of the Kozak (2004) taper equation.

Usage

kozak_vol(dbh, h, coef, p, hi, h0)

Arguments

dbh
h
coef
p
hi final height of the tree section whose volume will be calculated, in meters. Default is the total tree height (h).
h0 initial height of the tree section whose volume will be calculated, in meters. Default is 0 (ground height).

Details

the Kozak (2004) variable-form taper function is represented mathematically by the following expression
di $\sim \mathrm{b} 0^{*}(\mathrm{dbh} \wedge \mathrm{b} 1)\left(h^{\wedge} b 2\right)\left(\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 4)\right) /\left(1-\left(\mathrm{p}^{\wedge}(1 / 3)\right)\right)\right)^{\wedge}\left(\mathrm{b} 3^{*}(\mathrm{hi} / \mathrm{h})^{\wedge} 4+\mathrm{b} 4^{*}(1 / \exp (\mathrm{dbh} / \mathrm{h}))+\mathrm{b} 5^{*}\left(\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 4)\right) /(1-\right.\right.$ $\left.\left.\left.\left(\mathrm{p}^{\wedge}(1 / 3)\right)\right)\right)^{\wedge} 0.1+\mathrm{b} 6^{*}(1 / \mathrm{dbh})+\mathrm{b} 7^{*}\left(\mathrm{~h}^{\wedge}\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 3)\right)\right)+\mathrm{b} 8^{*}\left(\left(1-(\mathrm{hi} / \mathrm{h})^{\wedge}(1 / 4)\right) /\left(1-\left(\mathrm{p}^{\wedge}(1 / 3)\right)\right)\right)\right)$

Value

a numeric value indicating the total or partial volume of the tree.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
kozak <- nlsLM(di ~ taper_kozak(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6, b7, b8, p),
    start=list(b0=1.00,b1=.97,b2=.03,b3=.49,b4=-
                    0.87,b5=0.50,b6=3.88,b7=0.03,b8=-0.19, p = .1),
    data = tree_scaling,
    control = nls.lm.control(maxiter = 1000, maxfev = 2000)
)
    coef_kozak <- coef(kozak)[-10]
    p_kozak <- coef(kozak)[10]
    h <- 20
    dbh <- 25
    di <- 5
    kozak_vol(dbh, h, coef_kozak, p_kozak)
```

hi $=15$
h0 $=.2$
kozak_vol(dbh, h, coef_kozak, p_kozak, hi, h0)

$$
\begin{array}{ll}
\text { poly5_di } & \begin{array}{l}
\text { Estimate the diameter at a given height based on a 5th degree polyno- } \\
\text { mial function. }
\end{array}
\end{array}
$$

Description

Estimates the diameter at a given height of a tree from the diameter at breast height, total height and the coefficients of the 5th degree polynomial function that describes the tree's taper.

Usage

poly5_di(dbh, h, hi, coef)

Arguments

dbh	tree diameter at breast height, in centimeters.
h	total tree height, in meters.
hi	height at which the diameter will be calculated, in meters.
coef	numerical vector containing six coefficients of the 5th degree polynomial func- tion that describes the tree's taper.

Value

a numeric value indicating the diameter at the given height.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
poli5 <- lm(did~hih+I(hih^2)+I(hih^3)+I(hih^4)+I(hih^5),tree_scaling)
coef_poli <- coef(poli5)
dbh <- 25
h <- 20
```

di <- 5
poly5_di(dbh, h, di, coef_poli)

```
poly5_hi
```

Estimate the height at which a given diameter occurs in a tree, based on a 5th degree polynomial function.

Description

Estimates the height at which a given diameter occurs in a tree, from the diameter at breast height, total height and coefficients of the 5th degree polynomial function that describes the tree's taper.

Usage

poly5_hi(dbh, h, di, coef)

Arguments

dbh tree diameter at breast height, in centimeters.
h total tree height, in meters.
di diameter whose height of occurrence will be estimated, in centimeters.
coef numerical vector containing six coefficients of the 5th degree polynomial function that describes the tree's taper.

Value

as numeric value indicating the height at which the given diameter occurs.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
poli5 <- lm(did~hih+I(hih^2)+I(hih^3)+I(hih^4)+I(hih^5),tree_scaling)
coef_poli <- coef(poli5)
dbh <- 25
h <- 20
hi <- 15
```

```
    poly5_hi(dbh, h, hi, coef_poli)
```

 poly5_logs Simulate log extraction using a 5th degree polynomial that describes
 the taper of the tree.

Description

Simulate the extraction of logs from a tree from its measurements, taper function (5th degree polynomial), trunk quality characteristics and harvest parameters such as stump height and assortments.

Usage

poly5_logs(dbh,
h,
coef,
assortments,
stump_height,
downgrade,
broken,
defect_height,
eliminate,
total_volume, only_vol
)

Arguments

dbh
h
coef numerical vector containing six coefficients of the 5th degree polynomial function that describes the tree's taper.
assortments a data.frame with five columns and n rows, where n is the number of different wood assortments to be obtained from the tree stem. The first column must contain the names of the assortments, the second, numerical, contains the minimum diameters at the small end of the logs, in centimeters. The third column, numerical, contains the minimum lengths of the logs, in meters. The fourth column, numerical, contains the maximum lengths of the logs, in meters. The fifth column, numerical, contains the values in centimeters referring to the loss of wood due to cutting logs. The algorithm prioritizes the extraction of assortments along the stem in the order presented in the data.frame, starting from the first line, to the last.
stump_height tree cutting height, in meters. Default is 0 .

downgrade	if TRUE, the algorithm,from the defect_height onwards, simulates log extraction only for the last assortment in the assortments data.frame. Default is FALSE.
if TRUE, the algorithm will simulate the extraction of logs only up to the de-	
fect_height. Default is FALSE.	

Details

when the broken and downgrade arguments are set to TRUE, the defect_height value is considered as the break height of the tree, and the entire tree is downgraded.

Value

a list of two data.frames, the first (volumes) with the calculated volumes per assortment, and the second (logs) with the number of logs per assortment.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
poli5 <- lm(did~hih+I(hih^2)+I(hih^3)+I(hih^4)+I(hih^5),tree_scaling)
coef_poli <- coef(poli5)
dbh <- 25
h <- 20
assortments <- data.frame(
    NAME = c('15-25','4-15'),
    SED = c(15,4),
    MINLENGTH = c(2.65,2),
```

```
    MAXLENGTH = c(2.65,4.2),
    LOSS = c(5,5)
)
poly5_logs(dbh, h, coef_poli, assortments)
```

poly5_logs_plot Visualize the simulation of log cutting along the stem using a 5th de-
gree polynomial that describes the tree taper.

Description

Plot the shape of the tree and visualize the extracted logs based on the tree measurements, assortments data.frame, and the 5th degree polynomial function that describes the tree's taper.

Usage

poly5_logs_plot(
dbh,
h,
coef,
assortments,
stump_height,
downgrade,
broken,
defect_height,
lang
)

Arguments

dbh tree diameter at breast height, in centimeters.
$h \quad$ total tree height, in meters.
coef numerical vector containing six coefficients of the 5th degree polynomial function that describes the tree's taper.
assortments a data.frame with five columns and n rows, where n is the number of different wood assortments to be obtained from the tree stem. The first column must contain the names of the assortments, the second, numerical, contains the minimum diameters at the small end of the logs, in centimeters. The third column, numerical, contains the minimum lengths of the logs, in meters. The fourth column, numerical, contains the maximum lengths of the logs, in meters. The fifth column, numerical, contains the values in centimeters referring to the loss of wood due to cutting logs. The algorithm prioritizes the extraction of assortments along the stem in the order presented in the data.frame, starting from the first line, to the last.

stump_height downgrade	tree cutting height, in meters. Default is 0. if TRUE, the algorithm,from the defect_height onwards, simulates log extraction only for the last assortment in the assortments data.frame. Default is FALSE.		
broken	if TRUE, the algorithm will simulate the extraction of logs only up to the de- fect_height. Default is FALSE.		
defect_height			
the height, in meters, from which the logs will be downgraded (if downgrade is			
TRUE) or log extraction simulation will be stopped (if broken is TRUE). Default			
is $* 0.5$.		\quad	language in which plot labels will be displayed. Current options are 'en' and
:---			
'pt-BR'. Default is 'en'.			

Details

check the poly5_logs function help for more details.

Value

a ggplot object.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
poli5 <- lm(did~hih+I(hih^2)+I(hih^3)+I(hih^4)+I(hih^5),tree_scaling)
coef_poli <- coef(poli5)
dbh <- 25
h <- 20
assortments <- data.frame(
    NAME = c('15-25','4-15'),
    SED = c(15,4),
    MINLENGTH = c(2.65,2),
    MAXLENGTH = c(2.65,4.2),
    LOSS = c(5,5)
)
poly5_logs_plot(dbh, h, coef_poli, assortments)
```

```
poly5_vol
```

Estimate the total or partial volume of the tree, based on a 5th degree polynomial function that describes the taper of the tree.

Description

Estimates the total or partial volume of the tree from the diameter at breast height, total height, initial section height, final section height and coefficients of the 5th degree polynomial function that describes the tree's taper.

Usage

poly5_vol(dbh, h, coef, hi, h0)

Arguments

dbh tree diameter at breast height, in centimeters.
h total tree height, in meters.
coef numerical vector containing six coefficients of the 5th degree polynomial function that describes the tree's taper.
hi final height of the tree section whose volume will be calculated, in meters. Default is the total tree height (h).
h0 initial height of the tree section whose volume will be calculated, in meters. Default is 0 (ground height).

Value

a numeric value indicating the total or partial volume of the tree.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
            hih = hi/h)
poli5 <- lm(did~hih+I(hih^2)+I(hih^3)+I(hih^4)+I(hih^5),tree_scaling)
coef_poli <- coef(poli5)
dbh <- 25
h <- 20
```

```
    poly5_vol(dbh, h, coef_poli)
    hi \(=15\)
    h0 \(=.2\)
    poly5_vol(dbh, h, coef_poli, hi, h0)
```

 select_and_remove Remove unwanted data by selecting it

Description

Delete unwanted records from the dataset (e.g. outliers) by selecting them in a scatter plot.

Usage

select_and_remove(data, xvar, yvar)

Arguments

data	a data.frame.
xvar	quoted name of the variable to be displayed in the x axis.
yvar	quoted name of the variable to be displayed in the y axis.

Value

the data.frame given to the data argument, without the selected points.

Examples

```
## Not run:
library(dplyr)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h) %>%
    select_and_remove(., 'hih', 'did')
    ## End(Not run)
```

```
    taper_bi Bi(2004) Taper Function.
```


Description

Bi (2004) Taper Function.

Usage

taper_bi(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6)

Arguments

dbh tree diameter at breast height, in centimeters.
$h \quad$ total tree height, in meters.
hih ratio between the height of the section (hi) and the total height (h) .
b0, b1, b2, b3, b4, b5, b6
model parameters.

Value

a numeric value indicating the diameter at the section.

References

Bi, H. (2000). Trigonometric variable-form taper equations for Australian eucalypts. Forest Science, 46(3), 397-409.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
bi <- nlsLM(di ~ taper_bi(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6),
data=tree_scaling,
start=list(b0=1.8,b1=-0.2,b2=-0.04,b3=-0.9,b4=-0.0006,b5=0.07,b6=-.14))
```

taper_kozak Kozak (2004) Taper Function.

Description

Kozak (2004) Taper Function.

Usage

taper_kozak(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6, b7, b8, p)

Arguments

dbh tree diameter at breast height, in centimeters.
h total tree height, in meters.
hih ratio between the height of the section (hi) and the total height (h).
b0, b1, b2, b3, b4, b5, b6, b7, b8 model parameters.
$\mathrm{p} \quad$ numerical value representing the first inflection point calculated in the segmented model of Max and Burkhart (1976).

Value

a numeric value indicating the diameter at the section.

References

Kozak, A. (2004). My last words on taper equations. The Forestry Chronicle, 80(4), 507-515.

Examples

```
library(dplyr)
library(minpack.lm)
library(timbeR)
tree_scaling <- tree_scaling %>%
mutate(did = di/dbh,
        hih = hi/h)
kozak <- nlsLM(di ~ taper_kozak(dbh, h, hih, b0, b1, b2, b3, b4, b5, b6, b7, b8, p),
data=tree_scaling,
start=list(b0=1.00,b1=.97,b2=.03,b3=.49,b4=-0.87,b5=0.50,b6=3.88,b7=0.03,b8=-0.19,p =.1))
```


Description

Diameter (cm) and height (m) measurements along the bole of 8 Pinus taeda trees.

Usage

data(tree_scaling)

Format

A data frame with 136 rows and 5 variables:
tree_id tree unique id
dbh diameter at breast height, in centimeters
h total tree height, in meters
hi tree section height, in meters
di diameter at the tree section, in centimeters

Index

```
* datasets
    tree_scaling,28
bi_di,2
bi_hi,3
bi_logs,4
bi_logs_plot, 6
bi_vol,8
kozak_di,10
kozak_hi,11
kozak_logs, 12
kozak_logs_plot,14
kozak_vol,16
poly5_di,18
poly5_hi,19
poly5_logs, 20
poly5_logs_plot,22
poly5_vol,24
select_and_remove, 25
taper_bi,26
taper_kozak, }2
tree_scaling, 28
```

