
Single Channel Burst Analysis with scbursts
Drummond et al.

2019-07-05

Contents
.evts, .dwts, .txts, and .xls(x) 2

Handling .evts . 2
Handling QUB .dwts . 3
Handling SCAN files . 3
Handling Clampfit files . 3

Segments 3

Bursts 5
(Advanced) Writing bursts back to files . 7
Sorting and more . 9
Working with bursts v.s. segments . 9

Risetime Correction 10

Plotting 10
Open times and closed times (uncorrected) . 10
P(Open) (uncorrected) . 13
Time Series (uncorrected) . 14

Subconductive States 15

Example Workflows 16
DWT . 16
EVT . 16
SCAN . 17
QUB . 17
Clampfit . 17
Example With Subconductive States . 18

References 19

This guide is addressed to developers/programmers who might have to work with or extend
scbursts. As programmers/developers can hopefully appreciate, this is a working document
that will evolve as scbursts evolves. If any bugs are discovered, they can be reported on the
github page, where they will hopefully be dealt with promptly.

This package is designed to extract information on the stochastic properties of single molecules. It was
originally designed for dwell time analysis of single ion channel data derived from patch clamp experiments.
It contains functions for importing and exporting idealized stochastic events; displaying, analyzing and
correcting dwell durations; defining and sorting bursts, or clusters of bursts. scbursts can read and write, to
and from, a variety of analysis software packages, including:

Program Extension URL
TAC evt bruxton.com/TAC/index.html
QUB dwt qub.mandelics.com/

1

https://github.com/dacostalab/scbursts
https://github.com/dacostalab/scbursts
https://www.bruxton.com/TAC/index.html
ihttps://qub.mandelics.com/

Program Extension URL
SCAN txt github.com/DCPROGS
Clampfit xls moleculardevices.com/products/axon-patch-clamp-system/acquisition-and-

analysis-software/pclamp-software-suite

scbursts is an open-source R package designed to be extensible – support for new file formats is easily added,
and since the project is written in R, new functionality will be introduced in the future. Those interested in
requesting or adding new functionality are invited to create an issue or pull request on the github page, or
contact the dacosta]:[lab.

This manual gives a detailed overview on using scbursts. To learn more about the package, or
if you would like to cite scbursts, please refer to the original publication. For details of specific
functions, use help() or consult the technical manual (the source code is also available)

Contents

.evts, .dwts, .txts, and .xls(x)

scbursts can import data generated by a variety of single channel analysis suites, and thus in a number
of different file formats, into the R environment. Data in these file formats is typically not native to the R
environment, and so the relevant information (i.e. the sequence of dwell durations) must be extracted from
each file as outlined below.

Handling .evts
In the case of TAC evt files, when importing files into the R environment, data transition through three
states:

evt file → Table of transition times → Table of dwells

In order to import a TAC evt file, type:
Load the library
library(scbursts)

infile <- "data/example1_tac.evt"

Import the evt as a table
transitions <- evt.read(infile)

Turn the transition times into dwells
dwells <- evt.to_dwells(transitions)

With dwells defined, we can start doing an actual analysis

Writing to evts is not symmetrical with reading them, as the dwell times are automatically converted to
transition times.

Table of dwells → evt file

To write an evt:

2

https://www.moleculardevices.com/products/axon-patch-clamp-system/acquisition-and-analysis-software/pclamp-software-suite
https://www.moleculardevices.com/products/axon-patch-clamp-system/acquisition-and-analysis-software/pclamp-software-suite
https://github.com/dacostalab/scbursts
https://www.dacosta.net/

Write the corrected transition times to disk.
evt.write(dwells_corrected, file=file.path(tempdir(), "100uMc.evt"))

Handling QUB .dwts
dwts are lists of dwell times, and so they convert to segments and bursts very naturally. To read and write
dwells <- dwt.read("example1_qub.dwt")

...
#
Correct the dwells or do an analysis
#
...

dwt.write(corrected_dwells, file=file.path(tempdir(), "example1_qub_corrected.dwt"))

Handling SCAN files
Importing SCAN files is equally simple. The one caveat is that SCAN often produces binary files, which
scbursts cannot read, however there is another DCPROGS tool to convert these to txt files.
infile <- "data/example1_scan.txt"
record <- scan.read(infile)
head(record)

Handling Clampfit files
Importing clampfit files is also simple.
infile <- "data/example1_clampfit.xlsx"
dwells <- clampfit.read(infile)
head(dwells)

Segments
.dwt files record sequences of open and closed dwell durations (“dwells”), where the single channel alternates
between open (1) and closed (0) states (at least, they should. Though sometimes there are errors which
cause recording to show more than a single 1 or 0 in succession. This will be discussed later). There can be
multiple “segments” of dwells, each corresponding to a continuous stretch of idealized events.

Segment: 1 Dwells: 4181
1 0.000150
0 0.000900
1 0.078490
0 1.910400
1 0.421490

.

.

.
0 1.334670
1 0.012270

Segment: 2 Dwells: 7653
1 0.065900
0 0.596160

3

1 0.849920
0 0.023830
1 0.612380
0 0.022120

.

.

.

segment is also the name of the data-type scbursts defines (refer to segment.R), so that reading a dwt
gives you a list of segments (which is an R object, like a data.frame). Often one has that each segment is
meant to correspond to a burst, and so when we say “bursts”, typically we refer to a list of segments. As a
consequence, there are also functions in scbursts such as bursts.select which make working with these
lists more convenient.

The reason dwts yield a list of segments is because there are often several continuous stretches
of recording separated by pauses.
Load the library
library(scbursts)

Import a pre-packaged file (stored inside the folder extdata)
dwt_example <- system.file("extdata", "example1_qub.dwt", package = "scbursts")

Import the evt as a table
dwells <- dwt.read(dwt_example)
length(dwells)

[1] 1
Transition times and states of first segment (units are in seconds)
head(dwells[[1]])

states dwells
1 1 0.001380
2 0 0.000034
3 1 0.001759
4 0 0.000312
5 1 0.001201
6 0 0.000535

There are a number of functions that act on segments. The functions pertaining to segments start with
segment., some of the available functions are:

Function Description
segment.open_dwells Extract open dwells as a vector
segment.closed_dwells Extract closed dwells as a vector
segment.count_open Count number of openings
segment.count_closed Count number of closed
segment.popen Empirical P(Open) for segment
segment.pclosed Empirical P(Closed) for segment
segment.duration Total segment duration
segment.verify Is the segment error free?

An important point: segments are not just vectors, they also store meta-data that includes
when the segment took place in the recording. This allows for replotting of the segments
later in a way that is consistent with what the original time-series would have looked like. An

4

example of this will be seen in the plots at the end of this document.

Bursts
In the Single Channel community, continuous stretches of open and closed dwells that correspond to the
activity of a single ion channel are often referred to as bursts of single channel activity. Bursts are usually
defined by a critical closed duration (tcrit), which is determined from analysis of a closed dwell duration
histogram. This tcrit stipulates that openings separated by closings briefer than tcrit originate from the same
burst of single-channel activity, while openings separated by closings longer than tcrit originate from different
bursts (see Chapter 19, Section 5.5.1 of Colquhoun and Sigworth (1995)).

An idiosyncrasy of the package has to be mentioned: In scbursts, the scientific notion of bursts and the
program definition of bursts usually coincide, but not always. As mentioned, a segment denotes a contiguous
sequence of idealized dwells, however idealized single channel recordings can be made up of one or more
segments. Furthermore, each segment can contain multiple bursts (in the scientific sense). So the unfortunate
side effect of this is that scbursts imports data files like evts and dwts as a list of recordings, which is a list
of segments, so they “look like” bursts. Below is a little example of this: the problem is easily resolved; one
just has to pass this list through a burst detector. So, for example, a function like bursts.defined_by_tcrit
will break up the recordings into lists of bursts (using an input critical time).
Load the library
library(scbursts)

Import a pre-packaged file (stored inside the folder extdata)
infile <- system.file("extdata", "example_multiple_segments.dwt", package = "scbursts")

Import the evt as a table
records <- dwt.read(infile)

Warning in dwt.read(infile): Burst (or record) 1 seems to have been
misrecorded!
The number of records
length(records)

[1] 2
Correct the risetime (= Tr) (default time in seconds)
records_c <- risetime.correct_gaussian(Tr=35.0052278,records, units="us")

Define critical time (tcrit=100 ms)
However, now we can use a `bursts` function, `bursts.defined_by_tcrit`
to turn the records into actual bursts
bursts <- bursts.defined_by_tcrit(records_c , 100, units="ms")

Warning in bursts.defined_by_tcrit(records_c, 100, units = "ms"): Merging
all recordings into one recording. A large (but arbitrary) amount of time
will seperate the recordings.

Warning in bursts.defined_by_tcrit(records_c, 100, units = "ms"): Burst 24 seems to have been misrecorded!
The number of bursts
length(bursts)

[1] 36

5

Now you can carry out analysis of the bursts

Some comments on the warning messages:

1. The first warning message informs you that there is a recording error present in the first part of the
recording. How this happens and what it means is explained later in this document.

2. The second warning message informs you that two or more records were in the file, and they are getting
concatenated together. So burst n might belong to the first record, and burst n+1 might belong to the
second record.

3. The third warning is a return of the first warning. The recording error from the first record was inside
of burst 24. In light of this, we can just delete that burst and then proceed with our analysis

Since bursts are attributable to the activity of a single channel, bursts are the units that we are interested
in for kinetic analysis of single ion channels. scbursts can perform many functions on bursts.

Taking a subset

We might not always be interested in all the bursts, but perhaps bursts that have some characteristic, such
as a high P(Open). For instance, often one wants to discard aberrant (our outlier) bursts prior to kinetic
analysis. So, rather than using the full list of bursts, we might want to extract a few bursts. Here’s how you
do that:
Load the library
library(scbursts)

Import a pre-packaged file (stored inside the folder extdata)
infile <- system.file("extdata", "example1_tac.evt", package = "scbursts")

Import the evt as a table
tables <- evt.read(infile)
records <- evt.to_dwells(tables)

Correct the risetime (default time in seconds)
records_c <- risetime.correct_gaussian(Tr=35.0052278,records, units="us")

Define critical time (tcrit=100 ms)
bursts <- bursts.defined_by_tcrit(records_c , 100, units="ms")

high_popen <- function (seg) {
segment.popen(seg) > 0.7

}

high_bursts <- bursts.select(bursts, high_popen)

This will return a list of bursts which you can work on, and you can remove more bursts as you wish until
you have what you’re looking for. If you want to extract bursts and write them to file (for instance, for
processing by MIL/QUB), you can use the line
high_bursts <- bursts.select(bursts, high_popen, one_file=TRUE)

and this will extract the high P(Open) bursts as a single segment, which can then be written to a single
dwt file. The advantage of using this trick, is that this particular function can write the bursts to a single
segment and preserve the amount of time that actually took place between the bursts. (In order
to do this manually, you have to use bursts.recombine.)

6

An Example: Correcting Recording Errors

As a specific example, when using actual recorded data, there are sometimes errors where multiple openings
or closings are recorded in succession

Segment: 1 Dwells: 4181
1 0.000150
0 0.000900
1 0.078490
1 0.046750 <- this doesn't make sense
1 0.037790
0 1.910400
1 0.421490
0 1.896120

.

.

.

this is obviously physically impossible, but sometimes appears in the data. To correct this, one would separate
the recording into bursts (as usual) and then remove the burst where the error occurred.
library(scbursts)
infile <- system.file("extdata", "example_multiple_segments.dwt", package = "scbursts")

This will raise a warning message to alert you that the data has problems
dwells <- dwt.read(infile)

Warning in dwt.read(infile): Burst (or record) 1 seems to have been
misrecorded!
dwells_c <- risetime.correct_gaussian(Tr=35.0052278,dwells, units="us")

This will also raise a warning message to alert you that specific bursts have problems
bad_bursts <- bursts.defined_by_tcrit(dwells_c, 100, units="ms")

Warning in bursts.defined_by_tcrit(dwells_c, 100, units = "ms"): Merging
all recordings into one recording. A large (but arbitrary) amount of time
will seperate the recordings.

Warning in bursts.defined_by_tcrit(dwells_c, 100, units = "ms"): Burst 24 seems to have been misrecorded!
length(bad_bursts)

[1] 36
This will remove the problems. It will leave only the good bursts.
fixed_bursts <- bursts.select(bad_bursts, segment.verify)

length(fixed_bursts)

[1] 35

In a related problem, sometimes one might want to discard the first and last burst, as you might now know
whether or not you began recording in the middle of a burst (so the depiction of burst behavior would be
inaccurate). You can fix this with bursts.remove_first_and_last.

(Advanced) Writing bursts back to files
We mentioned that we could take a segment, split it into bursts, remove some bursts, and then write back to
file. We mentioned a short-cut to do this, but also that this could be done manually. This requires the use of

7

bursts.recombine. The tool isn’t trivial, because it preserves the elapsed time between the bursts when
rejoining them. But, we also mentioned that recordings could contain multiple segments, but what was not
emphasized was that this means that we usually have no idea how much time transpires between
segments. However, despite this, there are times where we want to merge all bursts as though they were
occurring in one segment. For this reason, we need a function to artificially insert gaps between
bursts. We often use these in conjunction, with something like
If you have multiple records, you can recombine them with
This is now just one list of spaced out segments.
records <- bursts.space_out(records, sep_factor=1000)
record <- bursts.recombine(records)

The different recording segments will have a substantial amount of time between them, which should be
discernible by eye. For example:
From example_multiple_segments.dwt
times <- sapply(fixed_bursts, segment.start_time)
popens <- sapply(fixed_bursts, segment.popen)

plot(times,popens, main="P(Open) Time Series with two records", ylab="P(Open) per Burst",
xlab="bursts seen over time (s)", ylim=c(0,1))
lines(times, popens)

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(Open) Time Series with two records

bursts seen over time (s)

P
(O

pe
n)

 p
er

 B
ur

st

There are scenarios where this is probably the most natural way to create a single segment with all the data
you’re interested in. If you are interested in playing around with the spacing between bursts (for example, the
closings that exceeded a critical time), you can also look at bursts.get_gaps which extracts this information
as a vector.

NOTE: Because of the –arbitrary– long gaps between bursts, the time series data produced
in this way cannot be used for some types of analyses. One should be aware of this and
know when to conduct analysis on a single recording segment instead of over all record-
ings at once. The reader who wants to change the spacing between records may look at

8

bursts.start_times_update

Sorting and more
In addition to taking a subset of bursts according to some criteria, one might want to sort bursts according
to some metric, or simply get tabulated values of some metric. For example, what is the average P(Open)
across all bursts? Or what do the bursts look like when we rank them by P(Open)?

Sorting is implemented by bursts.sort. It requires only a metric on segments - a function which takes a
segment and gives you a number. For example:
Create a list of bursts, sorted by your chosen function
sorted <- bursts.sort(bursts, segment.popen, reverse=TRUE)

In some cases, it might be that multiple bursts share the same value
and so the "order" is a bit arbitrary in those cases.
sorted[[1]]

states dwells
1 1 3.232048e-05

as for collecting data on all bursts, bursts.popens and bursts.pcloseds have been provided for convenience,
and so you could get the average with
mean(bursts.popens(bursts))

[1] 0.778477

But, it isn’t hard to write your own functions that do this. The definition of bursts.popens is simply
bursts.popens <- function (bursts) { sapply(bursts, segment.popen) }

You can simply use sapply in an analogous way with any function that deals with a single segment. For
instance, you could find the average duration with
mean(sapply(bursts, segment.duration))

[1] 0.05363405

Working with bursts v.s. segments
Most important functions can be applied either to a single segment, or to a list of segments. For instance,
the following two are equivalent:
Correct the risetime

corrected_records <- list()
for (i in 1:length(records)) {

corrected_records[[i]] <- risetime.correct_gaussian(Tr=35.0052278, records[[i]], units="us")
}

Write the corrected record to a .dwt file
dwt.write(corrected_records, file=file.path(tempdir(), "example1_qub_corrected.dwt"))

and this simplified code
Correct the risetime
records_c <- risetime.correct_gaussian(Tr=35.0052278, records, units="us")

9

Write the corrected record to a .dwt file
dwt.write(records_c, file=file.path(tempdir(), "example1_qub_corrected.dwt"))

but this is not always true, and not every function can be made to work on either. You may have to write
your own functions, use for loops, or use sapply (or lapply) in order to do everything that you want to do.

Risetime Correction
It was skimmed over, but risetime correction on the recordings can be accomplished simply with
Load the library
library(scbursts)

Import a pre-packaged file (stored inside the folder extdata)
infile <- system.file("extdata", "example1_tac.evt", package = "scbursts")

Import the evt as a table
tables <- evt.read(infile)

Turn the transition times into dwells
records <- evt.to_dwells(tables)

Correct the risetime (default time in seconds)
records_c <- risetime.correct_gaussian(Tr=35.0052278,records, units="us")

evt.write(records_c, file=file.path(tempdir(), "example_corrected.evt"))

As the name of the function suggests, the current risetime correction attempts to undo the effects of a Gaussian
filter. This method might not be optimal, and may be replaced later. For a more detailed explanation, see
Section 4.1.1 of Colquhoun and Sigworth (1995).

Plotting
Here are example of a few common plots one might want.
library(scbursts)

infile <- system.file("extdata", "example1_tac.evt", package = "scbursts")
transitions <- evt.read(infile)
dwells <- evt.to_dwells(transitions)

Skipping risetime correction
bursts <- bursts.defined_by_tcrit(dwells,92,units='ms')

We will be plotting with this
record <- bursts.recombine(bursts)

NOTE: If you merge multiple records into one, you might artificially add some –huge– closed
dwells separating bursts. These will add a few high closed-times the histogram.

Open times and closed times (uncorrected)

10

open_dwells <- segment.open_dwells(record)
hist(log10(open_dwells), axes=FALSE, breaks=length(record$dwells)/100)
cplot.log_root_axes(open_dwells)

Histogram of log10(open_dwells)

log10(open_dwells)

F
re

qu
en

cy

−5 −4 −3 −2

0
9

25
49

11

closed_dwells <- segment.closed_dwells(record)
hist(log10(closed_dwells), axes=FALSE, breaks=length(record$dwells)/100)
cplot.log_root_axes(closed_dwells)

Histogram of log10(closed_dwells)

log10(closed_dwells)

F
re

qu
en

cy

−6 −5 −4 −3 −2 −1 0

0
25

49
81

The outlier on the far right may be due to merging multiple records into one, as mentioned
earlier.

12

P(Open) (uncorrected)

popens <- bursts.popens(bursts)
hist(popens, xlab="Burst P(Open)", breaks=30, xlim=c(0,1))

Histogram of popens

Burst P(Open)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(Closed) is similar.

13

Time Series (uncorrected)
A basic example
To make this more visible, you can also export it as a large `.png` file
cplot.popen_ts(bursts)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(Open) Time Series

time (s)

P
(O

pe
n)

14

cplot.popen_ts is just for convenience, you can also just just manually do the plotting. Also, scbursts
automatically handles data that contains multiple records by inserting a comically large amount of time
between records. scbursts issues warnings when this happens, and one should heed those warnings. The
time-series data produced in this way is suitable for visualization, but it is not suitable for fitting some
types of models. Just be wary of this.
From example_multiple_segments.dwt
times <- sapply(fixed_bursts, segment.start_time)
popens <- sapply(fixed_bursts, segment.popen)

plot(times,popens, main="P(Open) Time Series with two records", ylab="P(Open) per Burst",
xlab="bursts seen over time (s)", ylim=c(0,1))
lines(times, popens)

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(Open) Time Series with two records

bursts seen over time (s)

P
(O

pe
n)

 p
er

 B
ur

st

Subconductive States
scbursts also has support for data with subconductive states (though on reading in a file, scbursts will
issue a warning to inform the user that their data has subconductive states). There are tools available for
visualizing the different subconductive states (cplot.conductance_hist) and functions for manipulating
subconductive states (for instance, merging two or more states together, or removing subconductive states
entirely). Some functions for this are:

Function Description
segment.conductance_states Get list of conductance states
segment.check_subconductance Check for subconductance
segment.subconductance_as Replace subconductive states with 0 or 1
segment.modify_conductance Remove or change conductance states
bursts.conductance_states Get list of conductance states
bursts.check_subconductance Check for subconductance

15

Function Description
bursts.subconductance_as Replace subconductive states with 0 or 1
bursts.modify_conductance Remove or change conductance states
cplot.conductance_hist Plot the conductance states

An example is also below.

Example Workflows
DWT

library(scbursts)

infile <- system.file("extdata", "example1_qub.dwt", package = "scbursts")
dwells <- dwt.read(infile)
dwells <- dwt.read('example1.dwt')

bursts <- bursts.defined_by_tcrit(dwells,100,units='ms')
twoplus <- function(seg){

return(segment.count_open(seg)>=2)
}
bursts_twoplus <- bursts.select(bursts,twoplus)
head(dwells[[1]])

states dwells
1 1 0.001380
2 0 0.000034
3 1 0.001759
4 0 0.000312
5 1 0.001201
6 0 0.000535

EVT

infile <- system.file("extdata", "example1_tac.evt", package = "scbursts")
transitions <- evt.read(infile)

transitions <- evt.read("July28-6.evt")

dwells <- evt.to_dwells(transitions)
dwells_c <- risetime.correct_gaussian(Tr=35.0052278, dwells, units="us")

Get Header
header <- evt.extract_header(infile)

head(dwells_c[[1]])

states dwells
1 1 1.360730e-03
2 0 5.352284e-05
3 1 5.173524e-05
4 0 2.080985e-05

16

5 1 2.180100e-04
6 0 2.105737e-05

SCAN

library(scbursts)

infile <- system.file("extdata", "example1_scan.txt", package = "scbursts")
dwells <- scan.read(infile)
dwells_c <- risetime.correct_gaussian(Tr=35.0052278, dwells, units="us")

bursts <- bursts.defined_by_tcrit(dwells_c,100,units='ms')
twoplus <- function(seg){

return(segment.count_open(seg)>=2)
}
bursts_twoplus <- bursts.select(bursts,twoplus)
head(bursts_twoplus[[1]])

states dwells
1 1 1.352536e-03
2 0 6.247068e-05
3 1 4.103552e-05
4 0 2.743168e-05
5 1 4.308123e-04
6 0 2.606283e-05

QUB

library(scbursts)

infile <- system.file("extdata", "example1_qub.dwt", package = "scbursts")
dwells <- dwt.read(infile)
dwells_c <- risetime.correct_gaussian(Tr=35.0052278, dwells, units="us")

bursts <- bursts.defined_by_tcrit(dwells_c,100,units='ms')
twoplus <- function(seg){

return(segment.count_open(seg)>=2)
}
bursts_twoplus <- bursts.select(bursts,twoplus)
head(bursts_twoplus[[1]])

states dwells
1 1 1.38000e-03
2 0 3.45043e-05
3 1 1.75900e-03
4 0 3.12000e-04
5 1 1.20100e-03
6 0 5.35000e-04

Clampfit

library(scbursts)

17

infile <- system.file("extdata", "example1_clampfit.xlsx", package = "scbursts")
dwells <- clampfit.read(infile)

New names:
* `` -> ...1
* `` -> ...2
* `` -> ...3
* `` -> ...4
* `` -> ...5
* ... and 6 more problems
dwells_c <- risetime.correct_gaussian(Tr=35.0052278, dwells, units="us")

bursts <- bursts.defined_by_tcrit(dwells_c,100,units='ms')
twoplus <- function(seg) {

return(segment.count_open(seg)>=2)
}
bursts_twoplus <- bursts.select(bursts,twoplus)
head(bursts_twoplus[[1]])

states dwells
1 1 1.359000e-03
2 0 5.400240e-05
3 1 5.000919e-05
4 0 2.167236e-05
5 1 2.160000e-04
6 0 2.207933e-05

Example With Subconductive States

library(scbursts)

infile <- system.file("extdata", "example4.dwt", package = "scbursts")
dwells <- dwt.read(infile)

Warning in dwt.read(infile): Burst (or record) 1 has subconductive states!
dwells_c <- risetime.correct_gaussian(Tr=35.0052278, dwells, units="us")

bursts <- bursts.defined_by_tcrit(dwells_c,100,units='ms')

Warning in bursts.defined_by_tcrit(dwells_c, 100, units = "ms"): Burst (or record) 1 has subconductive states!
bursts.conductance_states(bursts)

[1] 0.0 0.7 1.0
cplot.conductance_hist(bursts)

head(bursts[[1]])

states dwells
1 0.7 1.39298e-03
2 1.0 2.99420e-04
3 0.7 1.94308e-03
4 0.0 1.88507e-05
5 0.7 1.12071e-03

18

6 1.0 1.16738e-03
bursts_d <- bursts.subconductance_as(bursts, "open")

head(bursts_d[[1]])

states dwells
1 1 3.635480e-03
2 0 1.885070e-05
3 1 2.288090e-03
4 0 1.623060e-03
5 1 4.169384e-02
6 0 2.490355e-05

Histogram of states

Conductance states = 0, 0.7, 1

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40

References
Colquhoun, David, and FJ Sigworth. 1995. “Fitting and Statistical Analysis of Single-Channel Records.” In
Single-Channel Recording, 483–587. Springer.

19

	.evts, .dwts, .txts, and .xls(x)
	Handling .evts
	Handling QUB .dwts
	Handling SCAN files
	Handling Clampfit files

	Segments
	Bursts
	(Advanced) Writing bursts back to files
	Sorting and more
	Working with bursts v.s. segments

	Risetime Correction
	Plotting
	Open times and closed times (uncorrected)
	P(Open) (uncorrected)
	Time Series (uncorrected)

	Subconductive States
	Example Workflows
	DWT
	EVT
	SCAN
	QUB
	Clampfit
	Example With Subconductive States

	References

