
Package ‘stops’
January 20, 2023

Title Structure Optimized Proximity Scaling

Version 1.0-1

Date 2023-01-18

Author Thomas Rusch [aut, cre],
Jan de Leeuw [aut],
Lisha Chen [aut],
Patrick Mair [aut],
Kurt Hornik [ctb]

Maintainer Thomas Rusch <thomas.rusch@wu.ac.at>

Description A collection of methods that fit nonlinear distance transformations in multidimen-
sional scaling (MDS) and trade-off the fit with structure considerations to find optimal parame-
ters also known as structure optimized proximity scal-
ing (STOPS) (Rusch, Mair & Hornik, 2023,<doi:10.1007/s11222-022-10197-w>). The pack-
age contains various functions, wrappers, methods and classes for fitting, plotting and display-
ing different MDS models in a STOPS framework like Torgerson (classical) scaling, scal-
ing by majorizing a complex function (SMACOF), Sammon mapping, elastic scaling, symmet-
ric SMACOF, spherical SMACOF, s-stress, r-stress, power MDS, power elastic scal-
ing, power Sammon mapping, power stress MDS (POST-MDS), approximate power stress, Box-
Cox MDS, local MDS and Isomap. All of these models can also be fit individually with given hy-
perparameters or by optimizing over hyperparameters based on fit only (i.e., no structure consid-
erations). The package further contains functions for optimization, specifically the adap-
tive Luus-Jaakola algorithm and a wrapper for Bayesian optimization with treed Gaussian pro-
cess with jumps to linear models, and functions for various c-structuredness indices.

Depends R (>= 3.5.0), smacof, rgl

Imports cordillera, MASS, pso, scatterplot3d, acepack, minerva,
energy, DiceOptim, DiceKriging, tgp, pomp, vegan, scagnostics,
clue, cmaes, dfoptim, nloptr

Enhances stats

Suggests sp, R.rsp

License GPL-2 | GPL-3

LazyData true

URL https://r-forge.r-project.org/projects/stops/

1

https://doi.org/10.1007/s11222-022-10197-w
https://r-forge.r-project.org/projects/stops/

2 R topics documented:

VignetteBuilder R.rsp

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation no

Repository CRAN

Date/Publication 2023-01-20 10:10:02 UTC

R topics documented:
apStressMin . 4
BankingCrisesDistances . 5
bcStressMin . 6
cmds . 8
cmdscale . 8
coef.stops . 9
conf_adjust . 9
c_association . 10
c_clumpiness . 11
c_clusteredness . 11
c_complexity . 13
c_convexity . 14
c_dependence . 14
c_faithfulness . 15
c_functionality . 16
c_hierarchy . 17
c_inequality . 17
c_linearity . 18
c_manifoldness . 19
c_mine . 20
c_nonmonotonicity . 20
c_outlying . 21
c_regularity . 22
c_skinniness . 23
c_sparsity . 24
c_striatedness . 24
c_stringiness . 25
doubleCenter . 26
enorm . 26
knn_dist . 27
ljoptim . 27
lmds . 29
mkBmat . 30
mkPower . 31
mkPower2 . 31
Pendigits500 . 32
plot.cmdscaleE . 32

R topics documented: 3

plot.smacofP . 34
plot.stops . 36
plot3d.cmdscaleE . 37
plot3d.stops . 38
plot3dstatic . 38
plot3dstatic.cmdscaleE . 39
plot3dstatic.stops . 40
powerStressMin . 40
print.cmdscale . 42
print.sammon . 43
print.stops . 43
print.summary.smacofP . 44
print.summary.stops . 44
procruster . 45
residuals.stops . 45
sammon . 46
secularEq . 46
sqdist . 47
stoploss . 47
stops . 48
stop_apstress . 54
stop_bcstress . 55
stop_cmdscale . 57
stop_elastic . 58
stop_isomap1 . 59
stop_isomap2 . 61
stop_lmds . 63
stop_powerelastic . 64
stop_powermds . 65
stop_powersammon . 67
stop_powerstress . 68
stop_rpowerstress . 70
stop_rstress . 71
stop_sammon . 73
stop_sammon2 . 74
stop_smacofSphere . 75
stop_smacofSym . 77
stop_sstress . 78
summary.cmdscale . 80
summary.sammon . 80
summary.smacofP . 81
summary.stops . 81
Swissroll . 82
tgpoptim . 82
torgerson . 84

Index 85

4 apStressMin

apStressMin Approximate Power Stress SMACOF

Description

Minimize approximate power stress by minimization-majorization.

Usage

apStressMin(
delta,
tau = 1,
ups = 1,
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
eps = 1e-06,
itmax = 1000,
verbose = FALSE

)

Arguments

delta dist object or a symmetric, numeric data.frame or matrix of distances

tau the power of the transformation of the proximities; defaults to 1

ups the power of the transformation for weightmat; defaults to 1

weightmat a square, symmetric matrix of finite weights (same dimensions as delta)

init starting configuration

ndim dimension of the configuration; defaults to 2

eps numeric accuracy of the iteration

itmax maximum number of iterations

verbose should iteration output be printed; if TRUE then yes

Value

an object of class ’smacofP’ (inheriting from ’smacofB’, see smacofSym). It is a list with the com-
ponents

• delta: Observed dissimilarities, not normalized

• obsdiss: Observed transformed dissimilarities

• dhats: Observed transformed dissimilarities, normalized

• confdist: Configuration dissimilarities, NOT normalized

• conf: Matrix of fitted configuration, NOT normalized

BankingCrisesDistances 5

• stress: Default stress (stress 1; sqrt of explicitly normalized stress)

• spp: Stress per point (based on stress.en)

• ndim: Number of dimensions

• model: Name of MDS model

• niter: Number of iterations

• nobj: Number of objects

• type: Type of MDS model

• weightmat: weighting matrix

• pars: hyperparameter vector theta

and some additional components

• stress.m: default stress for the COPS and STOP defaults to the explicitly normalized stress on
the normalized, transformed dissimilarities. The square of stress-1 in stress.

• deltaorig: observed, untransformed dissimilarities

• tau: tau parameter

• ups: upsilon parameter

Author(s)

Thomas Rusch

See Also

smacofSym

Examples

dis<-smacof::kinshipdelta
res<-apStressMin(as.matrix(dis),tau=2,ups=0.7)
res
summary(res)
plot(res)

BankingCrisesDistances

Banking Crises Distances

Description

Matrix of Jaccard distances between 70 countries (Hungary and Greece were combined to be the
same observation) based on their binary time series of having had a banking crises in a year from
1800 to 2010 or not. See data(bankingCrises) in package Ecdat for more info. The last column is
Reinhart & Rogoffs classification as a low (3), middle- (2) or high-income country (1).

6 bcStressMin

Format

A 69 x 70 matrix.

Source

data(bankingCrises) in library(Ecdat)

bcStressMin An MDS version for minimizing BoxCox Stress (Chen & Buja 2013)

Description

An MDS version for minimizing BoxCox Stress (Chen & Buja 2013)

Usage

bcStressMin(
delta,
init = NULL,
verbose = 0,
ndim = 2,
mu = 1,
lambda = 1,
rho = 0,
itmax = 2000,
addD0 = 1e-04

)

Arguments

delta dissimilarity or distance matrix

init initial configuration. If NULL a classical scaling solution is used.

verbose prints progress if > 3.

ndim the dimension of the configuration

mu mu parameter. Should be 0 or larger for everything working ok. If mu<0 it
works but the model is strange and normalized stress tends towards 0 regardless
of fit. Use normalized stress at your own risk in that case.

lambda lambda parameter. Must be larger than 0.

rho the rho parameter.

itmax number of optimizing iterations, defaults to 2000.

addD0 a small number that’s added for D(X)=0 for numerical evaluation of worst fit
(numerical reasons, see details). If addD0=0 the normalized stress for mu!=0
and mu+lambda!=0 is correct, but will give useless normalized stress for mu=0
or mu+lambda!=0.

bcStressMin 7

Details

For numerical reasons with certain parameter combinations, the normalized stress uses a configu-
ration as worst result where every d(X) is 0+addD0. The same number is not added to the delta so
there is a small inaccuracy of the normalized stress (but negligible if min(delta)»addD0). Also, for
mu<0 or mu+lambda<0 the normalization cannot generally be trusted (in the worst case of D(X)=0
one would have an 0^(-a)).

Value

an object of class ’bcmds’ (also inherits from ’smacofP’). It is a list with the components

• delta: Observed dissimilarities, not normalized

• obsdiss: Observed transformed dissimilarities, not normalized

• confdist: Configuration dissimilarities, NOT normalized

• conf: Matrix of fitted configuration, NOT normalized

• stress: Default stress (stress 1; sqrt of explicitly normalized stress)

• ndim: Number of dimensions

• model: Name of MDS model

• niter: Number of iterations

• nobj: Number of objects

• pars: hyperparameter vector theta

and some additional components

• stress.m: default stress is the explicitly normalized stress on the normalized, transformed
dissimilarities

• deltaorig: observed, untransformed dissimilarities

• mu: mu parameter (for attraction)

• lambda: lambda parameter (for repulsion)

• rho: rho parameter (for weights)

Author(s)

Lisha Chen & Thomas Rusch

Examples

dis<-smacof::kinshipdelta
res<-bcStressMin(as.matrix(dis),mu=2,lambda=1.5,rho=0)
res
summary(res)
plot(res)

8 cmdscale

cmds normalization function Classical Scaling

Description

normalization function Classical Scaling

Usage

cmds(Do)

Arguments

Do dissimilarity matrix

cmdscale Wrapper to cmdscale for S3 class

Description

Wrapper to cmdscale for S3 class

Usage

cmdscale(d, k = 2, eig = TRUE, ...)

Arguments

d a distance structure such as that returned by ’dist’ or a full symmetric matrix
containing the dissimilarities

k the maximum dimension of the space which the data are to be represented in

eig indicates whether eigenvalues should be returned.

... additional parameters passed to cmdscale. See cmdscale

Details

overloads base::cmdscale and adds class attributes for which there are methods. The functionality
is duplicated in the cops package.

Value

An object of class ’cmdscaleE’ and inheriting from cmdscale. This function just adds an extra slot
to the list with the call, adds column labels to the $points.

coef.stops 9

coef.stops S3 coef method for stops objects

Description

S3 coef method for stops objects

Usage

S3 method for class 'stops'
coef(object, ...)

Arguments

object object of class stops

... addditional arguments

Value

a vector of hyperparmeters theta

conf_adjust conf_adjust: a function to procrustes adjust two matrices

Description

conf_adjust: a function to procrustes adjust two matrices

Usage

conf_adjust(conf1, conf2, verbose = FALSE, eps = 1e-12, itmax = 100)

Arguments

conf1 reference configuration, a numeric matrix

conf2 another configuration to be adjusted, a numeric matrix

verbose should adjustment be output; default to FALSE

eps numerical accuracy

itmax maximum number of iterations

Value

A list of configuration matrices. The ’ref.conf’ is the reference configuration, the ’other.conf’ is the
Procrustes adjusted configuration and the ’comparison.conf’ is the one that was adjusted.

10 c_association

c_association c-association calculates the c-association based on the maximal infor-
mation coefficient We define c-association as the aggregated associa-
tion between any two columns in confs

Description

c-association calculates the c-association based on the maximal information coefficient We define
c-association as the aggregated association between any two columns in confs

Usage

c_association(
confs,
aggr = max,
alpha = 0.6,
C = 15,
var.thr = 1e-05,
zeta = NULL

)

Arguments

confs a numeric matrix or data frame

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

alpha an optional number of cells allowed in the X-by-Y search-grid. Default value is
0.6

C an optional number determining the starting point of the X-by-Y search-grid.
When trying to partition the x-axis into X columns, the algorithm will start with
at most C X clumps. Default value is 15.

var.thr minimum value allowed for the variance of the input variables, since mine can
not be computed in case of variance close to 0. Default value is 1e-5.

zeta integer in [0,1] (?). If NULL (default) it is set to 1-MIC. It can be set to zero for
noiseless functions, but the default choice is the most appropriate parametriza-
tion for general cases (as stated in Reshef et al). It provides robustness.

Value

a numeric value; association (aggregated maximal information coefficient MIC, see mine)

Examples

x<-seq(-3,3,length.out=200)
y<-sqrt(3^2-x^2)
z<- sin(y-x)

c_clumpiness 11

confs<-cbind(x,y,z)
c_association(confs)

c_clumpiness c-clumpiness

Description

Measures the c-clumpiness structure

Usage

c_clumpiness(conf, aggr = max)

Arguments

conf A numeric matrix.

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

Value

a numeric value; clumpiness (see scagnostics)

Examples

delts<-smacof::kinshipdelta
conf<-smacof::smacofSym(delts)$conf
plot(conf,pch=19,asp=1)
c_clumpiness(conf)

c_clusteredness c-clusteredness calculates c-clusteredness as the OPTICS cordillera.
The higher the more clustered.

Description

c-clusteredness calculates c-clusteredness as the OPTICS cordillera. The higher the more clustered.

12 c_clusteredness

Usage

c_clusteredness(
confs,
minpts = 2,
q = 2,
epsilon = 2 * max(dist(confs)),
distmeth = "euclidean",
dmax = NULL,
digits = 10,
scale = 0,
...

)

Arguments

confs a numeric matrix or a dist object

minpts The minimum number of points that must make up a cluster in OPTICS (cor-
responds to k in the paper). It is passed to optics where it is called minPts.
Defaults to 2.

q The norm used for the Cordillera. Defaults to 2.

epsilon The epsilon parameter for OPTICS (called epsilon_max in the paper). Defaults
to 2 times the maximum distance between any two points.

distmeth The distance to be computed if X is not a symmetric matrix or a dist object
(otherwise ignored). Defaults to Euclidean distance.

dmax The winsorization value for the highest allowed reachability. If used for com-
parisons between different configurations this should be supplied. If no value is
supplied, it is NULL (default); then dmax is taken from the data as the either
epsilon or the largest reachability, whatever is smaller.

digits The precision to round the raw Cordillera and the norm factor. Defaults to 10.

scale Should X be scaled if it is an asymmetric matrix or data frame? Can take values
TRUE or FALSE or a numeric value. If TRUE or 1, standardisation is to mean=0
and sd=1. If 2, no centering is applied and scaling of each column is done with
the root mean square of each column. If 3, no centering is applied and scaling of
all columns is done as X/max(standard deviation(allcolumns)). If 4, no centering
is applied and scaling of all columns is done as X/max(rmsq(allcolumns)). If
FALSE, 0 or any other numeric value, no standardisation is applied. Defaults to
0.

... Additional arguments to be passed to cordillera::cordillera

Value

a numeric value; clusteredness (see cordillera)

Examples

delts<-smacof::kinshipdelta

c_complexity 13

dis<-smacofSym(delts)$confdist
c_clusteredness(dis,minpts=3)

c_complexity c-complexity Calculates the c-complexity based on the minimum cell
number We define c-complexity as the aggregated minimum cell
number between any two columns in confs This is one of few c-
structuredness indices not between 0 and 1, but can be between 0 and
(theoretically) infinity

Description

c-complexity Calculates the c-complexity based on the minimum cell number We define c-complexity
as the aggregated minimum cell number between any two columns in confs This is one of few c-
structuredness indices not between 0 and 1, but can be between 0 and (theoretically) infinity

Usage

c_complexity(
confs,
aggr = min,
alpha = 1,
C = 15,
var.thr = 1e-05,
zeta = NULL

)

Arguments

confs a numeric matrix or data frame

aggr the aggregation function for configurations of more than two dimensions. De-
faults to min.

alpha an optional number of cells allowed in the X-by-Y search-grid. Default value is
1

C an optional number determining the starting point of the X-by-Y search-grid.
When trying to partition the x-axis into X columns, the algorithm will start with
at most C X clumps. Default value is 15.

var.thr minimum value allowed for the variance of the input variables, since mine can
not be computed in case of variance close to 0. Default value is 1e-5.

zeta integer in [0,1] (?). If NULL (default) it is set to 1-MIC. It can be set to zero for
noiseless functions, but the default choice is the most appropriate parametriza-
tion for general cases (as stated in Reshef et al.). It provides robustness.

Value

a numeric value; complexity (aggregated minimum cell number MCN, see mine)

14 c_dependence

Examples

x<-seq(-3,3,length.out=200)
y<-sqrt(3^2-x^2)
z<- sin(y-x)
confs<-cbind(x,y,z)
c_complexity(confs)

c_convexity c-convexity

Description

Measures the c-convexity structure

Usage

c_convexity(conf, aggr = max)

Arguments

conf A numeric matrix.

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

Value

a numeric value; convexity (see scagnostics)

Examples

delts<-smacof::kinshipdelta
conf<-smacof::smacofSym(delts)$conf
plot(conf,pch=19,asp=1)
c_convexity(conf)

c_dependence c-dependence calculates c-dependence as the aggregated distance
correlation of each pair if nonidentical columns

Description

c-dependence calculates c-dependence as the aggregated distance correlation of each pair if non-
identical columns

Usage

c_dependence(confs, aggr = max, index = 1)

c_faithfulness 15

Arguments

confs a numeric matrix or data frame

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

index exponent on Euclidean distance, in (0,2]

Value

a numeric value; dependence (aggregated distance correlation)

Examples

x<-1:10
y<-2+3*x+rnorm(10)
confs<-cbind(x,y)
c_dependence(confs,1.5)

c_faithfulness c-faithfulness calculates the c-faithfulness based on the index by Chen
and Buja 2013 (M_adj) with equal input neigbourhoods

Description

c-faithfulness calculates the c-faithfulness based on the index by Chen and Buja 2013 (M_adj) with
equal input neigbourhoods

Usage

c_faithfulness(confs, obsdiss, k = 3, ...)

Arguments

confs a numeric matrix or a dist object

obsdiss a symmetric numeric matrix or a dist object

k the number of nearest neighbours to be looked at

... additional arguments passed to dist()

Value

a numeric value; faithfulness

Examples

delts<-smacof::kinshipdelta
dis<-smacofSym(delts)$confdist
c_faithfulness(dis,delts,k=3)

16 c_functionality

c_functionality c-functionality calculates the c-functionality based on the maximum
edge value We define c-functionality as the aggregated functionality
between any two columns of confs

Description

c-functionality calculates the c-functionality based on the maximum edge value We define c-functionality
as the aggregated functionality between any two columns of confs

Usage

c_functionality(
confs,
aggr = max,
alpha = 1,
C = 15,
var.thr = 1e-05,
zeta = NULL

)

Arguments

confs a numeric matrix or data frame

aggr the aggregation function for configurations of more than two dimensions. De-
faults to mean

alpha an optional number of cells allowed in the X-by-Y search-grid. Default value is
1

C an optional number determining the starting point of the X-by-Y search-grid.
When trying to partition the x-axis into X columns, the algorithm will start with
at most C X clumps. Default value is 15.

var.thr minimum value allowed for the variance of the input variables, since mine can
not be computed in case of variance close to 0. Default value is 1e-5.

zeta integer in [0,1] (?). If NULL (default) it is set to 1-MIC. It can be set to zero for
noiseless functions, but the default choice is the most appropriate parametriza-
tion for general cases (as stated in Reshef et al.). It provides robustness.

Value

a numeric value; functionality (aggregated maximaum edge value MEV, see mine)

Examples

x<-seq(-3,3,length.out=200)
y<-sqrt(3^2-x^2)
z<- sin(y-x)

c_hierarchy 17

confs<-cbind(x,y,z)
c_functionality(confs)

c_hierarchy c-hierarchy captures how well a partition/ultrametric (obtained by
hclust) explains the configuration distances. Uses variance explained
for euclidean distances and deviance explained for everything else.

Description

c-hierarchy captures how well a partition/ultrametric (obtained by hclust) explains the configuration
distances. Uses variance explained for euclidean distances and deviance explained for everything
else.

Usage

c_hierarchy(confs, p = 2, agglmethod = "complete")

Arguments

confs a numeric matrix

p the parameter of the Minokwski distances (p=2 euclidean and p=1 is manhattan)

agglmethod the method used for creating the clustering, see hclust.

Value

a numeric value; hierarchy (see cl_validity)

Examples

delts<-smacof::kinshipdelta
conf<-smacofSym(delts)$conf
c_hierarchy(conf,p=2,agglmethod="single")

c_inequality c-inequality Calculates c-inequality (as in an economic measure of
inequality) as Pearsons coefficient of variation of the fitted distance
matrix. This can help with avoiding degenerate solutions. This is one
of few c-structuredness indices not between 0 and 1, but 0 and infinity.

Description

c-inequality Calculates c-inequality (as in an economic measure of inequality) as Pearsons coeffi-
cient of variation of the fitted distance matrix. This can help with avoiding degenerate solutions.
This is one of few c-structuredness indices not between 0 and 1, but 0 and infinity.

18 c_linearity

Usage

c_inequality(confs)

Arguments

confs a numeric matrix or data frame

Value

a numeric value; inequality (Pearsons coefficient of variation of the fitted distance matrix)

Examples

x<-1:10
y<-2+3*x+rnorm(10)
z<- sin(y-x)
confs<-cbind(z,y,x)
c_inequality(confs)

c_linearity c-linearity calculates c-linearity as the aggregated multiple correla-
tion of all columns of the configuration.

Description

c-linearity calculates c-linearity as the aggregated multiple correlation of all columns of the config-
uration.

Usage

c_linearity(confs, aggr = max)

Arguments

confs a numeric matrix or data frame
aggr the aggregation function for configurations of more than two dimensions. De-

faults to max.

Value

a numeric value; linearity (aggregated multiple correlation of all columns of the configuration)

Examples

x<-1:10
y<-2+3*x+rnorm(10)
z<- sin(y-x)
confs<-cbind(z,y,x)
c_linearity(confs)

c_manifoldness 19

c_manifoldness c-manifoldness calculates c-manifoldness as the aggregated max-
imal correlation coefficient (i.e., Pearson correlation of the ACE
transformed variables) of all pairwise combinations of two different
columns in confs. If there is an NA (happens usually when the optimal
transformation of any variable is a constant and therefore the covari-
ance is 0 but also one of the sds in the denominator), it gets skipped.

Description

c-manifoldness calculates c-manifoldness as the aggregated maximal correlation coefficient (i.e.,
Pearson correlation of the ACE transformed variables) of all pairwise combinations of two different
columns in confs. If there is an NA (happens usually when the optimal transformation of any
variable is a constant and therefore the covariance is 0 but also one of the sds in the denominator),
it gets skipped.

Usage

c_manifoldness(confs, aggr = max)

Arguments

confs a numeric matrix or data frame

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

Value

a numeric value; manifoldness (aggregated maximal correlation, correlation of ACE tranformed x
and y, see ace)

Examples

x<--100:100
y<-sqrt(100^2-x^2)
confs<-cbind(x,y)
c_manifoldness(confs)

20 c_nonmonotonicity

c_mine wrapper for getting the mine coefficients

Description

wrapper for getting the mine coefficients

Usage

c_mine(confs, master = NULL, alpha = 0.6, C = 15, var.thr = 1e-05, zeta = NULL)

Arguments

confs a numeric matrix or data frame with two columns

master the master column

alpha an optional number of cells allowed in the X-by-Y search-grid. Default value is
0.6

C an optional number determining the starting point of the X-by-Y search-grid.
When trying to partition the x-axis into X columns, the algorithm will start with
at most C X clumps. Default value is 15.

var.thr minimum value allowed for the variance of the input variables, since mine can
not be computed in case of variance close to 0. Default value is 1e-5.

zeta integer in [0,1] (?). If NULL (default) it is set to 1-MIC. It can be set to zero for
noiseless functions, but the default choice is the most appropriate parametriza-
tion for general cases (as stated in Reshef et al. SOM; they call it epsilon in the
paper). It provides robustness.

c_nonmonotonicity c-nonmonotonicity calculates the c-nonmonotonicity based on the
maximum asymmetric score We define c-nonmonotonicity as the ag-
gregated nonmonotonicity between any two columns in confs this is
one of few c-structuredness indices not between 0 and 1

Description

c-nonmonotonicity calculates the c-nonmonotonicity based on the maximum asymmetric score We
define c-nonmonotonicity as the aggregated nonmonotonicity between any two columns in confs
this is one of few c-structuredness indices not between 0 and 1

c_outlying 21

Usage

c_nonmonotonicity(
confs,
aggr = max,
alpha = 1,
C = 15,
var.thr = 1e-05,
zeta = NULL

)

Arguments

confs a numeric matrix or data frame

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

alpha an optional number of cells allowed in the X-by-Y search-grid. Default value is
1

C an optional number determining the starting point of the X-by-Y search-grid.
When trying to partition the x-axis into X columns, the algorithm will start with
at most C X clumps. Default value is 15.

var.thr minimum value allowed for the variance of the input variables, since mine can
not be computed in case of variance close to 0. Default value is 1e-5.

zeta integer in [0,1] (?). If NULL (default) it is set to 1-MIC. It can be set to zero for
noiseless functions, but the default choice is the most appropriate parametriza-
tion for general cases (as stated in Reshef et al. SOM). It provides robustness.

Value

a numeric value; nonmonotonicity (aggregated maximal asymmetric score MAS, see mine)

Examples

x<-seq(-3,3,length.out=200)
y<-sqrt(3^2-x^2)
z<- sin(y-x)
confs<-cbind(x,y,z)
c_nonmonotonicity(confs)

c_outlying c-outlying

Description

Measures the c-outlying structure

22 c_regularity

Usage

c_outlying(conf, aggr = max)

Arguments

conf A numeric matrix.

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

Value

a numeric value; outlying (see scagnostics)

Examples

delts<-smacof::kinshipdelta
conf3<-smacof::smacofSym(delts,ndim=3)$conf
c_outlying(conf3)

c_regularity c-regularity calculates c-regularity as 1 - OPTICS cordillera for k=2.
The higher the more regular.

Description

c-regularity calculates c-regularity as 1 - OPTICS cordillera for k=2. The higher the more regular.

Usage

c_regularity(
confs,
q = 1,
epsilon = 2 * max(dist(confs)),
distmeth = "euclidean",
dmax = NULL,
digits = 10,
scale = 0,
...

)

Arguments

confs a numeric matrix or a dist object

q The norm used for the Cordillera. Defaults to 1 (and should always be 1 imo).

epsilon The epsilon parameter for OPTICS (called epsilon_max in the paper). Defaults
to 2 times the maximum distance between any two points.

c_skinniness 23

distmeth The distance to be computed if X is not a symmetric matrix or a dist object
(otherwise ignored). Defaults to Euclidean distance.

dmax The winsorization value for the highest allowed reachability. If used for compar-
isons this should be supplied. If no value is supplied, it is NULL (default), then
dmax is taken from the data as minimum of epsilon or the largest reachability.

digits The precision to round the raw Cordillera and the norm factor. Defaults to 10.

scale Should X be scaled if it is an asymmetric matrix or data frame? Can take values
TRUE or FALSE or a numeric value. If TRUE or 1, standardisation is to mean=0
and sd=1. If 2, no centering is applied and scaling of each column is done with
the root mean square of each column. If 3, no centering is applied and scaling of
all columns is done as X/max(standard deviation(allcolumns)). If 4, no centering
is applied and scaling of all columns is done as X/max(rmsq(allcolumns)). If
FALSE, 0 or any other numeric value, no standardisation is applied. Defaults to
0.

... Additional arguments to be passed to cordillera

Value

a numeric value; regularity

Examples

hpts<-expand.grid(seq(-5,5),seq(-5,5))
c_regularity(hpts)
hpts2<-cbind(jitter(hpts[,1]),jitter(hpts[,2]))
c_regularity(hpts2)

c_skinniness c-skinniness

Description

Measures the c-skinniness structure

Usage

c_skinniness(conf, aggr = max)

Arguments

conf A numeric matrix.

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

Value

a numeric value; skininess (see scagnostics)

24 c_striatedness

Examples

delts<-smacof::kinshipdelta
conf<-smacof::smacofSym(delts)$conf
plot(conf,pch=19,asp=1)
c_skinniness(conf)

c_sparsity c-sparsity

Description

Measures the c-sparsity structure

Usage

c_sparsity(conf, aggr = max)

Arguments

conf A numeric matrix.

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

Value

a numeric value; sparsity (see scagnostics)

Examples

delts<-smacof::kinshipdelta
conf<-smacof::smacofSym(delts)$conf
plot(conf,pch=19,asp=1)
c_sparsity(conf)

c_striatedness c-striatedness

Description

Measures the c-striatedness structure

Usage

c_striatedness(conf, aggr = max)

c_stringiness 25

Arguments

conf A numeric matrix.

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

Value

a numeric value; striatedness (see scagnostics)

Examples

delts<-smacof::kinshipdelta
conf<-smacof::smacofSym(delts)$conf
plot(conf,pch=19,asp=1)
c_striatedness(conf)

c_stringiness c-stringiness

Description

Measures the c-stringiness structure

Usage

c_stringiness(conf, aggr = max)

Arguments

conf A numeric matrix.

aggr the aggregation function for configurations of more than two dimensions. De-
faults to max.

Value

a numeric value; stringiness (see scagnostics)

Examples

delts<-smacof::kinshipdelta
conf<-smacof::smacofSym(delts)$conf
plot(conf,pch=19,asp=1)
c_stringiness(conf)

26 enorm

doubleCenter double centering

Description

double centering

Usage

doubleCenter(x)

Arguments

x numeric matrix

enorm Explicit Norm

Description

Explicit Norm

Usage

enorm(x, w = 1)

Arguments

x numeric matrix

w weight

Value

a numeric scalar; the sum(w*x^2)

knn_dist 27

knn_dist calculate k nearest neighbours from a distance matrix

Description

calculate k nearest neighbours from a distance matrix

Usage

knn_dist(dis, k)

Arguments

dis distance matrix

k number of nearest neighbours (Note that with a tie, the function returns the
alphanumerically first one!)

ljoptim (Adaptive) Version of Luus-Jaakola Optimization

Description

Adaptive means that the search space reduction factors in the number of iterations; makes conver-
gence faster at about 100 iterations

Usage

ljoptim(
x,
fun,
...,
red = ifelse(adaptive, 0.99, 0.95),
lower,
upper,
acc = 1e-06,
accd = 1e-04,
itmax = 1000,
verbose = 0,
adaptive = TRUE

)

28 ljoptim

Arguments

x optional starting values

fun function to minimize

... additional arguments to be passed to the function to be optimized

red value of the reduction of the search region

lower The lower contraints of the search region

upper The upper contraints of the search region

acc if the numerical accuracy of two successive target function values is below this,
stop the optimization; defaults to 1e-6

accd if the width of the search space is below this, stop the optimization; defaults to
1e-4

itmax maximum number of iterations

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

adaptive should the adaptive version be used? defaults to TRUE.

Value

A list with the components (optim)

• par The position of the optimimum in the search space (parameters that minimize the function;
argmin fun)

• value The value of the objective function at the optimum (min fun)

• counts The number of iterations performed at convergence with entries fnction for the number
of iterations and gradient which is always NA at the moment

• convergence 0 successful completion by the accd or acc criterion, 1 indicate iteration limit
was reached, 99 is a problem

• message is NULL (only for compatibility or future use)

Examples

fbana <- function(x) {
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
res1<-ljoptim(c(-1.2,1),fbana,lower=-5,upper=5,accd=1e-16,acc=1e-16)
res1

set.seed(210485)
fwild <- function (x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
plot(fwild, -50, 50, n = 1000, main = "ljoptim() minimising 'wild function'")
res2<-ljoptim(50, fwild,lower=-50,upper=50,adaptive=FALSE,accd=1e-16,acc=1e-16)
points(res2$par,res2$value,col="red",pch=19)
res2

lmds 29

lmds An function for local MDS (Chen & Buja 2006)

Description

An function for local MDS (Chen & Buja 2006)

Usage

lmds(delta, init = NULL, ndim = 3, k = 2, tau = 1, itmax = 5000, verbose = 0)

Arguments

delta dissimilarity or distance matrix

init initial configuration. If NULL a classical scaling solution is used.

ndim the dimension of the configuration

k the k neighbourhood parameter

tau the penalty parameter (suggested to be in [0,1])

itmax number of optimizing iterations, defaults to 5000.

verbose prints progress if > 4.

Details

Note that k and tau are not independent. It is possible for normalized stress to become negative if
the tau and k combination is so that the absolute repulsion for the found configuration dominates
the local stress substantially less than the repulsion term does for the solution of D(X)=Delta, so
that the local stress difference between the found solution and perfect solution is nullified. This can
typically be avoided if tau is between 0 and 1. If not, set k and or tau to a smaller value.

Value

an object of class ’lmds’ (also inherits from ’smacofP’). See powerStressMin. It is a list with the
components as in power stress

• delta: Observed dissimilarities, not normalized

• obsdiss: Observed transformed dissimilarities, not normalized

• confdist: Configuration dissimilarities, NOT normalized

• conf: Matrix of fitted configuration, NOT normalized

• stress: Default stress (stress 1; sqrt of explicitly normalized stress)

• ndim: Number of dimensions

• model: Name of MDS model

• niter: Number of iterations

• nobj: Number of objects

30 mkBmat

• pars: hyperparameter vector theta

and some additional components

• stress.m: default stress is the explicitly normalized stress on the normalized, transformed
dissimilarities

• deltaorig: observed, untransformed dissimilarities

• tau: tau parameter

• k: k parameter

Author(s)

Lisha Chen & Thomas Rusch

Examples

dis<-smacof::kinshipdelta
res<- lmds(as.matrix(dis),k=2,tau=0.1)
res
summary(res)
plot(res)

mkBmat MkBmat function (internal)

Description

MkBmat function (internal)

Usage

mkBmat(x)

Arguments

x matrix

mkPower 31

mkPower MakePower Old

Description

MakePower Old

Usage

mkPower(x, r)

Arguments

x matrix

r numeric (power)

Value

the matrix to a power

mkPower2 MakePower

Description

MakePower

Usage

mkPower2(x, theta)

Arguments

x matrix

theta numeric (power)

32 plot.cmdscaleE

Pendigits500 Pen digits

Description

These data are a random sample of 500 of the 10992 pendigits data from Alimoglu (1996). The
original data were from 44 writers who handwrote 250 times the digits 0,...,9. The digits were
written inside a rectangular box with a resolution of 500 x 500 pixels and the first 10 per writer
were ignored for further analysis. This led to 10992 digits. They were recorded in small time
intervals by following the trajectory of the pen on the 500 x 500 grid and then normalized. From the
normalized trajectory 8 points (x and y axis position) were randomly selected for each handwritten
digit, leading to 16 predictors variables. We extarcted a random sample of 500 of them.

Usage

data(Pendigits500)

Format

A data frame with 500 rows and 17 variables

Details

The variables are

• The rownames of Pendigits500 refer to the data point of the 10992 original data

• V1-V16: trajectory points (x, y coordinate) of the grid

• digits: The digit actually written (the label)

Source

From A. Izenman (2010) Modern multivariate statistical techniques. Springer.

plot.cmdscaleE S3 plot method for cmdscaleE

Description

S3 plot method for cmdscaleE

plot.cmdscaleE 33

Usage

S3 method for class 'cmdscaleE'
plot(
x,
plot.type = c("confplot"),
plot.dim = c(1, 2),
col,
label.conf = list(label = TRUE, pos = 3, col = 1, cex = 0.8),
identify = FALSE,
type = "p",
pch = 20,
asp = 1,
main,
xlab,
ylab,
xlim,
ylim,
legpos,
...

)

Arguments

x cmdscaleE object

plot.type type of plot

plot.dim dimensions used for plotting

col color

label.conf list of label options

identify boolean flag for interactively identify points

type type of plot

pch plotting character

asp aspect ratio (defaults to 1)

main main title

xlab label of x axis

ylab label of y axis

xlim limits of x axis

ylim limits of y axis

legpos position of legend

... additional arguments passed to plot

Details

This function duplicates the plot method for smacof so it can be used with cmdscaleE objects. See
plot.smacof for the arguments.

34 plot.smacofP

Value

No return value, just plots a ’cmdscaleE’ object.

plot.smacofP S3 plot method for smacofP objects

Description

S3 plot method for smacofP objects

Usage

S3 method for class 'smacofP'
plot(
x,
plot.type = "confplot",
plot.dim = c(1, 2),
bubscale = 5,
col,
label.conf = list(label = TRUE, pos = 3, col = 1, cex = 0.8),
identify = FALSE,
type = "p",
pch = 20,
asp = 1,
main,
xlab,
ylab,
xlim,
ylim,
legend = TRUE,
legpos,
loess = TRUE,
...

)

Arguments

x an object of class smacofP

plot.type String indicating which type of plot to be produced: "confplot", "resplot", "Shep-
ard", "stressplot","transplot", "bubbleplot" (see details)

plot.dim dimensions to be plotted in confplot; defaults to c(1, 2)

bubscale Scaling factor (size) for the bubble plot

col vector of colors for the points

label.conf List with arguments for plotting the labels of the configurations in a configura-
tion plot (logical value whether to plot labels or not, label position, label color)

plot.smacofP 35

identify If ’TRUE’, the ’identify()’ function is called internally that allows to add con-
figuration labels by mouse click

type What type of plot should be drawn (see also ’plot’)

pch Plot symbol

asp Aspect ratio; defaults to 1 so distances between x and y are represented accu-
rately; can lead to slighlty weird looking plots if the variance on one axis is
much smaller than on the other axis; use NA if the standard type of R plot is
wanted where the ylim and xlim arguments define the aspect ratio - but then the
distances seen are no longer accurate

main plot title

xlab label of x axis

ylab label of y axis

xlim scale of x axis

ylim scale of y axis

legend Flag whether legends should be drawn for plots that have legends

legpos Position of legend in plots with legends

loess should loess fit be added to Shepard plot

... Further plot arguments passed: see ’plot.smacof’ and ’plot’ for detailed infor-
mation.

Details

• Configuration plot (plot.type = "confplot"): Plots the MDS configurations.

• Residual plot (plot.type = "resplot"): Plots the dissimilarities against the fitted distances with
a linear regression line (without an intercept as in ratio MDS).

• Linearized Shepard diagram (plot.type = "Shepard"): Diagram with the transformed observed
dissimilarities against the transformed fitted distance as well as loess curve and a least squares
line. The fitted lines do not have an intercept.

• Transformation Plot (plot.type = "transplot"): Diagram with the observed dissimilarities (lighter)
and the transformed observed dissimilarities (darker) against the fitted distances together with
the nonlinear regression curve (no intercept). Works for lmds or bcStress models too, but is
somewhat nonsensical due to them being energy models.

• Stress decomposition plot (plot.type = "stressplot"): Plots the stress contribution in of each
observation. Note that it rescales the stress-per-point (SPP) from the corresponding smacof
function to percentages (sum is 100). The higher the contribution, the worse the fit. Only
implemented for models from the classical stress world, not for bcmds or lmds (throws an
error).

• Bubble plot (plot.type = "bubbleplot"): Combines the configuration plot with the point stress
contribution. The larger the bubbles, the better the fit.Only implemented for models from the
classical stress world, bcmds or lmds (throws an error).

Value

no return value; just plot for class ’smacofP’ (see details)

36 plot.stops

plot.stops S3 plot method for stops objects

Description

S3 plot method for stops objects

Usage

S3 method for class 'stops'
plot(x, plot.type = c("confplot"), main, asp = NA, ...)

Arguments

x an object of class stops

plot.type String indicating which type of plot to be produced: "confplot", "resplot", "Shep-
ard", "stressplot", "bubbleplot" (see details)

main the main title of the plot

asp aspect ratio of x/y axis; defaults to NA; setting to 1 will lead to an accurate
represenation of the fitted distances.

... Further plot arguments passed: see ’plot.smacof’ and ’plot’ for detailed infor-
mation.
Details:

• Configuration plot (plot.type = "confplot"): Plots the MDS configurations.
• Residual plot (plot.type = "resplot"): Plots the dissimilarities against the

fitted distances.
• Linearized Shepard diagram (plot.type = "Shepard"): Diagram with the

transformed observed dissimilarities against the transformed fitted distance
as well as loess smooth and a least squares line.

• Stress decomposition plot (plot.type = "stressplot", only for SMACOF ob-
jects in $fit): Plots the stress contribution in of each observation. Note that
it rescales the stress-per-point (SPP) from the corresponding smacof func-
tion to percentages (sum is 100). The higher the contribution, the worse the
fit.

• Bubble plot (plot.type = "bubbleplot", only available for SMACOF objects
$fit): Combines the configuration plot with the point stress contribution.
The larger the bubbles, the better the fit.

Value

no return value, just plots

plot3d.cmdscaleE 37

plot3d.cmdscaleE S3 plot3d method for class cmdscaleE

Description

This methods produces a dynamic 3D configuration plot.

Usage

S3 method for class 'cmdscaleE'
plot3d(
x,
plot.dim = c(1, 2, 3),
xlab,
ylab,
zlab,
col,
main,
bgpng = NULL,
ax.grid = TRUE,
sphere.rgl = FALSE,
...

)

Arguments

x object of class cmdscaleE

plot.dim vector of length 3 with dimensions to be plotted

xlab label of x axis

ylab label of y axis

zlab label of z axis

col color of the text labels

main plot title

bgpng Background image from rgl library; ’NULL’ for white background

ax.grid If ’TRUE’, axes grid is plotted.

sphere.rgl If ’TRUE’, rgl sphere (background) is plotted.

... Further plot arguments passed: see ’plot3d’ in package ’rgl’ for detailed infor-
mation.

Value

No return value, just plots a ’cmdscale’ object.

38 plot3dstatic

plot3d.stops S3 plot3d method for class stops

Description

This methods produces a dynamic 3D configuration plot.

Usage

S3 method for class 'stops'
plot3d(x, ...)

Arguments

x object of class stops

... Further plot arguments to the method of the class of slot $fit, see plot.smacof
or plot3d.cmdscaleE . Also see ’rgl’ in package ’rgl’

Value

no return value, just plots

plot3dstatic plot3dstatic: static 3D plots

Description

A static 3d plot S3 generic

Usage

plot3dstatic(x, plot.dim = c(1, 2, 3), main, xlab, ylab, zlab, col, ...)

Arguments

x object

plot.dim dimensions to plot

main main title

xlab label for x axis

ylab label for y axis

zlab label for z axis

col color

... other arguments

plot3dstatic.cmdscaleE 39

Details

A static 3d plot

Value

No return value, just plots.

plot3dstatic.cmdscaleE

3D plots: plot3dstatic method for class cmdscaleE

Description

This methods produces a static 3D configuration plot.

Usage

S3 method for class 'cmdscaleE'
plot3dstatic(x, plot.dim = c(1, 2, 3), main, xlab, ylab, zlab, col, ...)

Arguments

x object of class cmdscaleE

plot.dim vector of length 3 with dimensions to be plotted

main plot title

xlab label of x axis

ylab label of y axis

zlab label of z axis

col color of the text labels

... Further plot arguments passed: see ’scatterplot3d’ in package ’scatterplot3d’ for
detailed information.

Value

No return value, just plots a ’cmdscaleE’ object.

40 powerStressMin

plot3dstatic.stops S3 plot3dstatic method for class stops

Description

This methods produces a static 3D configuration plot.

Usage

S3 method for class 'stops'
plot3dstatic(x, ...)

Arguments

x object of class stops

... Further plot arguments to the method of the class of slot fit, see plot3dstatic or
plot3dstatic.cmdscaleE . Also see ’scatterplot3d’ in package ’scatterplot3d’.

Value

no return value, just plots

powerStressMin Power Stress SMACOF

Description

An implementation to minimize power stress by minimization-majorization. Usually more accurate
but slower than powerStressFast.

Usage

powerStressMin(
delta,
kappa = 1,
lambda = 1,
nu = 1,
weightmat = 1 - diag(nrow(delta)),
init = NULL,
ndim = 2,
acc = 1e-10,
itmax = 50000,
verbose = FALSE

)

powerStressMin 41

Arguments

delta dist object or a symmetric, numeric data.frame or matrix of distances

kappa power of the transformation of the fitted distances; defaults to 1

lambda the power of the transformation of the proximities; defaults to 1

nu the power of the transformation for weightmat; defaults to 1

weightmat a matrix of finite weights

init starting configuration

ndim dimension of the configuration; defaults to 2

acc numeric accuracy of the iteration

itmax maximum number of iterations. Defaults to 50000.

verbose should iteration output be printed; if > 1 then yes

Value

an object of class ’smacofP’ (inheriting form ’smacofB’, see smacofSym). It is a list with the com-
ponents

• delta: Observed dissimilarities, not normalized

• obsdiss: Observed transformed dissimilarities, not normalized

• confdist: Configuration dissimilarities, NOT normalized

• conf: Matrix of fitted configuration, NOT normalized

• stress: Default stress (stress 1; sqrt of explicitly normalized stress)

• spp: Stress per point (based on stress.en)

• ndim: Number of dimensions

• model: Name of smacof model

• niter: Number of iterations

• nobj: Number of objects

• type: Type of MDS model

• weightmat: weighting matrix

• pars: hyperparameter vector theta

and some additional components

• stress.m: default stress is the explicitly normalized stress on the normalized, transformed
dissimilarities

• deltaorig: observed, untransformed dissimilarities

• kappa: kappa parameter

• lambda: lambda parameter

• nu: nu parameter (aka rho)

42 print.cmdscale

Note

The functionality related to power stress and the ’smacofP’ class is also available in the ’cops’
package. Expect masking when both are loaded.

Author(s)

Jan de Leeuw & Thomas Rusch

See Also

smacofSym

Examples

dis<-smacof::kinshipdelta
res<-powerStressMin(as.matrix(dis),kappa=2,lambda=1.5,nu=2,

weightmat=as.matrix(dis/2),itmax=1000)
res
summary(res)
plot(res)

print.cmdscale S3 print method for cmdscale

Description

S3 print method for cmdscale

Usage

S3 method for class 'cmdscale'
print(x, ...)

Arguments

x cmdscale object

... additional arguments

Value

No return value, just prints.

print.sammon 43

print.sammon S3 print method for sammon objects

Description

S3 print method for sammon objects

Usage

S3 method for class 'sammon'
print(x, ...)

Arguments

x cmdscale object

... additional arguments

Value

No return value, just prints.

print.stops S3 print method for stops objects

Description

S3 print method for stops objects

Usage

S3 method for class 'stops'
print(x, ...)

Arguments

x stops object

... additional arguments

Value

no return value, just prints

44 print.summary.stops

print.summary.smacofP S3 print method for summary.smacofP

Description

S3 print method for summary.smacofP

Usage

S3 method for class 'summary.smacofP'
print(x, ...)

Arguments

x object of class summary.smacofP

... additional arguments

Value

No return value, just prints a ’summary.smacofP’

print.summary.stops S3 print method for summary.stops

Description

S3 print method for summary.stops

Usage

S3 method for class 'summary.stops'
print(x, ...)

Arguments

x object of class summary.stops

... additional arguments

Value

no return value, just prints

procruster 45

procruster procruster: a procrustes function

Description

procruster: a procrustes function

Usage

procruster(x)

Arguments

x mumeric matrix

Value

A double or complex matrix.

residuals.stops S3 residuals method for stops

Description

S3 residuals method for stops

Usage

S3 method for class 'stops'
residuals(object, ...)

Arguments

object object of class stops

... addditional arguments

Value

a vector of residuals (observed minus fitted distances)

46 secularEq

sammon Wrapper to sammon for S3 class

Description

Wrapper to sammon for S3 class

Usage

sammon(d, y = NULL, k = 2, ...)

Arguments

d a distance structure such as that returned by ’dist’ or a full symmetric matrix.
Data are assumed to be dissimilarities or relative distances, but must be positive
except for self-distance. This can contain missing values.

y An initial configuration. If NULL, ’cmdscale’ is used to provide the classical
solution. (If there are missing values in ’d’, an initial configuration must be
provided.) This must not have duplicates.

k The dimension of the configuration

... Additional parameters passed to sammon, see sammon

Details

overloads MASS::sammon and adds class attributes for which there are methods. The functionality
is duplicated in the cops package.

Value

An object of class ’sammonE’ that inherits from sammon. This function only adds an extra slot to the
list with the call, adds column labels to the $points and assigns S3 classes ’sammonE’, ’cmdscale’.
It also adds a slot obsdiss with normalized dissimilarities.

secularEq Secular Equation

Description

Secular Equation

Usage

secularEq(a, b)

sqdist 47

Arguments

a matrix

b matrix

sqdist Squared distances

Description

Squared distances

Usage

sqdist(x)

Arguments

x numeric matrix

Value

a matrix of squared distances

stoploss Calculate the weighted multiobjective loss function used in STOPS

Description

Calculate the weighted multiobjective loss function used in STOPS

Usage

stoploss(
obj,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(-1/length(structures), length(structures)),
strucpars,
type = c("additive", "multiplicative"),
verbose = 0

)

48 stops

Arguments

obj object returned inside a stop_* function. Uses the stress.m slot for getting the
stress.

stressweight weight to be used for the fit measure; defaults to 1

structures which c-structuredness indices to be included in the loss

strucweight the weights of the structuredness indices; defaults to -1/#number of structures

strucpars a list of parameters to be passed to the c-structuredness indices in the same order
as the values in structures. If the index has no parameters or you want to use the
defaults, supply NULL. (alternatively a named list that has the structure name
as the element name).

type what type of weighted combination should be used? Can be ’additive’ or ’mul-
tiplicative’.

verbose verbose output

Value

a list with calculated stoploss ($stoploss), structuredness indices ($strucinidices) and hyperparame-
ters ($parameters and $theta)

stops stops: structure optimized proximity scaling

Description

A package for "structure optimized proximity scaling" (STOPS), a collection of methods that fit
nonlinear distance transformations in multidimensional scaling (MDS) and trade-off the fit with
structure considerations to find optimal parameters or optimal configurations. The package contains
various functions, wrappers, methods and classes for fitting, plotting and displaying different MDS
models in a STOPS framework like Torgerson scaling, SMACOF, Sammon mapping, elastic scaling,
symmetric SMACOF, spherical SMACOF, sstress, rstress, powermds, power elastic scaling, power
sammon mapping, power stress, Isomap, approximate power stress, restricted power stress. All
of these models can also be fit as MDS variants (i.e., no structuredness). The package further
contains functions for optimization (Adaptive Luus-Jaakola and for Bayesian optimization with
treed Gaussian process with jump to linear models) and functions for various structuredness indices

This allows to fit STOPS models as described in Rusch, Mair, Hornik (2023).

Usage

stops(
dis,
loss = c("strain", "stress", "smacofSym", "powerstress", "powermds", "powerelastic",
"powerstrain", "elastic", "sammon", "sammon2", "smacofSphere", "powersammon",
"rstress", "sstress", "isomap", "isomapeps", "bcstress", "lmds", "apstress",
"rpowerstress"),

stops 49

theta = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

ndim = 2,
weightmat = NULL,
init = NULL,
stressweight = 1,
strucweight,
strucpars,
optimmethod = c("SANN", "ALJ", "pso", "Kriging", "tgp", "DIRECT", "stogo", "cobyla",

"crs2lm", "isres", "mlsl", "neldermead", "sbplx", "hjk", "cmaes"),
lower,
upper,
verbose = 0,
type = c("additive", "multiplicative"),
initpoints = 10,
itmax = 50,
itmaxps = 10000,
model,
control,
...

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

loss which loss function to be used for fitting, defaults to stress.

theta hyperparameter vector starting values for the transformation functions. If the
length is smaller than the number of hyperparameters for the MDS version the
vector gets recycled (see the corresponding stop_XXX function or the vignette
for how theta must look like exactly for each loss). If larger than the number of
hyperparameters for the MDS method, an error is thrown. If completely missing
theta is set to 1 and recycled.

structures character vector of which c-structuredness indices should be considered; if miss-
ing no structure is considered.

ndim number of dimensions of the target space

weightmat (optional) a matrix of nonnegative weights; defaults to 1 for all off diagonals

init (optional) initial configuration

stressweight weight to be used for the fit measure; defaults to 1

strucweight vector of weights to be used for the c-structuredness indices (in the same order
as in structures); defaults to -1/length(structures) for each index

strucpars (possibly named with the structure). Metaparameters for the structuredness in-
dices (gamma in the article). It’s safest for it be a list of lists with the named
arguments for the structuredness indices and the order of the lists must be like the

50 stops

order of structures. So something like this list(list(par1Struc1=par1Struc1,par2Struc1=par2Struc1),list(par1Struc2=par1Struc2,par2Struc2=par2Struc2),...)
where parYStrucX are the named arguments for the metaparameter Y of the
structure X the list elements corresponds to. For a structure without parame-
ters, set NULL. Parameters in different list elements parYStrucX can have the
same name. For example, say we want to use cclusteredness with metaparam-
eters epsilon=10 and k=4 (and the default for the other parameters), cdepen-
dence with no metaparameters and cfaithfulness with metaparameter k=7 one
would list(list(epsilon=10,k=4),list(NULL),list(dis=obdiss,k=6))
for structures vector ("cclusteredness","cdependence","cfaithfulness"). The pa-
rameter lists must be in the same ordering as the indices in structures. If missing
it is set to NULL and defaults are used. It is also possible to supply a structure’s
metaparameters as a list of vectors with named elements if the metaparameters
are scalars, so like list(c(par1Struc1=parStruc1,par2Struc1=par1Struc1,...),c(par1Struc2=par1Struc2,par2Struc2=par2Struc2,...)).
That can have unintended consequences if the metaparameter is a vector or ma-
trix.

optimmethod What solver to use. Currently supported are Bayesian optimization with Gaus-
sian Process priors and Kriging ("Kriging"), Bayesian optimization with treed
Gaussian processes with jump to linear models ("tgp"), Adaptive LJ Search
("ALJ"), Particle Swarm optimization ("pso"), simulated annealing ("SANN"),
"DIRECT", Stochastic Global Optimization ("stogo"), COBYLA ("cobyla"),
Controlled Random Search 2 with local mutation ("crs2lm"), Improved Stochas-
tic Ranking Evolution Strategy ("isres"), Multi-Level Single-Linkage ("mlsl"),
Nelder-Mead ("neldermead"), Subplex ("sbplx"), Hooke-Jeeves Pattern Search
("hjk"), CMA-ES ("cmaes"). Defaults to "ALJ" version. tgp, ALJ, Kriging and
pso usually work well for relatively low values of itmax.

lower The lower contraints of the search region. Needs to be a numeric vector of the
same length as the parameter vector theta.

upper The upper contraints of the search region. Needs to be a numeric vector of the
same length as the parameter vector theta.

verbose numeric value hat prints information on the fitting process; >2 is very verbose.

type which aggregation for the multi objective target function? Either ’additive’ (de-
fault) or ’multiplicative’

initpoints number of initial points to fit the surrogate model for Bayesian optimization;
default is 10.

itmax maximum number of iterations of the outer optimization (for theta) or number of
steps of Bayesian optimization; default is 50. We recommend a higher number
for ALJ (around 150). Note that due to the inner workings of some solvers,
this may or may not correspond to the actual number of function evaluations
performed (or PS models fitted). E.g., with tgp the actual number of function
evaluation of the PS method is between itmax and 6*itmax as tgp samples 1-
6 candidates from the posterior and uses the best candidate. For pso it is the
number of particles s times itmax. For cmaes it is usually a bit higher than
itmax. This currently may get overruled by a control argument if it is used (and
then set to either ewhat is supplie dby control or to the default of the method).

itmaxps maximum number of iterations of the inner optimization (to obtain the PS con-
figuration)

stops 51

model a character specifying the surrogate model to use. For Kriging it specifies the
covariance kernel for the GP prior; see covTensorProduct-class defaults to
"powerexp". For tgp it specifies the non stationary process used see bgp, defaults
to "btgpllm"

control a control argument passed to the outer optimization procedure. Will override
any other control arguents passed, especially verbose and itmax. For the efect
of control, see the functions pomp::sannbox for SANN and pso::psoptim for
pso, cmaes::cma_es for cmaes, dfoptim::hjkb for hjk and the nloptr docs for the
algorithms DIRECT, stogo, cobyla, crs2lm, isres, mlsl, neldermead, sbplx.

... additional arguments passed to the outer optimization procedures (not fully tested).

Details

The stops package provides five categories of important functions:

Models & Algorithms:

• stops() ... which fits STOPS models as described in Rusch et al. (2023). By setting cordweight
or strucweight to zero they can also be used to fit metric MDS for many different models, see
below.

• powerStressMin()... a workhorse for fitting many stresses, including s-stress, r-stress (De
Leeuw, 2014), Sammon mapping with power transformations (powersammon), elastic scaling
with power transformation (powerelastic), power stress. They can most conveniently be ac-
cessed via the stops functions and setting stressweight=1 and cordweight or strucweight=0 or
by the dedicated functions starting with stop_foo where foo is the method and setting stress-
weight=1 and strucweight=0. It uses the nested majorization algorithm for r-stress of De
Leeuw(2014).

• bcStressMin()... a workhorse for fitting Box-Cox stress (Chen & Buja, 2013).

• lmds()... a workhorse for the local MDS of Chen & Buja (2008).

Structuredness Indices: Various c-structuredness as c_foo(), where foo is the name of the struc-
turedness. See Rusch et al. (2023).

Optimization functions:

• ljoptim() ... An (adaptive) version of the Luus-Jakola random search

Wrappers and convenience functions:

• conf_adjust(): procrustes adjustment of configurations

• cmdscale(), sammon(): wrappers that return S3 objects

• stop_smacofSym(), stop_sammon(), stop_cmdscale(), stop_rstress(), stop_powerstress(),stop_smacofSphere(),
stop_sammon2(), stop_elastic(), stop_sstress(), stop_powerelastic(), stop_powersammon(), stop_powermds(),
stop_isomap(), stop_isomapeps(), stop_bcstress(), stop_lmds(), stop_apstress(),stops_rpowerstress():
stop versions of these MDS models.

• stoploss() ... a function to calculate stoploss (Rusch et al., 2023)

Methods: For most of the objects returned by the high-level functions S3 classes and methods for
standard generics were implemented, including print, summary, plot, plot3d, plot3dstatic.

References:

52 stops

• Rusch, T., Mair, P., & Hornik, K. (2023). Structure-based hyperparameter selection with
Bayesian optimization in multidimensional scaling. Statistics & Computing, 33, [28]. https://doi.org/10.1007/s11222-
022-10197-w

Authors: Thomas Rusch, Lisha Chen, Jan de Leeuw, Patrick Mair, Kurt Hornik

Maintainer: Thomas Rusch

The combination of c-structurednes indices and stress uses the stress.m values, which are the ex-
plictly normalized stresses. Reported however is the stress-1 value which is sqrt(stress.m).

Value

A list with the components

• stoploss: the stoploss value

• optim: the object returned from the optimization procedure

• stressweight: the stressweight

• strucweight: the vector of structure weights

• call: the call

• optimmethod: The solver selected

• losstype: The PS badness-of-fit function

• nobj: the number of objects in the configuration

• type: The type of stoploss scalacrisation (additive or multiplicative)

• fit: The fitted PS object (most importantly fitconf the fitted configuration)

Examples

data(kinshipdelta,package="smacof")

strucpars<-list(list(epsilon=10,minpts=2,scale=3),list(NULL))
dissm<-as.matrix(kinshipdelta)

#STOPS with strain
resstrain<-stops(dissm,loss="strain",theta=1,structures=c("cclusteredness","cdependence"),
strucpars=strucpars,optimmethod="ALJ",lower=0,upper=10,itmax=10)
resstrain
summary(resstrain)
plot(resstrain)

#STOPS with stress
strucpars<-list(list(epsilon=10,minpts=2,scale=3),NULL)
resstress<-stops(dissm,loss="stress",
structures=c("cclusteredness","cdependence"),
strucpars=strucpars,optimmethod="ALJ",lower=0,upper=10)
resstress
summary(resstress)
plot(resstress)
plot(resstress,"Shepard")

stops 53

#STOPS with powerstress
respstress<-stops(dissm,loss="powerstress",
structures=c("cclusteredness","cdependence"),
strucpars=strucpars,weightmat=dissm,
itmaxps=1000,optimmethod="ALJ",lower=c(0,0,1),upper=c(10,10,10))
respstress
summary(respstress)
plot(respstress)

#STOPS with bcstress
resbcstress<-stops(dissm,loss="bcstress",
structures=c("cclusteredness","cdependence"),
strucpars=strucpars,optimmethod="ALJ",lower=c(0,1,0),upper=c(10,10,10))
resbcstress
summary(resbcstress)
plot(resbcstress)

#STOPS with lmds
reslmds<-stops(dissm,loss="lmds",
structures=c("cclusteredness","clinearity"),
strucpars=strucpars,optimmethod="ALJ",lower=c(2,0),upper=c(10,2))
reslmds
summary(reslmds)
plot(reslmds)

#STOPS with Isomap (the epsilon version)
resiso<-stops(dissm,loss="isomapeps",
structures=c("cclusteredness","clinearity"),
strucpars=strucpars,optimmethod="ALJ",lower=70,upper=120)
resiso
summary(resiso)
plot(resiso)

data(kinshipdelta,package="smacof")
strucpar<-list(NULL,NULL) #parameters for indices
res1<-stops(kinshipdelta,loss="stress",
structures=c("cclumpiness","cassociation"),strucpars=strucpar,
lower=0,upper=10,itmax=10)
res1

data(BankingCrisesDistances)
strucpar<-list(c(epsilon=10,minpts=2),NULL) #parameters for indices
res1<-stops(BankingCrisesDistances[,1:69],loss="stress",verbose=0,
structures=c("cclusteredness","clinearity"),strucpars=strucpar,
lower=0,upper=10)
res1

strucpar<-list(list(alpha=0.6,C=15,var.thr=1e-5,zeta=NULL),
list(alpha=0.6,C=15,var.thr=1e-5,zeta=NULL))
res1<-stops(BankingCrisesDistances[,1:69],loss="stress",verbose=0,

54 stop_apstress

structures=c("cfunctionality","ccomplexity"),strucpars=strucpar,
lower=0,upper=10)
res1

stop_apstress STOPS version of approximated power stress models.

Description

This uses an approximation to power stress that can make use of smacof as workhorse. Free param-
eters are tau and upsilon.

Usage

stop_apstress(
dis,
theta = c(1, 1),
ndim = 2,
weightmat = NULL,
init = NULL,
itmax = 1000,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of parameters to optimize over. Must be of length two, with
the first the tau argument and the second the upsilon argument. It can also be
a scalar of the tau and upsilon transformation for the observed proximities and
gets recycled for both ups and tau (so they are equal). Defaults to 1 1.

ndim number of dimensions of the target space

weightmat (optional) a binary matrix of nonnegative weights

init (optional) initial configuration

itmax number of iterations. default is 1000.

stop_bcstress 55

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures a character vector listing the structure indices to use. They always are called
"cfoo" with foo being the structure.

strucweight weight to be used for the structures; defaults to 1/number of structures

strucpars a list of list of parameters for the structuredness indices; each list element cor-
responds to one index in the order of the appearance in structures vector. See
examples.

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type which weighting to be used in the multi-objective optimization? Either ’addi-
tive’ (default) or ’multiplicative’.

Value

A list with the components

• stress: the stress 1 (sqrt stress.m)

• stress.m: default normalized stress

• stoploss: the weighted loss value

• struc: the structuredness indices

• parameters: the parameters used for fitting (kappa=1, tau, ups)

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_bcstress STOPS version of Box Cox Stress

Description

STOPS version of Box Cox Stress

Usage

stop_bcstress(
dis,
theta = c(1, 1, 0),
weightmat = NULL,
init = NULL,
ndim = 2,
itmax = 5000,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",

56 stop_bcstress

"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; the first is mu (for the fitted distances), the second
lambda (for the proximities), the third nu (for the weights). If a scalar is given it
is recycled. Defaults to 1 1 0.

weightmat (not used)

init (optional) initial configuration

ndim number of dimensions of the target space

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structures to look for

strucweight weight to be used for the structures; defaults to 0.5

strucpars a list of parameters for the structuredness indices; each list element corresponds
to one index in the order of the appeacrance in structures

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type which weighting to be used in the multi-objective optimization? Either ’addi-
tive’ (default) or ’multiplicative’.

Value

A list with the components

• stress: the stress

• stress.m: default normalized stress

• stoploss: the weighted loss value

• struc: the structuredness indices

• parameters: the parameters used for fitting (kappa, lambda)

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_cmdscale 57

stop_cmdscale STOPS version of strain

Description

The free parameter is lambda for power transformations of the observed proximities.

Usage

stop_cmdscale(
dis,
theta = 1,
weightmat = NULL,
ndim = 2,
init = NULL,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative"),
itmax = NULL

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; this must be a scalar of the lambda transformation
for the observed proximities.

weightmat (optional) a matrix of nonnegative weights. Not used.

ndim number of dimensions of the target space

init (optional) initial configuration

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structuredness indices to be included in the loss

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

strucpars the parameters for the structuredness indices

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

58 stop_elastic

type How to construct the target function for the multi objective optimization? Either
’additive’ (default) or ’multiplicative’

itmax placeholder for compatibility in stops call; not used

Value

A list with the components

• stress: Sqrt of explicitly normalized stress.

• stress.m: explictly normalized stress

• stoploss: the weighted loss value

• indices: the values of the structuredness indices

• parameters: the parameters used for fitting

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_elastic STOPS versions of elastic scaling models (via smacofSym)

Description

The free parameter is lambda for power transformations the observed proximities. The fitted dis-
tances power is internally fixed to 1 and the power for the weights=delta is -2. Allows for a weight
matrix because of smacof.

Usage

stop_elastic(
dis,
theta = 1,
ndim = 2,
weightmat = NULL,
init = NULL,
itmax = 1000,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

stop_isomap1 59

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; this must be a scalar of the lambda transformation
for the observed proximities. Defaults to 1.

ndim number of dimensions of the target space

weightmat (optional) a matrix of nonnegative weights (NOT the elscal weights)

init (optional) initial configuration

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structuredness indices to be included in the loss

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

strucpars the parameters for the structuredness indices

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type How to construct the target function for the multi objective optimization? Either
’additive’ (default) or ’multiplicative’

Value

A list with the components

• stress: the stress-1 (sqrt(stress.m))

• stress.m: default normalized stress (used for STOPS)

• stoploss: the weighted loss value

• indices: the values of the structuredness indices

• parameters: the parameters used for fitting

• fit: the returned object of the fitting procedure

• stopobj: the stopobj objects

stop_isomap1 STOPS version of isomap to optimize over integer k.

Description

Free parameter is k.

60 stop_isomap1

Usage

stop_isomap1(
dis,
theta = 3,
weightmat = NULL,
ndim = 2,
init = NULL,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative"),
itmax = NULL

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the number of shortest dissimilarities retained for a point (nearest neighbours),
the isomap parameter. Must be a numeric scalar. Defaults to 3.

weightmat (optional) a matrix of nonnegative weights

ndim number of dimensions of the target space

init (optional) initial configuration

stressweight weight to be used for the fit measure; defaults to 1

structures which structuredness indices to be included in the loss

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

strucpars the parameters for the structuredness indices

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type How to construct the target function for the multi objective optimization? Either
’additive’ (default) or ’multiplicative’

itmax placeholder for compatibility in stops call; not used

Details

Currently this version is a bit less flexible than the vegan one, as the only allowed parameter for
isomap is the theta (k in isomap, no epsilon) and the shortest path is always estimated with argument
"shortest". Also note that fragmentedOK is always set to TRUE which means that for theta that is
too small only the largest conected group will be analyzed. If that’s not wanted just set the theta
higher.

stop_isomap2 61

Value

A list with the components

• stress: Not really stress but 1-GOF where GOF is the first element returned from cmdscale
(the sum of the first ndim absolute eigenvalues divided by the sum of all absolute eigenvalues).

• stress.m: default normalized stress (sqrt explicitly normalized stress; really the stress this
time)

• stoploss: the weighted loss value

• indices: the values of the structuredness indices

• parameters: the parameters used for fitting

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_isomap2 STOPS version of isomap over real epsilon.

Description

Free parameter is eps.

Usage

stop_isomap2(
dis,
theta = stats::quantile(dis, 0.1),
weightmat = NULL,
ndim = 2,
init = NULL,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative"),
itmax = NULL

)

62 stop_isomap2

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the number of shortest dissimilarities retained for a point (neighbourhood re-
gion), the isomap parameter. Defaults to the 0.1 quantile of the empirical distri-
bution of dis.

weightmat (optional) a matrix of nonnegative weights

ndim number of dimensions of the target space

init (optional) initial configuration

stressweight weight to be used for the fit measure; defaults to 1

structures which structuredness indices to be included in the loss

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

strucpars the parameters for the structuredness indices

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type How to construct the target function for the multi objective optimization? Either
’additive’ (default) or ’multiplicative’

itmax placeholder for compatibility in stops call; not used

Details

Currently this version is a bit less flexible than the vegan one, as the only allowed parameter for
isomap is the theta (epsilon in isomap) and the shortest path is always estimated with argument
"shortest". Also note that fragmentedOK is always set to TRUE which means that for theta that is
too small only the largest conected group will be analyzed. If that’s not wanted just set the theta
higher.

Value

A list with the components

• stress: Not really stress but 1-GOF where GOF is the first element returned from cmdscale
(the sum of the first ndim absolute eigenvalues divided by the sum of all absolute eigenvalues).

• stress.m: default normalized stress (sqrt explicitly normalized stress; really the stress this
time)

• stoploss: the weighted loss value

• indices: the values of the structuredness indices

• parameters: the parameters used for fitting

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_lmds 63

stop_lmds STOPS version of lMDS

Description

STOPS version of lMDS

Usage

stop_lmds(
dis,
theta = c(2, 0.5),
weightmat = NULL,
init = NULL,
ndim = 2,
itmax = 5000,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; the first is k (for the neighbourhood), the second tau
(for the penalty) . If a scalar is given it is recycled. Defaults to 2 and 0.5.

weightmat (not used)

init (optional) initial configuration

ndim number of dimensions of the target space

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structures to look for

strucweight weight to be used for the structures; defaults to 0.5

strucpars a list of parameters for the structuredness indices; each list element corresponds
to one index in the order of the appeacrance in structures

64 stop_powerelastic

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type which weighting to be used in the multi-objective optimization? Either ’addi-
tive’ (default) or ’multiplicative’.

Value

A list with the components

• stress: the stress

• stress.m: default normalized stress

• stoploss: the weighted loss value

• struc: the structuredness indices

• parameters: the parameters used for fitting (kappa, lambda)

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_powerelastic STOPS version of elastic scaling with powers for proximities and dis-
tances

Description

This is power stress with free kappa and lambda but rho is fixed to -2 and the weights are delta.

Usage

stop_powerelastic(
dis,
theta = c(1, 1, -2),
weightmat = NULL,
init = NULL,
ndim = 2,
itmax = 1e+05,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

stop_powermds 65

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; a vector of length two where the first element is kappa
(for the fitted distances), the second lambda (for the observed proximities). If a
scalar for the free parameters is given it is recycled. Defaults to 1 1.

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

ndim number of dimensions of the target space

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which strcutures to look for

strucweight weight to be used for the structures; defaults to 0.5

strucpars a list of parameters for the structuredness indices; each list element corresponds
to one index in the order of the appeacrance in structures

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type which weighting to be used in the multi-objective optimization? Either ’addi-
tive’ (default) or ’multiplicative’.

Value

A list with the components

• stress: the stress

• stress.m: default normalized stress

• stoploss: the weighted loss value

• struc: the structuredness indices

• parameters: the parameters used for fitting (kappa, lambda)

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_powermds STOPS version of powermds

Description

This is power stress with free kappa and lambda but rho is fixed to 1, so no weight transformation.

66 stop_powermds

Usage

stop_powermds(
dis,
theta = c(1, 1),
weightmat = NULL,
init = NULL,
ndim = 2,
itmax = 1e+05,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; a vector of length 2 where the first element is kappa
(for the fitted distances), the second lambda (for the observed proximities). If a
scalar is given it is recycled. Defaults to 1.

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

ndim number of dimensions of the target space

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structures to look for

strucweight weight to be used for the structures; defaults to 0.5

strucpars a list of parameters for the structuredness indices; each list element corresponds
to one index in the order of the appeacrance in structures

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type which weighting to be used in the multi-objective optimization? Either ’addi-
tive’ (default) or ’multiplicative’.

Value

A list with the components

stop_powersammon 67

• stress: the stress

• stress.m: default normalized stress

• stoploss: the weighted loss value

• struc: the structuredness indices

• parameters: the parameters used for fitting (kappa, lambda)

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_powersammon STOPS version of sammon with powers

Description

This is power stress with free kappa and lambda but rho is fixed to -1 and the weights are delta.

Usage

stop_powersammon(
dis,
theta = c(1, 1),
weightmat = NULL,
init = NULL,
ndim = 2,
itmax = 1e+05,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; a vector of length two where the first element is kappa
(for the fitted distances), the second lambda (for the observed proximities). If a
scalar is given it is recycled for the free parameters. Defaults to 1 1.

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

68 stop_powerstress

ndim number of dimensions of the target space

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structures to look for

strucweight weight to be used for the structures; defaults to 0.5

strucpars a list of parameters for the structuredness indices; each list element corresponds
to one index in the order of the appeacrance in structures

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type which weighting to be used in the multi-objective optimization? Either ’addi-
tive’ (default) or ’multiplicative’.

Value

A list with the components

• stress: the stress

• stress.m: default normalized stress

• stoploss: the weighted loss value

• struc: the structuredness indices

• parameters: the parameters used for fitting (kappa, lambda)

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_powerstress STOPS version of powerstress

Description

Power stress with free kappa and lambda and rho.

Usage

stop_powerstress(
dis,
theta = c(1, 1, 1),
weightmat = NULL,
init = NULL,
ndim = 2,
itmax = 10000,
...,
stressweight = 1,

stop_powerstress 69

structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; the first is kappa (for the fitted distances), the second
lambda (for the observed proximities), the third nu (for the weights). If a scalar
is given it is recycled. Defaults to 1 1 1.

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

ndim number of dimensions of the target space

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures a character vector listing the structure indices to use. They always are called
"cfoo" with foo being the structure.

strucweight weight to be used for the structures; defaults to 1/number of structures

strucpars a list of parameters for the structuredness indices; each list element corresponds
to one index in the order of the appeacrance in structures

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type which weighting to be used in the multi-objective optimization? Either ’addi-
tive’ (default) or ’multiplicative’.

Value

A list with the components

• stress: the stress

• stress.m: default normalized stress

• stoploss: the weighted loss value

• struc: the structuredness indices

• parameters: the parameters used for fitting (kappa, lambda, nu)

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

70 stop_rpowerstress

stop_rpowerstress STOPS version of restricted powerstress

Description

STOPS version of restricted powerstress

Usage

stop_rpowerstress(
dis,
theta = c(1, 1, 1),
weightmat = NULL,
init = NULL,
ndim = 2,
itmax = 10000,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; the first two arguments are for kappa and lambda and
should be equal (for the fitted distances and observed proximities), the third nu
(for the weights). Internally the kappa and lambda are equated. If a scalar is
given it is recycled (so all elements of theta are equal); if a vector of length 2 is
given, it gets expanded to c(theta[1],theta[1],theta[2]). Defaults to 1 1 1.

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

ndim number of dimensions of the target space

itmax number of iterations. default is 10000.

... additional arguments to be passed to the fitting procedure powerStressMin

stressweight weight to be used for the fit measure; defaults to 1

structures a character vector listing the structure indices to use. They always are called
"cfoo" with foo being the structure.

stop_rstress 71

strucweight weight to be used for the structures; defaults to 1/number of structures

strucpars a list of list of parameters for the structuredness indices; each list element cor-
responds to one index in the order of the appearance in structures vector. See
examples.

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type which weighting to be used in the multi-objective optimization? Either ’addi-
tive’ (default) or ’multiplicative’.

Value

A list with the components

• stress: the stress

• stress.m: default normalized stress

• stoploss: the weighted loss value

• struc: the structuredness indices

• parameters: the parameters used for fitting (kappa=lambda, nu)

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_rstress STOPS version of rstress

Description

Free parameter is kappa for the fitted distances.

Usage

stop_rstress(
dis,
theta = 1,
weightmat = NULL,
init = NULL,
ndim = 2,
itmax = 1e+05,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,

72 stop_rstress

verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; this must be a scalar of the kappa transformation for
the fitted distances proximities. Defaults to 1. Note the kappa here differs from
Jan’s version where the parameter was called r and the relationship is r=kappa/2
or kappa=2r.

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

ndim number of dimensions of the target space

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structuredness indices to be included in the loss

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

strucpars the parameters for the structuredness indices

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type How to construct the target function for the multi objective optimization? Either
’additive’ (default) or ’multiplicative’

Value

A list with the components

• stress: the stress

• stress.m: default normalized stress

• stoploss: the weighted loss value

• indices: the values of the structuredness indices

• parameters: the parameters used for fitting

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_sammon 73

stop_sammon STOPS version of Sammon mapping

Description

Uses MASS::sammon. The free parameter is lambda for power transformations of the observed
proximities. The fitted distances power is internally fixed to 1 and the power for the weights=delta
is -1.

Usage

stop_sammon(
dis,
theta = 1,
ndim = 2,
init = NULL,
weightmat = NULL,
itmax = 1000,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"chierarchy", "cconvexity", "cstriatedness", "coutlying", "cskinniness", "csparsity",
"cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; this must be a scalar of the lambda transformation
for the observed proximities. Defaults to 1.

ndim number of dimensions of the target space

init (optional) initial configuration

weightmat a matrix of nonnegative weights. Has no effect here.

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structuredness indices to be included in the loss

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

74 stop_sammon2

strucpars the parameters for the structuredness indices
verbose numeric value hat prints information on the fitting process; >2 is extremely ver-

bose
type How to construct the target function for the multi objective optimization? Either

’additive’ (default) or ’multiplicative’

Value

A list with the components

• stress: the stress
• stress.m: default normalized stress
• stoploss: the weighted loss value
• indices: the values of the structuredness indices
• parameters: the parameters used for fitting
• fit: the returned object of the fitting procedure
• stopobj: the stopobj object

stop_sammon2 Another STOPS version of Sammon mapping models (via smacofSym)

Description

Uses Smacof, so it can deal with a weight matrix too. The free parameter is lambda for power
transformations of the observed proximities. The fitted distances power is internally fixed to 1 and
the power for the weights=delta is -1.

Usage

stop_sammon2(
dis,
theta = 1,
ndim = 2,
weightmat = NULL,
init = NULL,
itmax = 1000,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

stop_smacofSphere 75

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; this must be a scalar of the lambda transformation
for the observed proximities. Defaults to 1.

ndim number of dimensions of the target space

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structuredness indices to be included in the loss

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

strucpars the parameters for the structuredness indices

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type How to construct the target function for the multi objective optimization? Either
’additive’ (default) or ’multiplicative’.

Value

A list with the components

• stress: the stress-1 (sqrt(stress.m))

• stress.m: default normalized stress (used for STOPS)

• stoploss: the weighted loss value

• indices: the values of the structuredness indices

• parameters: the parameters used for fitting

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_smacofSphere STOPS versions of smacofSphere models

Description

The free parameter is lambda for power transformations the observed proximities. The fitted dis-
tances power is internally fixed to 1 and the power for the weights is 1.

76 stop_smacofSphere

Usage

stop_smacofSphere(
dis,
theta = 1,
ndim = 2,
weightmat = NULL,
init = NULL,
itmax = 1000,
...,
stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; this must be a scalar of the lambda transformation
for the observed proximities. Defaults to 1.

ndim number of dimensions of the target space

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structuredness indices to be included in the loss

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

strucpars the parameters for the structuredness indices

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type How to construct the target function for the multi objective optimization? Either
’additive’ (default) or ’multiplicative’

Value

A list with the components

• stress: the stress

stop_smacofSym 77

• stress.m: default normalized stress

• stoploss: the weighted loss value

• indices: the values of the structuredness indices

• parameters: the parameters used for fitting

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

stop_smacofSym STOPS version of smacofSym models

Description

The free parameter is lambda for power transformations the observed proximities. The fitted dis-
tances power is internally fixed to 1 and the power for the weights is 1.

Usage

stop_smacofSym(
dis,
theta = 1,
ndim = 2,
weightmat = NULL,
init = NULL,
itmax = 1000,
...,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"chierarchy", "cconvexity", "cstriatedness", "coutlying", "cskinniness", "csparsity",
"cstringiness", "cclumpiness", "cinequality"),

stressweight = 1,
strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector; must be a scalar for the lambda (proximity) transformation.
Defaults to 1.

ndim number of dimensions of the target space

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

78 stop_sstress

itmax number of iterations

... additional arguments to be passed to the fitting

structures which structuredness indices to be included in the loss

stressweight weight to be used for the fit measure; defaults to 1

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

strucpars the parameters for the structuredness indices

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type How to construct the target function for the multi objective optimization? Either
’additive’ (default) or ’multiplicative’

Value

A list with the components

• stress: the stress-1 (sqrt(stress.m))

• stress.m: default normalized stress (used for STOPS)

• stoploss: the weighted loss value

• indices: the values of the structuredness indices

• parameters: the parameters used for fitting

• fit: the returned object of the fitting procedure

• stopobj: the stops object

stop_sstress STOPS version of sstress

Description

Free parameter is lambda for the observed proximities. Fitted distances are transformed with power
2, weights have exponent of 1. Note that the lambda here works as a multiplicator of 2 (as sstress
has f(delta^2)).

Usage

stop_sstress(
dis,
theta = 1,
weightmat = NULL,
init = NULL,
ndim = 2,
itmax = 1e+05,
...,

stop_sstress 79

stressweight = 1,
structures = c("cclusteredness", "clinearity", "cdependence", "cmanifoldness",
"cassociation", "cnonmonotonicity", "cfunctionality", "ccomplexity", "cfaithfulness",
"cregularity", "chierarchy", "cconvexity", "cstriatedness", "coutlying",
"cskinniness", "csparsity", "cstringiness", "cclumpiness", "cinequality"),

strucweight = rep(1/length(structures), length(structures)),
strucpars,
verbose = 0,
type = c("additive", "multiplicative")

)

Arguments

dis numeric matrix or dist object of a matrix of proximities

theta the theta vector of powers; this must be a scalar of the lambda transformation
for the observed proximities. Defaults to 1. Note that the lambda here works as
a multiplicator of 2 (as sstress has f(delta^2)).

weightmat (optional) a matrix of nonnegative weights

init (optional) initial configuration

ndim the number of dimensions of the target space

itmax number of iterations

... additional arguments to be passed to the fitting procedure

stressweight weight to be used for the fit measure; defaults to 1

structures which structuredness indices to be included in the loss

strucweight weight to be used for the structuredness indices; ; defaults to 1/#number of
structures

strucpars the parameters for the structuredness indices

verbose numeric value hat prints information on the fitting process; >2 is extremely ver-
bose

type How to construct the target function for the multi objective optimization? Either
’additive’ (default) or ’multiplicative’

Value

A list with the components

• stress: the stress

• stress.m: default normalized stress

• stoploss: the weighted loss value

• indices: the values of the structuredness indices

• parameters: the parameters used for fitting

• fit: the returned object of the fitting procedure

• stopobj: the stopobj object

80 summary.sammon

summary.cmdscale S3 summary method for cmdscale

Description

S3 summary method for cmdscale

Usage

S3 method for class 'cmdscale'
summary(object, ...)

Arguments

object object of class cmdscale

... additional arguments

Value

No return value, just prints.

summary.sammon S3 summary method for sammon

Description

S3 summary method for sammon

Usage

S3 method for class 'sammon'
summary(object, ...)

Arguments

object object of class sammon

... additional arguments

Value

No return value, just prints.

summary.smacofP 81

summary.smacofP S3 summary method for smacofP

Description

S3 summary method for smacofP

Usage

S3 method for class 'smacofP'
summary(object, ...)

Arguments

object object of class smacofP

... additional arguments

Value

an object of class summary.smacofP

summary.stops S3 summary method for stops

Description

S3 summary method for stops

Usage

S3 method for class 'stops'
summary(object, ...)

Arguments

object object of class stops

... addditional arguments

Value

object of class ’summary.stops’

82 tgpoptim

Swissroll Swiss roll

Description

A swiss roll data example where 150 data points are arranged on a swiss roll embedded in a 3D
space.

Usage

data(Swissroll)

Format

A data frame with 150 rows and 4 columns

Details

A data frame with the variables (columns)

• x The x axis coordinate for each point

• y The y axis coordinate for each point

• z The z axis coordinate for each point

• col a color code for each point with points along the y axis having the same color (based on
the viridis palette)

tgpoptim Bayesian Optimization by a (treed) Bayesian Gaussian Process Prior
(with jumps to linear models) surrogate model Essentially a wrapper
for the functionality in tgp that has the same slots as optim with de-
faults for STOPS models.

Description

Bayesian Optimization by a (treed) Bayesian Gaussian Process Prior (with jumps to linear models)
surrogate model Essentially a wrapper for the functionality in tgp that has the same slots as optim
with defaults for STOPS models.

tgpoptim 83

Usage

tgpoptim(
x,
fun,
...,
initpoints = 10,
lower,
upper,
acc = 1e-08,
itmax = 10,
verbose = 0,
model = "bgp"

)

Arguments

x optional starting values
fun function to minimize
... additional arguments to be passed to the function to be optimized
initpoints the number of points to sample initially to fit the surrogate model
lower The lower contraints of the search region
upper The upper contraints of the search region
acc if the numerical accuracy of two successive target function values is below this,

stop the optimization; defaults to 1e-8
itmax maximum number of iterations
verbose numeric value hat prints information on the fitting process; >2 is extremely ver-

bose
model which surrogate model class to use (currently uses defaults only, will extend this

to tweak the model)

Value

A list with the components (for compatiility with optim)

• par The position of the optimum in the search space (parameters that minimize the function;
argmin fun).

• value The value of the objective function at the optimum (min fun). Note we do not use the
last value in the candidate list but the best candidate (which can but need not coincide).

• svalue The value of the surrogate objective function at the optimal parameters
• counts The number of iterations performed at convergence with entries fnction for the number

of iterations and gradient which is always NA at the moment
• convergence 0 successful completion by the accd or acc criterion, 1 indicate iteration limit

was reached, 99 is a problem
• message is NULL (only for compatibility or future use)
• history the improvement history
• tgpout the output of the tgp model

84 torgerson

Examples

fbana <- function(x) {
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
res1<-tgpoptim(c(-1.2,1),fbana,lower=c(-5,-5),upper=c(5,5),acc=1e-16,itmax=20)
res1

fwild <- function (x) 10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
plot(fwild, -50, 50, n = 1000, main = "Bayesian GP Optimization minimizing 'wild function'")
set.seed(210485)
res2<-tgpoptim(50, fwild,lower=-50,upper=50,acc=1e-16,itmax=20,model="btgpllm")
points(res2$par,res2$value,col="red",pch=19)
res2

torgerson Torgerson scaling

Description

Torgerson scaling

Usage

torgerson(delta, p = 2)

Arguments

delta symmetric, numeric matrix of distances

p target space dimensions

Value

a matrix (a Torgerson scaling configuration)

Index

∗ clustering
stops, 48

∗ multivariate
stop_apstress, 54
stop_bcstress, 55
stop_cmdscale, 57
stop_elastic, 58
stop_isomap1, 59
stop_isomap2, 61
stop_lmds, 63
stop_powerelastic, 64
stop_powermds, 65
stop_powersammon, 67
stop_powerstress, 68
stop_rpowerstress, 70
stop_rstress, 71
stop_sammon, 73
stop_sammon2, 74
stop_smacofSphere, 75
stop_smacofSym, 77
stop_sstress, 78
stops, 48

ace, 19
apStressMin, 4

BankingCrisesDistances, 5
bcStressMin, 6
bgp, 51

c_association, 10
c_clumpiness, 11
c_clusteredness, 11
c_complexity, 13
c_convexity, 14
c_dependence, 14
c_faithfulness, 15
c_functionality, 16
c_hierarchy, 17
c_inequality, 17

c_linearity, 18
c_manifoldness, 19
c_mine, 20
c_nonmonotonicity, 20
c_outlying, 21
c_regularity, 22
c_skinniness, 23
c_sparsity, 24
c_striatedness, 24
c_stringiness, 25
cl_validity, 17
cmds, 8
cmdscale, 8, 8
coef.stops, 9
conf_adjust, 9
cordillera, 12, 23

doubleCenter, 26

enorm, 26

hclust, 17

knn_dist, 27

ljoptim, 27
lmds, 29

mine, 10, 13, 16, 21
mkBmat, 30
mkPower, 31
mkPower2, 31

optics, 12
optim, 28, 83

Pendigits500, 32
plot.cmdscaleE, 32
plot.smacof, 33, 38
plot.smacofP, 34
plot.stops, 36

85

86 INDEX

plot3d.cmdscaleE, 37, 38
plot3d.stops, 38
plot3dstatic, 38, 40
plot3dstatic.cmdscaleE, 39, 40
plot3dstatic.stops, 40
powerStressMin, 29, 40
print.cmdscale, 42
print.sammon, 43
print.stops, 43
print.summary.smacofP, 44
print.summary.stops, 44
procruster, 45

residuals.stops, 45

sammon, 46, 46
scagnostics, 11, 14, 22–25
secularEq, 46
smacofSym, 4, 5, 41, 42
sqdist, 47
stop_apstress, 54
stop_bcstress, 55
stop_cmdscale, 57
stop_elastic, 58
stop_isomap1, 59
stop_isomap2, 61
stop_lmds, 63
stop_powerelastic, 64
stop_powermds, 65
stop_powersammon, 67
stop_powerstress, 68
stop_rpowerstress, 70
stop_rstress, 71
stop_sammon, 73
stop_sammon2, 74
stop_smacofSphere, 75
stop_smacofSym, 77
stop_sstress, 78
stoploss, 47
stops, 48
summary.cmdscale, 80
summary.sammon, 80
summary.smacofP, 81
summary.stops, 81
Swissroll, 82

tgpoptim, 82
torgerson, 84

	apStressMin
	BankingCrisesDistances
	bcStressMin
	cmds
	cmdscale
	coef.stops
	conf_adjust
	c_association
	c_clumpiness
	c_clusteredness
	c_complexity
	c_convexity
	c_dependence
	c_faithfulness
	c_functionality
	c_hierarchy
	c_inequality
	c_linearity
	c_manifoldness
	c_mine
	c_nonmonotonicity
	c_outlying
	c_regularity
	c_skinniness
	c_sparsity
	c_striatedness
	c_stringiness
	doubleCenter
	enorm
	knn_dist
	ljoptim
	lmds
	mkBmat
	mkPower
	mkPower2
	Pendigits500
	plot.cmdscaleE
	plot.smacofP
	plot.stops
	plot3d.cmdscaleE
	plot3d.stops
	plot3dstatic
	plot3dstatic.cmdscaleE
	plot3dstatic.stops
	powerStressMin
	print.cmdscale
	print.sammon
	print.stops
	print.summary.smacofP
	print.summary.stops
	procruster
	residuals.stops
	sammon
	secularEq
	sqdist
	stoploss
	stops
	stop_apstress
	stop_bcstress
	stop_cmdscale
	stop_elastic
	stop_isomap1
	stop_isomap2
	stop_lmds
	stop_powerelastic
	stop_powermds
	stop_powersammon
	stop_powerstress
	stop_rpowerstress
	stop_rstress
	stop_sammon
	stop_sammon2
	stop_smacofSphere
	stop_smacofSym
	stop_sstress
	summary.cmdscale
	summary.sammon
	summary.smacofP
	summary.stops
	Swissroll
	tgpoptim
	torgerson
	Index

