
Package ‘robustHD’
September 27, 2023

Type Package

Title Robust Methods for High-Dimensional Data

Version 0.8.0

Date 2023-09-26

Depends R (>= 3.5.0), ggplot2 (>= 0.9.2), perry (>= 0.3.0), robustbase
(>= 0.9-5)

Imports MASS, Rcpp (>= 0.9.10), grDevices, parallel, stats, utils

LinkingTo Rcpp (>= 0.9.10), RcppArmadillo (>= 0.3.0)

Suggests lars, mvtnorm, testthat

Description Robust methods for high-dimensional data, in particular linear
model selection techniques based on least angle regression and sparse
regression. Specifically, the package implements robust least angle
regression (Khan, Van Aelst & Zamar, 2007; <doi:10.1198/016214507000000950>),
(robust) groupwise least angle regression (Alfons, Croux & Gelper, 2016;
<doi:10.1016/j.csda.2015.02.007>), and sparse least trimmed squares
regression (Alfons, Croux & Gelper, 2013; <doi:10.1214/12-AOAS575>).

License GPL (>= 2)

URL https://github.com/aalfons/robustHD

BugReports https://github.com/aalfons/robustHD/issues

LazyLoad yes

Author Andreas Alfons [aut, cre] (<https://orcid.org/0000-0002-2513-3788>),
Dirk Eddelbuettel [ctb]

Maintainer Andreas Alfons <alfons@ese.eur.nl>

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

Repository CRAN

Date/Publication 2023-09-26 23:00:02 UTC

1

https://doi.org/10.1198/016214507000000950
https://doi.org/10.1016/j.csda.2015.02.007
https://doi.org/10.1214/12-AOAS575
https://github.com/aalfons/robustHD
https://github.com/aalfons/robustHD/issues
https://orcid.org/0000-0002-2513-3788

2 robustHD-package

R topics documented:
robustHD-package . 2
AIC.seqModel . 4
coef.seqModel . 6
coefPlot . 9
corHuber . 11
critPlot . 13
diagnosticPlot . 15
fitted.seqModel . 19
getScale . 21
grplars . 22
lambda0 . 27
nci60 . 29
partialOrder . 30
perry.seqModel . 31
plot.seqModel . 34
predict.seqModel . 35
residuals.seqModel . 38
rlars . 40
rstandard.seqModel . 44
setupCoefPlot . 46
setupCritPlot . 48
setupDiagnosticPlot . 51
sparseLTS . 54
standardize . 59
TopGear . 60
tsBlocks . 62
tslars . 63
tslarsP . 66
weights.sparseLTS . 70
winsorize . 72

Index 75

robustHD-package Robust Methods for High-Dimensional Data

Description

Robust methods for high-dimensional data, in particular linear model selection techniques based
on least angle regression and sparse regression. Specifically, the package implements robust least
angle regression (Khan, Van Aelst & Zamar, 2007; <doi:10.1198/016214507000000950>), (robust)
groupwise least angle regression (Alfons, Croux & Gelper, 2016; <doi:10.1016/j.csda.2015.02.007>),
and sparse least trimmed squares regression (Alfons, Croux & Gelper, 2013; <doi:10.1214/12-
AOAS575>).

robustHD-package 3

Details

The DESCRIPTION file:

Package: robustHD
Type: Package
Title: Robust Methods for High-Dimensional Data
Version: 0.8.0
Date: 2023-09-26
Depends: R (>= 3.5.0), ggplot2 (>= 0.9.2), perry (>= 0.3.0), robustbase (>= 0.9-5)
Imports: MASS, Rcpp (>= 0.9.10), grDevices, parallel, stats, utils
LinkingTo: Rcpp (>= 0.9.10), RcppArmadillo (>= 0.3.0)
Suggests: lars, mvtnorm, testthat
Description: Robust methods for high-dimensional data, in particular linear model selection techniques based on least angle regression and sparse regression. Specifically, the package implements robust least angle regression (Khan, Van Aelst & Zamar, 2007; <doi:10.1198/016214507000000950>), (robust) groupwise least angle regression (Alfons, Croux & Gelper, 2016; <doi:10.1016/j.csda.2015.02.007>), and sparse least trimmed squares regression (Alfons, Croux & Gelper, 2013; <doi:10.1214/12-AOAS575>).
License: GPL (>= 2)
URL: https://github.com/aalfons/robustHD
BugReports: https://github.com/aalfons/robustHD/issues
LazyLoad: yes
Authors@R: c(person("Andreas", "Alfons", email = "alfons@ese.eur.nl", role = c("aut", "cre"), comment = c(ORCID = "0000-0002-2513-3788")), person("Dirk", "Eddelbuettel", role = "ctb"))
Author: Andreas Alfons [aut, cre] (<https://orcid.org/0000-0002-2513-3788>), Dirk Eddelbuettel [ctb]
Maintainer: Andreas Alfons <alfons@ese.eur.nl>
Encoding: UTF-8
RoxygenNote: 7.2.3

Index of help topics:

AIC.seqModel Information criteria for a sequence of
regression models

TopGear Top Gear car data
coef.seqModel Extract coefficients from a sequence of

regression models
coefPlot Coefficient plot of a sequence of regression

models
corHuber Robust correlation based on winsorization
critPlot Optimality criterion plot of a sequence of

regression models
diagnosticPlot Diagnostic plots for a sequence of regression

models
fitted.seqModel Extract fitted values from a sequence of

regression models
getScale Extract the residual scale of a robust

regression model
grplars (Robust) groupwise least angle regression
lambda0 Penalty parameter for sparse LTS regression
nci60 NCI-60 cancer cell panel
partialOrder Find partial order of smallest or largest

values
perry.seqModel Resampling-based prediction error for a

4 AIC.seqModel

sequential regression model
plot.seqModel Plot a sequence of regression models
predict.seqModel Predict from a sequence of regression models
residuals.seqModel Extract residuals from a sequence of regression

models
rlars Robust least angle regression
robustHD-package Robust Methods for High-Dimensional Data
rstandard.seqModel Extract standardized residuals from a sequence

of regression models
setupCoefPlot Set up a coefficient plot of a sequence of

regression models
setupCritPlot Set up an optimality criterion plot of a

sequence of regression models
setupDiagnosticPlot Set up a diagnostic plot for a sequence of

regression models
sparseLTS Sparse least trimmed squares regression
standardize Data standardization
tsBlocks Construct predictor blocks for time series

models
tslars (Robust) least angle regression for time series

data
tslarsP (Robust) least angle regression for time series

data with fixed lag length
weights.sparseLTS Extract outlier weights from sparse LTS

regression models
winsorize Data cleaning by winsorization

Author(s)

Andreas Alfons [aut, cre] (<https://orcid.org/0000-0002-2513-3788>), Dirk Eddelbuettel [ctb]

Maintainer: Andreas Alfons <alfons@ese.eur.nl>

References

Alfons (2021) robustHD: An R package for robust regression with high-dimensional data. Journal
of Open Source Software, 6(67), 3786. doi:10.21105/joss.03786.

AIC.seqModel Information criteria for a sequence of regression models

Description

Compute the Akaike or Bayes information criterion for for a sequence of regression models, such
as submodels along a robust least angle regression sequence, or sparse least trimmed squares re-
gression models for a grid of values for the penalty parameter.

https://doi.org/10.21105/joss.03786

AIC.seqModel 5

Usage

S3 method for class 'seqModel'
AIC(object, ..., k = 2)

S3 method for class 'sparseLTS'
AIC(object, ..., fit = c("reweighted", "raw", "both"), k = 2)

S3 method for class 'seqModel'
BIC(object, ...)

S3 method for class 'sparseLTS'
BIC(object, ...)

Arguments

object the model fit for which to compute the information criterion.

... for the BIC method, additional arguments to be passed down to the AIC method.
For the AIC method, additional arguments are currently ignored.

k a numeric value giving the penalty per parameter to be used. The default is to
use 2 as in the classical definition of the AIC.

fit a character string specifying for which fit to compute the information criterion.
Possible values are "reweighted" (the default) for the information criterion of
the reweighted fit, "raw" for the information criterion of the raw fit, or "both"
for the information criteria of both fits.

Details

The information criteria are computed as n(log(2π)+1+log(σ̂2))+dfk, where n denotes the num-
ber of observations, σ̂ is the robust residual scale estimate, df is the number of nonzero coefficient
estimates, and k is penalty per parameter. The usual definition of the AIC uses k = 2, whereas the
BIC uses k = log(n). Consequently, the former is used as the default penalty of the AIC method,
whereas the BIC method calls the AIC method with the latter penalty.

Value

A numeric vector or matrix giving the information criteria for the requested model fits.

Note

Computing information criteria for several objects supplied via the ... argument (as for the default
methods of AIC and BIC) is currently not implemented.

Author(s)

Andreas Alfons

6 coef.seqModel

References

Akaike, H. (1970) Statistical predictor identification. Annals of the Institute of Statistical Mathe-
matics, 22(2), 203–217.

Schwarz, G. (1978) Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

See Also

AIC, rlars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
compute AIC and BIC
AIC(fitRlars)
BIC(fitRlars)

fit sparse LTS model over a grid of values for lambda
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
compute AIC and BIC
AIC(fitSparseLTS)
BIC(fitSparseLTS)

coef.seqModel Extract coefficients from a sequence of regression models

coef.seqModel 7

Description

Extract coefficients from a sequence of regression models, such as submodels along a robust or
groupwise least angle regression sequence, or sparse least trimmed squares regression models for a
grid of values for the penalty parameter.

Usage

S3 method for class 'seqModel'
coef(object, s = NA, zeros = TRUE, drop = !is.null(s), ...)

S3 method for class 'tslars'
coef(object, p, ...)

S3 method for class 'perrySeqModel'
coef(object, ...)

S3 method for class 'sparseLTS'
coef(
object,
s = NA,
fit = c("reweighted", "raw", "both"),
zeros = TRUE,
drop = !is.null(s),
...

)

Arguments

object the model fit from which to extract coefficients.

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to extract coefficients (the default is to use the optimal submodel).
For the "sparseLTS" method, an integer vector giving the indices of the models
for which to extract coefficients. If fit is "both", this can be a list with two
components, with the first component giving the indices of the reweighted fits
and the second the indices of the raw fits. The default is to use the optimal
model for each of the requested estimators. Note that the optimal models may
not correspond to the same value of the penalty parameter for the reweighted
and the raw estimator.

zeros a logical indicating whether to keep zero coefficients (TRUE, the default) or to
omit them (FALSE).

drop a logical indicating whether to reduce the dimension to a vector in case of only
one submodel.

... for the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the other methods, additional arguments are currently ignored.

p an integer giving the lag length for which to extract coefficients (the default is
to use the optimal lag length).

8 coef.seqModel

fit a character string specifying which coefficients to extract. Possible values are
"reweighted" (the default) for the coefficients from the reweighted estimator,
"raw" for the coefficients from the raw estimator, or "both" for the coefficients
from both estimators.

Value

A numeric vector or matrix containing the requested regression coefficients.

Author(s)

Andreas Alfons

See Also

coef, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
extract coefficients
coef(fitRlars, zeros = FALSE)
coef(fitRlars, s = 1:5, zeros = FALSE)

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract coefficients
coef(fitSparseLTS, zeros = FALSE)
coef(fitSparseLTS, fit = "both", zeros = FALSE)

coefPlot 9

coef(fitSparseLTS, s = NULL, zeros = FALSE)
coef(fitSparseLTS, fit = "both", s = NULL, zeros = FALSE)

coefPlot Coefficient plot of a sequence of regression models

Description

Produce a plot of the coefficients from a sequence of regression models, such as submodels along
a robust or groupwise least angle regression sequence, or sparse least trimmed squares regression
models for a grid of values for the penalty parameter.

Usage

coefPlot(object, ...)

S3 method for class 'seqModel'
coefPlot(object, zeros = FALSE, labels = NULL, ...)

S3 method for class 'tslars'
coefPlot(object, p, zeros = FALSE, labels = NULL, ...)

S3 method for class 'sparseLTS'
coefPlot(
object,
fit = c("reweighted", "raw", "both"),
zeros = FALSE,
labels = NULL,
...

)

S3 method for class 'setupCoefPlot'
coefPlot(
object,
abscissa = NULL,
size = c(0.5, 2, 4),
offset = 1,
facets = object$facets,
...

)

Arguments

object the model fit to be plotted.

... additional arguments to be passed down, eventually to geom_line and geom_point.

10 coefPlot

zeros a logical indicating whether predictors that never enter the model and thus have
zero coefficients should be included in the plot (TRUE) or omitted (FALSE, the de-
fault). This is useful if the number of predictors is much larger than the number
of observations, in which case many coefficients are never nonzero.

labels an optional character vector containing labels for the predictors. Plotting labels
can be suppressed by setting this to NA.

p an integer giving the lag length for which to produce the plot (the default is to
use the optimal lag length).

fit a character string specifying for which estimator to produce the plot. Possible
values are "reweighted" (the default) for the reweighted fits, "raw" for the raw
fits, or "both" for both estimators.

abscissa a character string specifying what to plot on the x-axis. For objects inheriting
from class "seqModel", possible values are "step" for the step number (the de-
fault), or "df" for the degrees of freedom. For code"sparseLTS" objects, possi-
ble values are code"lambda" for the value of the penalty parameter (the default),
or "step" for the step number.

size a numeric vector of length three giving the line width, the point size and the
label size, respectively.

offset an integer giving the offset of the labels from the corresponding coefficient val-
ues from the last step (i.e., the number of blank characters to be prepended to
the label).

facets a faceting formula to override the default behavior. If supplied, facet_wrap or
facet_grid is called depending on whether the formula is one-sided or two-
sided.

Value

An object of class "ggplot" (see ggplot).

Author(s)

Andreas Alfons

See Also

ggplot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level

corHuber 11

Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
create plot
coefPlot(fitRlars)

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
create plot
coefPlot(fitSparseLTS)
coefPlot(fitSparseLTS, fit = "both")

corHuber Robust correlation based on winsorization

Description

Compute a robust correlation estimate based on winsorization, i.e., by shrinking outlying observa-
tions to the border of the main part of the data.

Usage

corHuber(
x,
y,
type = c("bivariate", "adjusted", "univariate"),
standardized = FALSE,
centerFun = median,
scaleFun = mad,
const = 2,
prob = 0.95,
tol = .Machine$double.eps^0.5,
...

)

12 corHuber

Arguments

x a numeric vector.

y a numeric vector.

type a character string specifying the type of winsorization to be used. Possible val-
ues are "univariate" for univariate winsorization, "adjusted" for adjusted
univariate winsorization, or "bivariate" for bivariate winsorization.

standardized a logical indicating whether the data are already robustly standardized.

centerFun a function to compute a robust estimate for the center to be used for robust
standardization (defaults to median). Ignored if standardized is TRUE.

scaleFun a function to compute a robust estimate for the scale to be used for robust stan-
dardization (defaults to mad). Ignored if standardized is TRUE.

const numeric; tuning constant to be used in univariate or adjusted univariate win-
sorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in bivariate
winsorization (defaults to 0.95).

tol a small positive numeric value. This is used in bivariate winsorization to deter-
mine whether the initial estimate from adjusted univariate winsorization is close
to 1 in absolute value. In this case, bivariate winsorization would fail since the
points form almost a straight line, and the initial estimate is returned.

... additional arguments to be passed to robStandardize.

Details

The borders of the main part of the data are defined on the scale of the robustly standardized data. In
univariate winsorization, the borders for each variable are given by +/−const, thus a symmetric
distribution is assumed. In adjusted univariate winsorization, the borders for the two diagonally
opposing quadrants containing the minority of the data are shrunken by a factor that depends on the
ratio between the number of observations in the major and minor quadrants. It is thus possible to
better account for the bivariate structure of the data while maintaining fast computation. In bivariate
winsorization, a bivariate normal distribution is assumed and the data are shrunken towards the
boundary of a tolerance ellipse with coverage probability prob. The boundary of this ellipse is
thereby given by all points that have a squared Mahalanobis distance equal to the quantile of the χ2

distribution given by prob. Furthermore, the initial correlation matrix required for the Mahalanobis
distances is computed based on adjusted univariate winsorization.

Value

The robust correlation estimate.

Author(s)

Andreas Alfons, based on code by Jafar A. Khan, Stefan Van Aelst and Ruben H. Zamar

critPlot 13

References

Khan, J.A., Van Aelst, S. and Zamar, R.H. (2007) Robust linear model selection based on least angle
regression. Journal of the American Statistical Association, 102(480), 1289–1299. doi:10.1198/
016214507000000950

See Also

winsorize

Examples

generate data
library("mvtnorm")
set.seed(1234) # for reproducibility
Sigma <- matrix(c(1, 0.6, 0.6, 1), 2, 2)
xy <- rmvnorm(100, sigma=Sigma)
x <- xy[, 1]
y <- xy[, 2]

introduce outlier
x[1] <- x[1] * 10
y[1] <- y[1] * (-5)

compute correlation
cor(x, y)
corHuber(x, y)

critPlot Optimality criterion plot of a sequence of regression models

Description

Produce a plot of the values of the optimality criterion for a sequence of regression models, such
as submodels along a robust or groupwise least angle regression sequence, or sparse least trimmed
squares regression models for a grid of values for the penalty parameter.

Usage

critPlot(object, ...)

S3 method for class 'seqModel'
critPlot(object, which = c("line", "dot"), ...)

S3 method for class 'tslars'
critPlot(object, p, which = c("line", "dot"), ...)

S3 method for class 'sparseLTS'

https://doi.org/10.1198/016214507000000950
https://doi.org/10.1198/016214507000000950

14 critPlot

critPlot(
object,
which = c("line", "dot"),
fit = c("reweighted", "raw", "both"),
...

)

S3 method for class 'perrySeqModel'
critPlot(object, which = c("line", "dot", "box", "density"), ...)

S3 method for class 'perrySparseLTS'
critPlot(
object,
which = c("line", "dot", "box", "density"),
fit = c("reweighted", "raw", "both"),
...

)

S3 method for class 'setupCritPlot'
critPlot(object, ...)

Arguments

object the model fit to be plotted, , or an object containing all necessary information
for plotting (as generated by setupCritPlot).

... additional arguments to be passed down, eventually to geom_line, geom_pointrange,
geom_boxplot, or geom_density.

which a character string specifying the type of plot. Possible values are "line" (the
default) to plot the (average) results for each model as a connected line, "dot"
to create a dot plot, "box" to create a box plot, or "density" to create a smooth
density plot. Note that the last two plots are only available in case of prediction
error estimation via repeated resampling.

p an integer giving the lag length for which to produce the plot (the default is to
use the optimal lag length).

fit a character string specifying for which estimator to produce the plot. Possible
values are "reweighted" (the default) for the reweighted fits, "raw" for the raw
fits, or "both" for both estimators.

Value

An object of class "ggplot" (see ggplot).

Note

Function perryPlot is used to create the plot, even if the optimality criterion does not correspond
to resampling-based p rediction error estimation. While this can be seen as as a misuse of its
functionality, it ensures that all optimality criteria are displayed in the same way.

diagnosticPlot 15

Author(s)

Andreas Alfons

See Also

ggplot, perryPlot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
create plot
critPlot(fitRlars)

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
create plot
critPlot(fitSparseLTS)
critPlot(fitSparseLTS, fit = "both")

diagnosticPlot Diagnostic plots for a sequence of regression models

Description

Produce diagnostic plots for a sequence of regression models, such as submodels along a robust
least angle regression sequence, or sparse least trimmed squares regression models for a grid of
values for the penalty parameter. Four plots are currently implemented.

16 diagnosticPlot

Usage

diagnosticPlot(object, ...)

S3 method for class 'seqModel'
diagnosticPlot(object, s = NA, covArgs = list(), ...)

S3 method for class 'perrySeqModel'
diagnosticPlot(object, covArgs = list(), ...)

S3 method for class 'tslars'
diagnosticPlot(object, p, s = NA, covArgs = list(), ...)

S3 method for class 'sparseLTS'
diagnosticPlot(
object,
s = NA,
fit = c("reweighted", "raw", "both"),
covArgs = list(),
...

)

S3 method for class 'perrySparseLTS'
diagnosticPlot(
object,
fit = c("reweighted", "raw", "both"),
covArgs = list(),
...

)

S3 method for class 'setupDiagnosticPlot'
diagnosticPlot(
object,
which = c("all", "rqq", "rindex", "rfit", "rdiag"),
ask = (which == "all"),
facets = object$facets,
size = c(2, 4),
id.n = NULL,
...

)

Arguments

object the model fit for which to produce diagnostic plots, or an object containing all
necessary information for plotting (as generated by setupDiagnosticPlot).

... additional arguments to be passed down, eventually to geom_point.

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to produce diagnostic plots (the default is to use the optimal sub-
model). For the "sparseLTS" method, an integer vector giving the indices of

diagnosticPlot 17

the models for which to produce diagnostic plots (the default is to use the opti-
mal model for each of the requested fits).

covArgs a list of arguments to be passed to covMcd for the regression diagnostic plot (see

p an integer giving the lag length for which to produce the plot (the default is to
use the optimal lag length).

fit a character string specifying for which fit to produce diagnostic plots. Possible
values are "reweighted" (the default) for diagnostic plots for the reweighted
fit, "raw" for diagnostic plots for the raw fit, or "both" for diagnostic plots for
both fits. “Details”).

which a character string indicating which plot to show. Possible values are "all" (the
default) for all of the following, "rqq" for a normal Q-Q plot of the standard-
ized residuals, "rindex" for a plot of the standardized residuals versus their
index, "rfit" for a plot of the standardized residuals versus the fitted values, or
"rdiag" for a regression diagnostic plot (standardized residuals versus robust
Mahalanobis distances of the predictor variables).

ask a logical indicating whether the user should be asked before each plot (see
devAskNewPage). The default is to ask if all plots are requested and not ask
otherwise.

facets a faceting formula to override the default behavior. If supplied, facet_wrap or
facet_grid is called depending on whether the formula is one-sided or two-
sided.

size a numeric vector of length two giving the point and label size, respectively.

id.n an integer giving the number of the most extreme observations to be identified
by a label. The default is to use the number of identified outliers, which can be
different for the different plots. See “Details” for more information.

Details

In the normal Q-Q plot of the standardized residuals, a reference line is drawn through the first and
third quartile. The id.n observations with the largest distances from that line are identified by a
label (the observation number). The default for id.n is the number of regression outliers, i.e., the
number of observations whose residuals are too large (cf. weights).

In the plots of the standardized residuals versus their index or the fitted values, horizontal reference
lines are drawn at 0 and +/-2.5. The id.n observations with the largest absolute values of the
standardized residuals are identified by a label (the observation number). The default for id.n is
the number of regression outliers, i.e., the number of observations whose absolute residuals are too
large (cf. weights).

For the regression diagnostic plot, the robust Mahalanobis distances of the predictor variables are
computed via the minimum covariance determinant (MCD) estimator based on only those predictors
with non-zero coefficients (see covMcd). Horizontal reference lines are drawn at +/-2.5 and a vertical
reference line is drawn at the upper 97.5% quantile of the χ2 distribution with p degrees of freedom,
where p denotes the number of predictors with non-zero coefficients. The id.n observations with
the largest absolute values of the standardized residuals and/or largest robust Mahalanobis distances
are identified by a label (the observation number). The default for id.n is the number of all outliers:
regression outliers (i.e., observations whose absolute residuals are too large, cf. weights) and

18 diagnosticPlot

leverage points (i.e., observations with robust Mahalanobis distance larger than the 97.5% quantile
of the χ2 distribution with p degrees of freedom).

Note that the argument alpha for controlling the subset size behaves differently for sparseLTS than
for covMcd. For sparseLTS, the subset size h is determined by the fraction alpha of the number
of observations n. For covMcd, on the other hand, the subset size also depends on the number of
variables p (see h.alpha.n). However, the "sparseLTS" and "perrySparseLTS" methods attempt
to compute the MCD using the same subset size that is used to compute the sparse least trimmed
squares regressions. This may not be possible if the number of selected variables is large compared
to the number of observations. In such cases, setupDiagnosticPlot returns NAs for the robust
Mahalanobis distances, and the regression diagnostic plot fails.

Value

If only one plot is requested, an object of class "ggplot" (see ggplot), otherwise a list of such
objects.

Author(s)

Andreas Alfons

See Also

ggplot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS, plot.lts

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
create plot
diagnosticPlot(fitRlars)

fitted.seqModel 19

sparse LTS
fit model
fitSparseLTS <- sparseLTS(x, y, lambda = 0.05, mode = "fraction")
create plot
diagnosticPlot(fitSparseLTS)
diagnosticPlot(fitSparseLTS, fit = "both")

fitted.seqModel Extract fitted values from a sequence of regression models

Description

Extract fitted values from a sequence of regression models, such as submodels along a robust or
groupwise least angle regression sequence, or sparse least trimmed squares regression models for a
grid of values for the penalty parameter.

Usage

S3 method for class 'seqModel'
fitted(object, s = NA, drop = !is.null(s), ...)

S3 method for class 'tslars'
fitted(object, p, ...)

S3 method for class 'perrySeqModel'
fitted(object, ...)

S3 method for class 'sparseLTS'
fitted(
object,
s = NA,
fit = c("reweighted", "raw", "both"),
drop = !is.null(s),
...

)

Arguments

object the model fit from which to extract fitted values.

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to extract the fitted values (the default is to use the optimal submodel).
For the "sparseLTS" method, an integer vector giving the indices of the models
for which to extract fitted values. If fit is "both", this can be a list with two
components, with the first component giving the indices of the reweighted fits
and the second the indices of the raw fits. The default is to use the optimal
model for each of the requested estimators. Note that the optimal models may
not correspond to the same value of the penalty parameter for the reweighted
and the raw estimator.

20 fitted.seqModel

drop a logical indicating whether to reduce the dimension to a vector in case of only
one step.

... for the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the other methods, additional arguments are currently ignored.

p an integer giving the lag length for which to extract fitted values (the default is
to use the optimal lag length).

fit a character string specifying which fitted values to extract. Possible values are
"reweighted" (the default) for the fitted values from the reweighted estimator,
"raw" for the fitted values from the raw estimator, or "both" for the fitted values
from both estimators.

Value

A numeric vector or matrix containing the requested fitted values.

Author(s)

Andreas Alfons

See Also

fitted, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
extract fitted values
fitted(fitRlars)
head(fitted(fitRlars, s = 1:5))

getScale 21

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract fitted values
fitted(fitSparseLTS)
head(fitted(fitSparseLTS, fit = "both"))
head(fitted(fitSparseLTS, s = NULL))
head(fitted(fitSparseLTS, fit = "both", s = NULL))

getScale Extract the residual scale of a robust regression model

Description

Extract the robust scale estimate of the residuals from a robust regression model.

Usage

getScale(x, ...)

S3 method for class 'seqModel'
getScale(x, s = NA, ...)

S3 method for class 'sparseLTS'
getScale(x, s = NA, fit = c("reweighted", "raw", "both"), ...)

Arguments

x the model fit from which to extract the robust residual scale estimate.

... additional arguments to be passed down to methods.

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to extract the robust residual scale estimate (the default is to use the
optimal submodel). For the "sparseLTS" method, an integer vector giving the
indices of the models from which to extract the robust residual scale estimate. If
fit is "both", this can be a list with two components, with the first component
giving the indices of the reweighted fits and the second the indices of the raw
fits. The default is to use the optimal model for each of the requested estima-
tors. Note that the optimal models may not correspond to the same value of the
penalty parameter for the reweighted and the raw estimator.

fit a character string specifying from which fit to extract the robust residual scale
estimate. Possible values are "reweighted" (the default) for the residual scale
of the reweighted fit, "raw" for the residual scale of the raw fit, or "both" for
the residual scale of both fits.

22 grplars

Details

Methods are implemented for models of class "lmrob" (see lmrob), "lts" (see ltsReg), "rlm" (see
rlm), "seqModel" (see rlars) and "sparseLTS" (see sparseLTS). The default method computes
the MAD of the residuals.

Value

A numeric vector or matrix giving the robust residual scale estimates for the requested model fits.

Author(s)

Andreas Alfons

See Also

AIC, lmrob, ltsReg, rlm, rlars, sparseLTS

Examples

data("coleman")
fit <- lmrob(Y ~ ., data=coleman)
getScale(fit)

grplars (Robust) groupwise least angle regression

Description

(Robustly) sequence groups of candidate predictors according to their predictive content and find
the optimal model along the sequence.

Usage

grplars(x, ...)

S3 method for class 'formula'
grplars(formula, data, ...)

S3 method for class 'data.frame'
grplars(x, y, ...)

Default S3 method:
grplars(
x,
y,
sMax = NA,
assign,

grplars 23

fit = TRUE,
s = c(0, sMax),
crit = c("BIC", "PE"),
splits = foldControl(),
cost = rmspe,
costArgs = list(),
selectBest = c("hastie", "min"),
seFactor = 1,
ncores = 1,
cl = NULL,
seed = NULL,
model = TRUE,
...

)

rgrplars(x, ...)

S3 method for class 'formula'
rgrplars(formula, data, ...)

S3 method for class 'data.frame'
rgrplars(x, y, ...)

Default S3 method:
rgrplars(
x,
y,
sMax = NA,
assign,
centerFun = median,
scaleFun = mad,
regFun = lmrob,
regArgs = list(),
combine = c("min", "euclidean", "mahalanobis"),
const = 2,
prob = 0.95,
fit = TRUE,
s = c(0, sMax),
crit = c("BIC", "PE"),
splits = foldControl(),
cost = rtmspe,
costArgs = list(),
selectBest = c("hastie", "min"),
seFactor = 1,
ncores = 1,
cl = NULL,
seed = NULL,
model = TRUE,

24 grplars

...
)

Arguments

x a matrix or data frame containing the candidate predictors.
... additional arguments to be passed down.
formula a formula describing the full model.
data an optional data frame, list or environment (or object coercible to a data frame

by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which grplars or rgrplars is called.

y a numeric vector containing the response.
sMax an integer giving the number of predictor groups to be sequenced. If it is NA

(the default), predictor groups are sequenced as long as there are twice as many
observations as expected predictor variables (number of predictor groups times
the average number of predictor variables per group).

assign an integer vector giving the predictor group to which each predictor variable
belongs.

fit a logical indicating whether to fit submodels along the sequence (TRUE, the de-
fault) or to simply return the sequence (FALSE).

s an integer vector of length two giving the first and last step along the sequence
for which to compute submodels. The default is to start with a model containing
only an intercept (step 0) and iteratively add all groups along the sequence (step
sMax). If the second element is NA, predictor groups are added to the model as
long as there are twice as many observations as predictor variables. If only one
value is supplied, it is recycled.

crit a character string specifying the optimality criterion to be used for selecting the
final model. Possible values are "BIC" for the Bayes information criterion and
"PE" for resampling-based prediction error estimation.

splits an object giving data splits to be used for prediction error estimation (see perry).
cost a cost function measuring prediction loss (see perry for some requirements).

The default is to use the root trimmed mean squared prediction error for a robust
fit and the root mean squared prediction error otherwise (see cost).

costArgs a list of additional arguments to be passed to the prediction loss function cost.
selectBest, seFactor

arguments specifying a criterion for selecting the best model (see perrySelect).
The default is to use a one-standard-error rule.

ncores a positive integer giving the number of processor cores to be used for paral-
lel computing (the default is 1 for no parallelization). If this is set to NA, all
available processor cores are used. For obtaining the data cleaning weights,
for fitting models along the sequence and for prediction error estimation, par-
allel computing is implemented on the R level using package parallel. Oth-
erwise parallel computing for some of of the more computer-intensive compu-
tations in the sequencing step is implemented on the C++ level via OpenMP
(https://www.openmp.org/).

https://www.openmp.org/

grplars 25

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for tasks that are parallelized on the R level, in which
case ncores is only used for tasks that are parallelized on the C++ level.

seed optional initial seed for the random number generator (see .Random.seed). This
is useful because many robust regression functions (including lmrob) involve
randomness, or for prediction error estimation. On parallel R worker processes,
random number streams are used and the seed is set via clusterSetRNGStream.

model a logical indicating whether the model data should be included in the returned
object.

centerFun a function to compute a robust estimate for the center (defaults to median).

scaleFun a function to compute a robust estimate for the scale (defaults to mad).

regFun a function to compute robust linear regressions that can be interpreted as weighted
least squares (defaults to lmrob).

regArgs a list of arguments to be passed to regFun.

combine a character string specifying how to combine the data cleaning weights from
the robust regressions with each predictor group. Possible values are "min"
for taking the minimum weight for each observation, "euclidean" for weights
based on Euclidean distances of the multivariate set of standardized residuals
(i.e., multivariate winsorization of the standardized residuals assuming indepen-
dence), or "mahalanobis" for weights based on Mahalanobis distances of the
multivariate set of standardized residuals (i.e., multivariate winsorization of the
standardized residuals).

const numeric; tuning constant for multivariate winsorization to be used in the initial
corralation estimates based on adjusted univariate winsorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in multi-
variate winsorization (defaults to 0.95).

Value

If fit is FALSE, an integer vector containing the indices of the sequenced predictor groups.

Else if crit is "PE", an object of class "perrySeqModel" (inheriting from classes "perryTuning",
see perryTuning). It contains information on the prediction error criterion, and includes the final
model as component finalModel.

Otherwise an object of class "grplars" (inheriting from class "seqModel") with the following
components:

active an integer vector containing the sequence of predictor groups.

s an integer vector containing the steps for which submodels along the sequence have been com-
puted.

coefficients a numeric matrix in which each column contains the regression coefficients of the
corresponding submodel along the sequence.

fitted.values a numeric matrix in which each column contains the fitted values of the corre-
sponding submodel along the sequence.

residuals a numeric matrix in which each column contains the residuals of the corresponding
submodel along the sequence.

26 grplars

df an integer vector containing the degrees of freedom of the submodels along the sequence (i.e.,
the number of estimated coefficients).

robust a logical indicating whether a robust fit was computed.

scale a numeric vector giving the robust residual scale estimates for the submodels along the
sequence (only returned for a robust fit).

crit an object of class "bicSelect" containing the BIC values and indicating the final model
(only returned if argument crit is "BIC" and argument s indicates more than one step along
the sequence).

muX a numeric vector containing the center estimates of the predictor variables.

sigmaX a numeric vector containing the scale estimates of the predictor variables.

muY numeric; the center estimate of the response.

sigmaY numeric; the scale estimate of the response.

x the matrix of candidate predictors (if model is TRUE).

y the response (if model is TRUE).

assign an integer vector giving the predictor group to which each predictor variable belongs.

w a numeric vector giving the data cleaning weights (only returned for a robust fit).

call the matched function call.

Author(s)

Andreas Alfons

References

Alfons, A., Croux, C. and Gelper, S. (2016) Robust groupwise least angle regression. Computa-
tional Statistics & Data Analysis, 93, 421–435. doi:10.1016/j.csda.2015.02.007

See Also

coef, fitted, plot, predict, residuals, rstandard, lmrob

Examples

data("TopGear")
keep complete observations
keep <- complete.cases(TopGear)
TopGear <- TopGear[keep,]
remove information on car model
info <- TopGear[, 1:3]
TopGear <- TopGear[, -(1:3)]
log-transform price
TopGear$Price <- log(TopGear$Price)

robust groupwise LARS
rgrplars(MPG ~ ., data = TopGear, sMax = 15)

https://doi.org/10.1016/j.csda.2015.02.007

lambda0 27

lambda0 Penalty parameter for sparse LTS regression

Description

Use bivariate winsorization to estimate the smallest value of the penalty parameter for sparse least
trimmed squares regression that sets all coefficients to zero.

Usage

lambda0(
x,
y,
normalize = TRUE,
intercept = TRUE,
const = 2,
prob = 0.95,
tol = .Machine$double.eps^0.5,
eps = .Machine$double.eps,
...

)

Arguments

x a numeric matrix containing the predictor variables.

y a numeric vector containing the response variable.

normalize a logical indicating whether the winsorized predictor variables should be nor-
malized to have unit L2 norm (the default is TRUE).

intercept a logical indicating whether a constant term should be included in the model
(the default is TRUE).

const numeric; tuning constant to be used in univariate winsorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in bivariate
winsorization (defaults to 0.95).

tol a small positive numeric value used to determine singularity issues in the com-
putation of correlation estimates for bivariate winsorization (see corHuber).

eps a small positive numeric value used to determine whether the robust scale esti-
mate of a variable is too small (an effective zero).

... additional arguments to be passed to robStandardize.

Details

The estimation procedure is inspired by the calculation of the respective penalty parameter in the
first step of the classical LARS algorithm. First, two-dimensional data blocks consisting of the
response with each predictor variable are cleaned via bivariate winsorization. For each block, the
following computations are then performed. If an intercept is included in the model, the cleaned

28 lambda0

response is centered and the corresponding cleaned predictor is centered and scaled to have unit
norm. Otherwise the variables are not centered, but the predictor is scaled to have unit norm.
Finally, the dot product of the response and the corresponding predictor is computed. The largest
absolute value of those dot products, rescaled to fit the parametrization of the sparse LTS definition,
yields the estimate of the smallest penalty parameter that sets all coefficients to zero.

Value

A robust estimate of the smallest value of the penalty parameter for sparse LTS regression that sets
all coefficients to zero.

Author(s)

Andreas Alfons

References

Alfons, A., Croux, C. and Gelper, S. (2013) Sparse least trimmed squares regression for analyzing
high-dimensional large data sets. The Annals of Applied Statistics, 7(1), 226–248. doi:10.1214/
12AOAS575

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression. The Annals of
Statistics, 32(2), 407–499. doi:10.1214/009053604000000067

Khan, J.A., Van Aelst, S. and Zamar, R.H. (2007) Robust linear model selection based on least angle
regression. Journal of the American Statistical Association, 102(480), 1289–1299. doi:10.1198/
016214507000000950

See Also

sparseLTS, winsorize

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

estimate smallest value of the penalty parameter

https://doi.org/10.1214/12-AOAS575
https://doi.org/10.1214/12-AOAS575
https://doi.org/10.1214/009053604000000067
https://doi.org/10.1198/016214507000000950
https://doi.org/10.1198/016214507000000950

nci60 29

that sets all coefficients to 0
lambda0(x, y)

nci60 NCI-60 cancer cell panel

Description

The data set is a pre-processed version of the NCI-60 cancer cell panel as used in Alfons, Croux
& Gelper (2013). One observation was removed since all values in the gene expression data were
missing.

Usage

data("nci60")

Format

Protein and gene expression data on 59 observations are stored in two separate matrices:

protein a matrix containing protein expressions based on antibodies (162 columns), acquired via
reverse-phase protein lysate arrays and log2 transformed.

gene a matrix containing gene expression data (22283 columns), obtained with an Affymetrix HG-
U133A chip and normalized with the GCRMA method.

In addition, meta information on the proteins, genes, and cancer cell lines is stored in three separate
data frames:

proteinInfo a data frame with 162 rows and the following 4 columns: Experiment (the name
of the experiment for collecting the data), Probe (the name of the individual probe), Symbol
(the symbol of the protein in Human Genome Organisation (HUGO) nomenclature), and ID
(identifier of the protein per the National Center for Biotechnology Information (NCBI) Entrez
database). The rows of this data frame correspond to the columns of the matrix protein.

geneInfo a data frame with 22283 rows and the following 4 columns: Experiment (the name
of the experiment for collecting the data), Probe (the name of the individual probe), Symbol
(the symbol of the gene in Human Genome Organisation (HUGO) nomenclature), and ID
(identifier of the gene per the National Center for Biotechnology Information (NCBI) Entrez
database). The rows of this data frame correspond to the columns of the matrix gene.

cellLineInfo a data frame with 59 rows and 15 columns containing various information on the
cancer cell lines, such as tissue of origin and histology, or age and sex of the patient. The rows
of this data frame correspond to the rows of the matrices protein and gene.

Source

The original data were downloaded from https://discover.nci.nih.gov/cellminer/ on 2012-
01-27.
The exact version of the data used in Alfons, Croux & Gelper (2013) can be obtained from https:
//github.com/aalfons/nci60, together with the script for pre-processing. The data in package
robustHD differ in that the matrix of the gene expressions is called gene and that they include the
three data frames with meta information on proteins, genes, and cancer cell lines.

https://discover.nci.nih.gov/cellminer/
https://github.com/aalfons/nci60
https://github.com/aalfons/nci60

30 partialOrder

References

Reinhold, W.C., Sunshine, M., Liu, H., Varma, S., Kohn, K.W., Morris, J., Doroshow, J. and Pom-
mier, Y. (2012) CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore
Transcript and Drug Patterns in the NCI-60 Cell Line Set. Cancer Research, 72(14), 3499–3511.
doi:10.1158/00085472.CAN121370

Alfons, A., Croux, C. and Gelper, S. (2013) Sparse least trimmed squares regression for analyzing
high-dimensional large data sets. The Annals of Applied Statistics, 7(1), 226–248. doi:10.1214/
12AOAS575

Examples

load data
data("nci60")
define response variable
y <- protein[, 92]
screen most correlated predictor variables
correlations <- apply(gene, 2, corHuber, y)
keep <- partialOrder(abs(correlations), 100, decreasing = TRUE)
X <- gene[, keep]

partialOrder Find partial order of smallest or largest values

Description

Obtain a partial permutation that rearranges the smallest (largest) elements of a vector into ascend-
ing (descending) order.

Usage

partialOrder(x, h, decreasing = FALSE)

Arguments

x a numeric vector of which to find the order of the smallest or largest elements.

h an integer specifying how many (smallest or largest) elements to order.

decreasing a logical indicating whether the sort order should be increasing (FALSE; the de-
fault) or decreasing (TRUE).

Value

An integer vector containing the indices of the h smallest or largest elements of x.

Author(s)

Andreas Alfons

https://doi.org/10.1158/0008-5472.CAN-12-1370
https://doi.org/10.1214/12-AOAS575
https://doi.org/10.1214/12-AOAS575

perry.seqModel 31

See Also

order

Examples

randomly draw some values
values <- rnorm(10)
values

find largest observations
partialOrder(values, 5, decreasing = TRUE)

perry.seqModel Resampling-based prediction error for a sequential regression model

Description

Estimate the prediction error of a previously fit sequential regression model such as a robust least
angle regression model or a sparse least trimmed squares regression model.

Usage

S3 method for class 'seqModel'
perry(
object,
splits = foldControl(),
cost,
ncores = 1,
cl = NULL,
seed = NULL,
...

)

S3 method for class 'sparseLTS'
perry(
object,
splits = foldControl(),
fit = c("reweighted", "raw", "both"),
cost = rtmspe,
ncores = 1,
cl = NULL,
seed = NULL,
...

)

32 perry.seqModel

Arguments

object the model fit for which to estimate the prediction error.

splits an object of class "cvFolds" (as returned by cvFolds) or a control object
of class "foldControl" (see foldControl) defining the folds of the data for
(repeated) K-fold cross-validation, an object of class "randomSplits" (as re-
turned by randomSplits) or a control object of class "splitControl" (see
splitControl) defining random data splits, or an object of class "bootSamples"
(as returned by bootSamples) or a control object of class "bootControl" (see
bootControl) defining bootstrap samples.

cost a cost function measuring prediction loss. It should expect vectors to be passed
as its first two arguments, the first corresponding to the observed values of the
response and the second to the predicted values, and must return a non-negative
scalar value. The default is to use the root mean squared prediction error for non-
robust models and the root trimmed mean squared prediction error for robust
models (see cost).

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all available
processor cores are used.

cl a parallel cluster for parallel computing as generated by makeCluster. If sup-
plied, this is preferred over ncores.

seed optional initial seed for the random number generator (see .Random.seed).
Note that also in case of parallel computing, resampling is performed on the
manager process rather than the worker processes. On the parallel worker pro-
cesses, random number streams are used and the seed is set via clusterSetRNGStream.

... additional arguments to be passed to the prediction loss function cost.

fit a character string specifying for which fit to estimate the prediction error. Possi-
ble values are "reweighted" (the default) for the prediction error of the reweighted
fit, "raw" for the prediction error of the raw fit, or "both" for the prediction error
of both fits.

Details

The prediction error can be estimated via (repeated) K-fold cross-validation, (repeated) random
splitting (also known as random subsampling or Monte Carlo cross-validation), or the bootstrap.
In each iteration, the optimal model is thereby selected from the training data and used to make
predictions for the test data.

Value

An object of class "perry" with the following components:

pe a numeric vector containing the estimated prediction errors for the requested model fits. In case
of more than one replication, this gives the average value over all replications.

se a numeric vector containing the estimated standard errors of the prediction loss for the requested
model fits.

perry.seqModel 33

reps a numeric matrix in which each column contains the estimated prediction errors from all
replications for the requested model fits. This is only returned in case of more than one
replication.

splits an object giving the data splits used to estimate the prediction error.

y the response.

yHat a list containing the predicted values from all replications.

call the matched function call.

Author(s)

Andreas Alfons

See Also

rlars, sparseLTS, predict, perry, cost

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

fit and evaluate robust LARS model
fitRlars <- rlars(x, y, sMax = 10)
perry(fitRlars)

fit and evaluate sparse LTS model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
perry(fitSparseLTS)

34 plot.seqModel

plot.seqModel Plot a sequence of regression models

Description

Produce a plot of the coefficients, the values of the optimality criterion, or diagnostic plots for a se-
quence of regression models, such as submodels along a robust or groupwise least angle regression
sequence, or sparse least trimmed squares regression models for a grid of values for the penalty
parameter.

Usage

S3 method for class 'seqModel'
plot(x, method = c("coefficients", "crit", "diagnostic"), ...)

S3 method for class 'perrySeqModel'
plot(x, method = c("crit", "diagnostic"), ...)

S3 method for class 'tslars'
plot(x, p, method = c("coefficients", "crit", "diagnostic"), ...)

S3 method for class 'sparseLTS'
plot(x, method = c("coefficients", "crit", "diagnostic"), ...)

S3 method for class 'perrySparseLTS'
plot(x, method = c("crit", "diagnostic"), ...)

Arguments

x the model fit to be plotted.

method a character string specifying the type of plot. Possible values are "coefficients"
to plot the coefficients from the submodels via coefPlot (only for the "seqModel"
and "sparseLTS" methods), "crit" to plot the values of the optimality crite-
rion for the submodels via critPlot, or "diagnostic" for diagnostic plots via
diagnosticPlot.

... additional arguments to be passed down.

p an integer giving the lag length for which to produce the plot (the default is to
use the optimal lag length).

Value

An object of class "ggplot" (see ggplot).

Author(s)

Andreas Alfons

predict.seqModel 35

See Also

coefPlot, critPlot, diagnosticPlot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars,
rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
create plots
plot(fitRlars, method = "coef")
plot(fitRlars, method = "crit")
plot(fitRlars, method = "diagnostic")

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
create plots
plot(fitSparseLTS, method = "coef")
plot(fitSparseLTS, method = "crit")
plot(fitSparseLTS, method = "diagnostic")

predict.seqModel Predict from a sequence of regression models

Description

Make predictions from a sequence of regression models, such as submodels along a robust or group-
wise least angle regression sequence, or sparse least trimmed squares regression models for a grid
of values for the penalty parameter. For autoregressive time series models with exogenous inputs,
h-step ahead forecasts are performed.

36 predict.seqModel

Usage

S3 method for class 'seqModel'
predict(object, newdata, s = NA, ...)

S3 method for class 'tslarsP'
predict(object, newdata, ...)

S3 method for class 'tslars'
predict(object, newdata, p, ...)

S3 method for class 'sparseLTS'
predict(object, newdata, s = NA, fit = c("reweighted", "raw", "both"), ...)

Arguments

object the model fit from which to make predictions.

newdata new data for the predictors. If the model fit was computed with the formula
method, this should be a data frame from which to extract the predictor variables.
Otherwise this should be a matrix containing the same variables as the predictor
matrix used to fit the model (including a column of ones to account for the
intercept).

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to make predictions (the default is to use the optimal submodel). For
the "sparseLTS" method, an integer vector giving the indices of the models
for which to make predictions. If fit is "both", this can be a list with two
components, with the first component giving the indices of the reweighted fits
and the second the indices of the raw fits. The default is to use the optimal
model for each of the requested estimators. Note that the optimal models may
not correspond to the same value of the penalty parameter for the reweighted
and the raw estimator.

... for the "tslars" method, additional arguments to be passed down to the "tslarsP"
method. For the other methods, additional arguments to be passed down to the
respective method of coef.

p an integer giving the lag length for which to make predictions (the default is to
use the optimal lag length).

fit a character string specifying for which fit to make predictions. Possible values
are "reweighted" (the default) for predicting values from the reweighted fit,
"raw" for predicting values from the raw fit, or "both" for predicting values
from both fits.

Details

The newdata argument defaults to the matrix of predictors used to fit the model such that the fitted
values are computed.

For autoregressive time series models with exogenous inputs with forecast horizon h, the h most
recent observations of the predictors are omitted from fitting the model since there are no cor-

predict.seqModel 37

responding values for the response. Hence the newdata argument for predict.tslarsP and
predict.tslars defaults to those h observations of the predictors.

Value

A numeric vector or matrix containing the requested predicted values.

Author(s)

Andreas Alfons

See Also

predict, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
compute fitted values via predict method
predict(fitRlars)
head(predict(fitRlars, s = 1:5))

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
compute fitted values via predict method
predict(fitSparseLTS)
head(predict(fitSparseLTS, fit = "both"))
head(predict(fitSparseLTS, s = NULL))
head(predict(fitSparseLTS, fit = "both", s = NULL))

38 residuals.seqModel

residuals.seqModel Extract residuals from a sequence of regression models

Description

Extract residuals from a sequence of regression models, such as submodels along a robust or group-
wise least angle regression sequence, or sparse least trimmed squares regression models for a grid
of values for the penalty parameter.

Usage

S3 method for class 'seqModel'
residuals(object, s = NA, standardized = FALSE, drop = !is.null(s), ...)

S3 method for class 'tslars'
residuals(object, p, ...)

S3 method for class 'perrySeqModel'
residuals(object, ...)

S3 method for class 'sparseLTS'
residuals(
object,
s = NA,
fit = c("reweighted", "raw", "both"),
standardized = FALSE,
drop = !is.null(s),
...

)

Arguments

object the model fit from which to extract residuals.

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to extract the residuals (the default is to use the optimal submodel).
For the "sparseLTS" method, an integer vector giving the indices of the models
for which to extract residuals. If fit is "both", this can be a list with two
components, with the first component giving the indices of the reweighted fits
and the second the indices of the raw fits. The default is to use the optimal
model for each of the requested estimators. Note that the optimal models may
not correspond to the same value of the penalty parameter for the reweighted
and the raw estimator.

standardized a logical indicating whether the residuals should be standardized (the default is
FALSE). Note that this argument is deprecated and may be removed as soon as
the next version. Use rstandard instead to extract standardized residuals.

residuals.seqModel 39

drop a logical indicating whether to reduce the dimension to a vector in case of only
one step.

... for the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the other methods, additional arguments are currently ignored.

p an integer giving the lag length for which to extract residuals (the default is to
use the optimal lag length).

fit a character string specifying which residuals to extract. Possible values are
"reweighted" (the default) for the residuals from the reweighted estimator,
"raw" for the residuals from the raw estimator, or "both" for the residuals from
both estimators.

Value

A numeric vector or matrix containing the requested residuals.

Author(s)

Andreas Alfons

See Also

residuals, rstandard

rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
extract residuals
residuals(fitRlars)
head(residuals(fitRlars, s = 1:5))

40 rlars

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract residuals
residuals(fitSparseLTS)
head(residuals(fitSparseLTS, fit = "both"))
head(residuals(fitSparseLTS, s = NULL))
head(residuals(fitSparseLTS, fit = "both", s = NULL))

rlars Robust least angle regression

Description

Robustly sequence candidate predictors according to their predictive content and find the optimal
model along the sequence.

Usage

rlars(x, ...)

S3 method for class 'formula'
rlars(formula, data, ...)

Default S3 method:
rlars(
x,
y,
sMax = NA,
centerFun = median,
scaleFun = mad,
winsorize = FALSE,
const = 2,
prob = 0.95,
fit = TRUE,
s = c(0, sMax),
regFun = lmrob,
regArgs = list(),
crit = c("BIC", "PE"),
splits = foldControl(),
cost = rtmspe,
costArgs = list(),
selectBest = c("hastie", "min"),
seFactor = 1,
ncores = 1,

rlars 41

cl = NULL,
seed = NULL,
model = TRUE,
tol = .Machine$double.eps^0.5,
...

)

Arguments

x a matrix or data frame containing the candidate predictors.

... additional arguments to be passed down. For the default method, additional
arguments to be passed down to robStandardize.

formula a formula describing the full model.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which rlars is called.

y a numeric vector containing the response.

sMax an integer giving the number of predictors to be sequenced. If it is NA (the de-
fault), predictors are sequenced as long as there are twice as many observations
as predictors.

centerFun a function to compute a robust estimate for the center (defaults to median).

scaleFun a function to compute a robust estimate for the scale (defaults to mad).

winsorize a logical indicating whether to clean the full data set by multivariate winsoriza-
tion, i.e., to perform data cleaning RLARS instead of plug-in RLARS (defaults
to FALSE).

const numeric; tuning constant to be used in the initial corralation estimates based on
adjusted univariate winsorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in bivariate
or multivariate winsorization (defaults to 0.95).

fit a logical indicating whether to fit submodels along the sequence (TRUE, the de-
fault) or to simply return the sequence (FALSE).

s an integer vector of length two giving the first and last step along the sequence
for which to compute submodels. The default is to start with a model containing
only an intercept (step 0) and iteratively add all variables along the sequence
(step sMax). If the second element is NA, predictors are added to the model as
long as there are twice as many observations as predictors. If only one value is
supplied, it is recycled.

regFun a function to compute robust linear regressions along the sequence (defaults to
lmrob).

regArgs a list of arguments to be passed to regFun.

crit a character string specifying the optimality criterion to be used for selecting the
final model. Possible values are "BIC" for the Bayes information criterion and
"PE" for resampling-based prediction error estimation.

42 rlars

splits an object giving data splits to be used for prediction error estimation (see perry).

cost a cost function measuring prediction loss (see perry for some requirements).
The default is to use the root trimmed mean squared prediction error (see cost).

costArgs a list of additional arguments to be passed to the prediction loss function cost.
selectBest, seFactor

arguments specifying a criterion for selecting the best model (see perrySelect).
The default is to use a one-standard-error rule.

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all avail-
able processor cores are used. For fitting models along the sequence and for
prediction error estimation, parallel computing is implemented on the R level
using package parallel. Otherwise parallel computing for some of of the more
computer-intensive computations in the sequencing step is implemented on the
C++ level via OpenMP (https://www.openmp.org/).

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for tasks that are parallelized on the R level, in which
case ncores is only used for tasks that are parallelized on the C++ level.

seed optional initial seed for the random number generator (see .Random.seed). This
is useful because many robust regression functions (including lmrob) involve
randomness, or for prediction error estimation. On parallel R worker processes,
random number streams are used and the seed is set via clusterSetRNGStream.

model a logical indicating whether the model data should be included in the returned
object.

tol a small positive numeric value. This is used in bivariate winsorization to deter-
mine whether the initial estimate from adjusted univariate winsorization is close
to 1 in absolute value. In this case, bivariate winsorization would fail since the
points form almost a straight line, and the initial estimate is returned.

Value

If fit is FALSE, an integer vector containing the indices of the sequenced predictors.

Else if crit is "PE", an object of class "perrySeqModel" (inheriting from class "perrySelect",
see perrySelect). It contains information on the prediction error criterion, and includes the final
model as component finalModel.

Otherwise an object of class "rlars" (inheriting from class "seqModel") with the following com-
ponents:

active an integer vector containing the indices of the sequenced predictors.

s an integer vector containing the steps for which submodels along the sequence have been com-
puted.

coefficients a numeric matrix in which each column contains the regression coefficients of the
corresponding submodel along the sequence.

fitted.values a numeric matrix in which each column contains the fitted values of the corre-
sponding submodel along the sequence.

https://www.openmp.org/

rlars 43

residuals a numeric matrix in which each column contains the residuals of the corresponding
submodel along the sequence.

df an integer vector containing the degrees of freedom of the submodels along the sequence (i.e.,
the number of estimated coefficients).

robust a logical indicating whether a robust fit was computed (TRUE for "rlars" models).

scale a numeric vector giving the robust residual scale estimates for the submodels along the
sequence.

crit an object of class "bicSelect" containing the BIC values and indicating the final model
(only returned if argument crit is "BIC" and argument s indicates more than one step along
the sequence).

muX a numeric vector containing the center estimates of the predictors.

sigmaX a numeric vector containing the scale estimates of the predictors.

muY numeric; the center estimate of the response.

sigmaY numeric; the scale estimate of the response.

x the matrix of candidate predictors (if model is TRUE).

y the response (if model is TRUE).

w a numeric vector giving the data cleaning weights (if winsorize is TRUE).

call the matched function call.

Author(s)

Andreas Alfons, based on code by Jafar A. Khan, Stefan Van Aelst and Ruben H. Zamar

References

Khan, J.A., Van Aelst, S. and Zamar, R.H. (2007) Robust linear model selection based on least angle
regression. Journal of the American Statistical Association, 102(480), 1289–1299. doi:10.1198/
016214507000000950

See Also

coef, fitted, plot, predict, residuals, rstandard, lmrob

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms

https://doi.org/10.1198/016214507000000950
https://doi.org/10.1198/016214507000000950

44 rstandard.seqModel

i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

fit robust LARS model
rlars(x, y, sMax = 10)

rstandard.seqModel Extract standardized residuals from a sequence of regression models

Description

Extract standardized residuals from a sequence of regression models, such as submodels along a
robust or groupwise least angle regression sequence, or sparse least trimmed squares regression
models for a grid of values for the penalty parameter.

Usage

S3 method for class 'seqModel'
rstandard(model, s = NA, drop = !is.null(s), ...)

S3 method for class 'tslars'
rstandard(model, p, ...)

S3 method for class 'perrySeqModel'
rstandard(model, ...)

S3 method for class 'sparseLTS'
rstandard(
model,
s = NA,
fit = c("reweighted", "raw", "both"),
drop = !is.null(s),
...

)

Arguments

model the model fit from which to extract standardize residuals.

s for the "seqModel" method, an integer vector giving the steps of the submodels
for which to extract the standardized residuals (the default is to use the optimal
submodel). For the "sparseLTS" method, an integer vector giving the indices
of the models for which to extract standardized residuals. If fit is "both", this
can be a list with two components, with the first component giving the indices
of the reweighted fits and the second the indices of the raw fits. The default
is to use the optimal model for each of the requested estimators. Note that the

rstandard.seqModel 45

optimal models may not correspond to the same value of the penalty parameter
for the reweighted and the raw estimator.

drop a logical indicating whether to reduce the dimension to a vector in case of only
one step.

... for the "tslars" method, additional arguments to be passed down to the "seqModel"
method. For the other methods, additional arguments are currently ignored.

p an integer giving the lag length for which to extract standardized residuals (the
default is to use the optimal lag length).

fit a character string specifying which standardized residuals to extract. Possible
values are "reweighted" (the default) for the standardized residuals from the
reweighted estimator, "raw" for the standardized residuals from the raw estima-
tor, or "both" for the standardized residuals from both estimators.

Value

A numeric vector or matrix containing the requested standardized residuals.

Author(s)

Andreas Alfons

See Also

rstandard, residuals

rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
extract standardized residuals

46 setupCoefPlot

rstandard(fitRlars)
head(rstandard(fitRlars, s = 1:5))

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract standardized residuals
rstandard(fitSparseLTS)
head(rstandard(fitSparseLTS, fit = "both"))
head(rstandard(fitSparseLTS, s = NULL))
head(rstandard(fitSparseLTS, fit = "both", s = NULL))

setupCoefPlot Set up a coefficient plot of a sequence of regression models

Description

Extract the relevent information for a plot of the coefficients for a sequence of regression models,
such as submodels along a robust or groupwise least angle regression sequence, or sparse least
trimmed squares regression models for a grid of values for the penalty parameter.

Usage

setupCoefPlot(object, ...)

S3 method for class 'seqModel'
setupCoefPlot(object, zeros = FALSE, labels = NULL, ...)

S3 method for class 'tslars'
setupCoefPlot(object, p, ...)

S3 method for class 'sparseLTS'
setupCoefPlot(
object,
fit = c("reweighted", "raw", "both"),
zeros = FALSE,
labels = NULL,
...

)

Arguments

object the model fit from which to extract information.

... additional arguments to be passed down.

setupCoefPlot 47

zeros a logical indicating whether predictors that never enter the model and thus have
zero coefficients should be included in the plot (TRUE) or omitted (FALSE, the de-
fault). This is useful if the number of predictors is much larger than the number
of observations, in which case many coefficients are never nonzero.

labels an optional character vector containing labels for the predictors. Information on
labels can be suppressed by setting this to NA.

p an integer giving the lag length for which to extract information (the default is
to use the optimal lag length).

fit a character string specifying for which estimator to extract information. Possible
values are "reweighted" (the default) for the reweighted fits, "raw" for the raw
fits, or "both" for both estimators.

Value

An object inheriting from class "setupCoefPlot" with the following components:

coefficients a data frame containing the following columns:
fit the model fit for which the coefficient is computed (only returned if both the reweighted

and raw fit are requested in the "sparseLTS" method).
lambda the value of the penalty parameter for which the coefficient is computed (only re-

turned for the "sparseLTS" method).
step the step along the sequence for which the coefficient is computed.
df the degrees of freedom of the submodel along the sequence for which the coefficient is

computed.
coefficient the value of the coefficient.
variable a character string specifying to which variable the coefficient belongs.

abscissa a character string specifying available options for what to plot on the x-axis
lambda a numeric vector giving the values of the penalty parameter. (only returned for the "sparseLTS"

method).
step an integer vector containing the steps for which submodels along the sequence have been

computed.
df an integer vector containing the degrees of freedom of the submodels along the sequence (i.e.,

the number of estimated coefficients; only returned for the "seqModel" method).
includeLabels a logical indicating whether information on labels for the variables should be in-

cluded in the plot.
labels a data frame containing the following columns (not returned if information on labels is

suppressed):
fit the model fit for which the coefficient is computed (only returned if both the reweighted

and raw fit are requested in the "sparseLTS" method).
lambda the smallest value of the penalty parameter (only returned for the "sparseLTS" method).
step the last step along the sequence.
df the degrees of freedom of the last submodel along the sequence.
coefficient the value of the coefficient.
label the label of the corresponding variable to be displayed in the plot.

facets default faceting formula for the plots (only returned if both estimators are requested in the
"sparseLTS" method).

48 setupCritPlot

Author(s)

Andreas Alfons

See Also

coefPlot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
extract information for plotting
setup <- setupCoefPlot(fitRlars)
coefPlot(setup)

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract information for plotting
setup1 <- setupCoefPlot(fitSparseLTS)
coefPlot(setup1)
setup2 <- setupCoefPlot(fitSparseLTS, fit = "both")
coefPlot(setup2)

setupCritPlot Set up an optimality criterion plot of a sequence of regression models

setupCritPlot 49

Description

Extract the relevent information for a plot of the values of the optimality criterion for a sequence of
regression models, such as submodels along a robust or groupwise least angle regression sequence,
or sparse least trimmed squares regression models for a grid of values for the penalty parameter.

Usage

setupCritPlot(object, ...)

S3 method for class 'seqModel'
setupCritPlot(object, which = c("line", "dot"), ...)

S3 method for class 'tslars'
setupCritPlot(object, p, ...)

S3 method for class 'sparseLTS'
setupCritPlot(
object,
which = c("line", "dot"),
fit = c("reweighted", "raw", "both"),
...

)

S3 method for class 'perrySeqModel'
setupCritPlot(object, which = c("line", "dot", "box", "density"), ...)

S3 method for class 'perrySparseLTS'
setupCritPlot(
object,
which = c("line", "dot", "box", "density"),
fit = c("reweighted", "raw", "both"),
...

)

Arguments

object the model fit from which to extract information.
... additional arguments to be passed down.
which a character string specifying the type of plot. Possible values are "line" (the

default) to plot the (average) results for each model as a connected line, "dot"
to create a dot plot, "box" to create a box plot, or "density" to create a smooth
density plot. Note that the last two plots are only available in case of prediction
error estimation via repeated resampling.

p an integer giving the lag length for which to extract information (the default is
to use the optimal lag length).

fit a character string specifying for which estimator to extract information. Possible
values are "reweighted" (the default) for the reweighted fits, "raw" for the raw
fits, or "both" for both estimators.

50 setupCritPlot

Value

An object inheriting from class "setupCritPlot" with the following components:

data a data frame containing the following columns:

Fit a vector or factor containing the identifiers of the models along the sequence.
Name a factor specifying the estimator for which the optimality criterion was estimated ("reweighted"

or "raw"; only returned if both are requested in the "sparseLTS" or "perrySparseLTS"
methods).

PE the estimated prediction errors (only returned if applicable).
BIC the estimated values of the Bayesian information criterion (only returned if applicable).
Lower the lower end points of the error bars (only returned if possible to compute).
Upper the upper end points of the error bars (only returned if possible to compute).

which a character string specifying the type of plot.

grouped a logical indicating whether density plots should be grouped due to multiple model fits
along the sequence (only returned in case of density plots for the "perrySeqModel" and
"perrySparseLTS" methods).

includeSE a logical indicating whether error bars based on standard errors are available (only
returned in case of line plots or dot plots).

mapping default aesthetic mapping for the plots.

facets default faceting formula for the plots (only returned if both estimators are requested in the
"sparseLTS" or "perrySparseLTS" methods).

tuning a data frame containing the grid of tuning parameter values for which the optimality crite-
rion was estimated (only returned for the "sparseLTS" and "perrySparseLTS" methods).

Author(s)

Andreas Alfons

See Also

critPlot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated

setupDiagnosticPlot 51

e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model
fitRlars <- rlars(x, y, sMax = 10)
extract information for plotting
setup <- setupCritPlot(fitRlars)
critPlot(setup)

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitSparseLTS <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract information for plotting
setup1 <- setupCritPlot(fitSparseLTS)
critPlot(setup1)
setup2 <- setupCritPlot(fitSparseLTS, fit = "both")
critPlot(setup2)

setupDiagnosticPlot Set up a diagnostic plot for a sequence of regression models

Description

Extract the fitted values and residuals of a sequence of regression models (such as robust least angle
regression models or sparse least trimmed squares regression models) and other useful information
for diagnostic plots.

Usage

setupDiagnosticPlot(object, ...)

S3 method for class 'seqModel'
setupDiagnosticPlot(object, s = NA, covArgs = list(...), ...)

S3 method for class 'perrySeqModel'
setupDiagnosticPlot(object, ...)

S3 method for class 'tslars'
setupDiagnosticPlot(object, p, ...)

S3 method for class 'sparseLTS'
setupDiagnosticPlot(
object,
s = NA,

52 setupDiagnosticPlot

fit = c("reweighted", "raw", "both"),
covArgs = list(...),
...

)

S3 method for class 'perrySparseLTS'
setupDiagnosticPlot(object, ...)

Arguments

object the model fit from which to extract information.

... additional arguments to be passed to covMcd can be specified directly instead of
via covArgs.

s for the "seqModel" method, an integer vector giving the steps of the submodels
from which to extract information (the default is to use the optimal submodel).
For the "sparseLTS" method, an integer vector giving the indices of the models
from which to extract information (the default is to use the optimal model for
each of the requested fits).

covArgs a list of arguments to be passed to covMcd for computing robust Mahalanobis
distances.

p an integer giving the lag length for which to extract information (the default is
to use the optimal lag length).

fit a character string specifying from which fit to extract information. Possible
values are "reweighted" (the default) to convert the reweighted fit, "raw" to
convert the raw fit, or "both" to convert both fits.

Details

Note that the argument alpha for controlling the subset size behaves differently for sparseLTS than
for covMcd. For sparseLTS, the subset size h is determined by the fraction alpha of the number
of observations n. For covMcd, on the other hand, the subset size also depends on the number of
variables p (see h.alpha.n). However, the "sparseLTS" and "perrySparseLTS" methods attempt
to compute the MCD using the same subset size that is used to compute the sparse least trimmed
squares regressions. This may not be possible if the number of selected variables is large compared
to the number of observations, in which case a warning is given and NAs are returned for the robust
Mahalanobis distances.

Value

An object of class "setupDiagnosticPlot" with the following components:

data a data frame containing the columns listed below.

step the steps (for the "seqModel" method) or indices (for the "sparseLTS" method) of the
models (only returned if more than one model is requested).

fit the model fits (only returned if both the reweighted and raw fit are requested in the
"sparseLTS" method).

index the indices of the observations.

setupDiagnosticPlot 53

fitted the fitted values.
residual the standardized residuals.
theoretical the corresponding theoretical quantiles from the standard normal distribution.
qqd the absolute distances from a reference line through the first and third sample and theo-

retical quartiles.
rd the robust Mahalanobis distances computed via the minimum covariance determinant

(MCD) estimator (see covMcd).
xyd the pairwise maxima of the absolute values of the standardized residuals and the robust

Mahalanobis distances, divided by the respective other outlier detection cutoff point.
weight the weights indicating regression outliers.
leverage logicals indicating leverage points (i.e., outliers in the predictor space).
Diagnostics a factor with levels "Potential outlier" (potential regression outliers) and

"Regular observation" (data points following the model).

qqLine a data frame containing the intercepts and slopes of the respective reference lines to be
displayed in residual Q-Q plots.

q a data frame containing the quantiles of the Mahalanobis distribution used as cutoff points for
detecting leverage points.

facets default faceting formula for the diagnostic plots (only returned where applicable).

Author(s)

Andreas Alfons

See Also

diagnosticPlot, rlars, grplars, rgrplars, tslarsP, rtslarsP, tslars, rtslars, sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

robust LARS
fit model

54 sparseLTS

fitRlars <- rlars(x, y, sMax = 10)
extract information for plotting
setup <- setupDiagnosticPlot(fitRlars)
diagnosticPlot(setup)

sparse LTS
fit model
fitSparseLTS <- sparseLTS(x, y, lambda = 0.05, mode = "fraction")
extract information for plotting
setup1 <- setupDiagnosticPlot(fitSparseLTS)
diagnosticPlot(setup1)
setup2 <- setupDiagnosticPlot(fitSparseLTS, fit = "both")
diagnosticPlot(setup2)

sparseLTS Sparse least trimmed squares regression

Description

Compute least trimmed squares regression with an L1 penalty on the regression coefficients, which
allows for sparse model estimates.

Usage

sparseLTS(x, ...)

S3 method for class 'formula'
sparseLTS(formula, data, ...)

Default S3 method:
sparseLTS(
x,
y,
lambda,
mode = c("lambda", "fraction"),
alpha = 0.75,
normalize = TRUE,
intercept = TRUE,
nsamp = c(500, 10),
initial = c("sparse", "hyperplane", "random"),
ncstep = 2,
use.correction = TRUE,
tol = .Machine$double.eps^0.5,
eps = .Machine$double.eps,
use.Gram,
crit = c("BIC", "PE"),
splits = foldControl(),

sparseLTS 55

cost = rtmspe,
costArgs = list(),
selectBest = c("hastie", "min"),
seFactor = 1,
ncores = 1,
cl = NULL,
seed = NULL,
model = TRUE,
...

)

Arguments

x a numeric matrix containing the predictor variables.

... additional arguments to be passed down.

formula a formula describing the model.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which sparseLTS is called.

y a numeric vector containing the response variable.

lambda a numeric vector of non-negative values to be used as penalty parameter.

mode a character string specifying the type of penalty parameter. If "lambda", lambda
gives the grid of values for the penalty parameter directly. If "fraction", the
smallest value of the penalty parameter that sets all coefficients to 0 is first esti-
mated based on bivariate winsorization, then lambda gives the fractions of that
estimate to be used (hence all values of lambda should be in the interval [0,1] in
that case).

alpha a numeric value giving the percentage of the residuals for which the L1 penal-
ized sum of squares should be minimized (the default is 0.75).

normalize a logical indicating whether the predictor variables should be normalized to have
unit L2 norm (the default is TRUE). Note that normalization is performed on the
subsamples rather than the full data set.

intercept a logical indicating whether a constant term should be included in the model
(the default is TRUE).

nsamp a numeric vector giving the number of subsamples to be used in the two phases
of the algorithm. The first element gives the number of initial subsamples to
be used. The second element gives the number of subsamples to keep after the
first phase of ncstep C-steps. For those remaining subsets, additional C-steps
are performed until convergence. The default is to first perform ncstep C-steps
on 500 initial subsamples, and then to keep the 10 subsamples with the lowest
value of the objective function for additional C-steps until convergence.

initial a character string specifying the type of initial subsamples to be used. If "sparse",
the lasso fit given by three randomly selected data points is first computed. The
corresponding initial subsample is then formed by the fraction alpha of data

56 sparseLTS

points with the smallest squared residuals. Note that this is optimal from a ro-
bustness point of view, as the probability of including an outlier in the initial
lasso fit is minimized. If "hyperplane", a hyperplane through p randomly se-
lected data points is first computed, where p denotes the number of variables.
The corresponding initial subsample is then again formed by the fraction alpha
of data points with the smallest squared residuals. Note that this cannot be ap-
plied if p is larger than the number of observations. Nevertheless, the probabil-
ity of including an outlier increases with increasing dimension p. If "random",
the initial subsamples are given by a fraction alpha of randomly selected data
points. Note that this leads to the largest probability of including an outlier.

ncstep a positive integer giving the number of C-steps to perform on all subsamples in
the first phase of the algorithm (the default is to perform two C-steps).

use.correction currently ignored. Small sample correction factors may be added in the future.

tol a small positive numeric value giving the tolerance for convergence.

eps a small positive numeric value used to determine whether the variability within
a variable is too small (an effective zero).

use.Gram a logical indicating whether the Gram matrix of the explanatory variables should
be precomputed in the lasso fits on the subsamples. If the number of variables
is large, computation may be faster when this is set to FALSE. The default is to
use TRUE if the number of variables is smaller than the number of observations
in the subsamples and smaller than 100, and FALSE otherwise.

crit a character string specifying the optimality criterion to be used for selecting the
final model. Possible values are "BIC" for the Bayes information criterion and
"PE" for resampling-based prediction error estimation. This is ignored if lambda
contains only one value of the penalty parameter, as selecting the optimal value
is trivial in that case.

splits an object giving data splits to be used for prediction error estimation (see perryTuning).
This is only relevant if selecting the optimal lambda via prediction error estima-
tion.

cost a cost function measuring prediction loss (see perryTuning for some require-
ments). The default is to use the root trimmed mean squared prediction error
(see cost). This is only relevant if selecting the optimal lambda via prediction
error estimation.

costArgs a list of additional arguments to be passed to the prediction loss function cost.
This is only relevant if selecting the optimal lambda via prediction error estima-
tion.

selectBest, seFactor

arguments specifying a criterion for selecting the best model (see perryTuning).
The default is to use a one-standard-error rule. This is only relevant if selecting
the optimal lambda via prediction error estimation.

ncores a positive integer giving the number of processor cores to be used for par-
allel computing (the default is 1 for no parallelization). If this is set to NA,
all available processor cores are used. For prediction error estimation, paral-
lel computing is implemented on the R level using package parallel. Other-
wise parallel computing is implemented on the C++ level via OpenMP (https:
//www.openmp.org/).

https://www.openmp.org/
https://www.openmp.org/

sparseLTS 57

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for prediction error estimation, in which case ncores is
only used on the C++ level for computing the final model.

seed optional initial seed for the random number generator (see .Random.seed). On
parallel R worker processes for prediction error estimation, random number
streams are used and the seed is set via clusterSetRNGStream.

model a logical indicating whether the data x and y should be added to the return object.
If intercept is TRUE, a column of ones is added to x to account for the intercept.

Value

If crit is "PE" and lambda contains more than one value of the penalty parameter, an object of
class "perrySparseLTS" (inheriting from class "perryTuning", see perryTuning). It contains
information on the prediction error criterion, and includes the final model with the optimal tuning
paramter as component finalModel.

Otherwise an object of class "sparseLTS" with the following components:

lambda a numeric vector giving the values of the penalty parameter.

best an integer vector or matrix containing the respective best subsets of h observations found and
used for computing the raw estimates.

objective a numeric vector giving the respective values of the sparse LTS objective function, i.e.,
the L1 penalized sums of the h smallest squared residuals from the raw fits.

coefficients a numeric vector or matrix containing the respective coefficient estimates from the
reweighted fits.

fitted.values a numeric vector or matrix containing the respective fitted values of the response
from the reweighted fits.

residuals a numeric vector or matrix containing the respective residuals from the reweighted fits.

center a numeric vector giving the robust center estimates of the corresponding reweighted resid-
uals.

scale a numeric vector giving the robust scale estimates of the corresponding reweighted residuals.

cnp2 a numeric vector giving the respective consistency factors applied to the scale estimates of
the reweighted residuals.

wt an integer vector or matrix containing binary weights that indicate outliers from the respec-
tive reweighted fits, i.e., the weights are 1 for observations with reasonably small reweighted
residuals and 0 for observations with large reweighted residuals.

df an integer vector giving the respective degrees of freedom of the obtained reweighted model
fits, i.e., the number of nonzero coefficient estimates.

intercept a logical indicating whether the model includes a constant term.

alpha a numeric value giving the percentage of the residuals for which the L1 penalized sum of
squares was minimized.

quan the number h of observations used to compute the raw estimates.

raw.coefficients a numeric vector or matrix containing the respective coefficient estimates from
the raw fits.

58 sparseLTS

raw.fitted.values a numeric vector or matrix containing the respective fitted values of the re-
sponse from the raw fits.

raw.residuals a numeric vector or matrix containing the respective residuals from the raw fits.

raw.center a numeric vector giving the robust center estimates of the corresponding raw residuals.

raw.scale a numeric vector giving the robust scale estimates of the corresponding raw residuals.

raw.cnp2 a numeric value giving the consistency factor applied to the scale estimate of the raw
residuals.

raw.wt an integer vector or matrix containing binary weights that indicate outliers from the respec-
tive raw fits, i.e., the weights used for the reweighted fits.

crit an object of class "bicSelect" containing the BIC values and indicating the final model
(only returned if argument crit is "BIC" and argument lambda contains more than one value
for the penalty parameter).

x the predictor matrix (if model is TRUE).

y the response variable (if model is TRUE).

call the matched function call.

Note

The underlying C++ code uses the C++ library Armadillo. From package version 0.6.0, the back
end for sparse least trimmed squares from package sparseLTSEigen, which uses the C++ library
Eigen, is no longer supported and can no longer be used.

Parallel computing is implemented via OpenMP (https://www.openmp.org/).

Author(s)

Andreas Alfons

References

Alfons, A., Croux, C. and Gelper, S. (2013) Sparse least trimmed squares regression for analyzing
high-dimensional large data sets. The Annals of Applied Statistics, 7(1), 226–248. doi:10.1214/
12AOAS575

See Also

coef, fitted, plot, predict, residuals, rstandard, weights, ltsReg

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio

https://www.openmp.org/
https://doi.org/10.1214/12-AOAS575
https://doi.org/10.1214/12-AOAS575

standardize 59

epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

fit sparse LTS model for one value of lambda
sparseLTS(x, y, lambda = 0.05, mode = "fraction")

fit sparse LTS models over a grid of values for lambda
frac <- seq(0.2, 0.05, by = -0.05)
sparseLTS(x, y, lambda = frac, mode = "fraction")

standardize Data standardization

Description

Standardize data with given functions for computing center and scale.

Usage

standardize(x, centerFun = mean, scaleFun = sd)

robStandardize(
x,
centerFun = median,
scaleFun = mad,
fallback = FALSE,
eps = .Machine$double.eps,
...

)

Arguments

x a numeric vector, matrix or data frame to be standardized.

centerFun a function to compute an estimate of the center of a variable (defaults to mean).

scaleFun a function to compute an estimate of the scale of a variable (defaults to sd).

fallback a logical indicating whether standardization with mean and sd should be per-
formed as a fallback mode for variables whose robust scale estimate is too small.
This is useful, e.g., for data containing dummy variables.

eps a small positive numeric value used to determine whether the robust scale esti-
mate of a variable is too small (an effective zero).

... currently ignored.

60 TopGear

Details

robStandardize is a wrapper function for robust standardization, hence the default is to use median
and mad.

Value

An object of the same type as the original data x containing the centered and scaled data. The
center and scale estimates of the original data are returned as attributes "center" and "scale",
respectively.

Note

The implementation contains special cases for the typically used combinations mean/sd and median/mad
in order to reduce computation time.

Author(s)

Andreas Alfons

See Also

scale, sweep

Examples

generate data
set.seed(1234) # for reproducibility
x <- rnorm(10) # standard normal
x[1] <- x[1] * 10 # introduce outlier

standardize data
x
standardize(x) # mean and sd
robStandardize(x) # median and MAD

TopGear Top Gear car data

Description

The data set contains information on cars featured on the website of the popular BBC television
show Top Gear.

Usage

data("TopGear")

TopGear 61

Format

A data frame with 297 observations on the following 32 variables.

Maker factor; the car maker.

Model factor; the car model.

Type factor; the exact model type.

Fuel factor; the type of fuel ("Diesel" or "Petrol").

Price numeric; the list price (in UK pounds)

Cylinders numeric; the number of cylinders in the engine.

Displacement numeric; the displacement of the engine (in cc).

DriveWheel factor; the type of drive wheel ("4WD", "Front" or "Rear").

BHP numeric; the power of the engine (in bhp).

Torque numeric; the torque of the engine (in lb/ft).

Acceleration numeric; the time it takes the car to get from 0 to 62 mph (in seconds).

TopSpeed numeric; the car’s top speed (in mph).

MPG numeric; the combined fuel consuption (urban + extra urban; in miles per gallon).

Weight numeric; the car’s curb weight (in kg).

Length numeric; the car’s length (in mm).

Width numeric; the car’s width (in mm).

Height numeric; the car’s height (in mm).

AdaptiveHeadlights factor; whether the car has adaptive headlights ("no", "optional" or "standard").

AdjustableSteering factor; whether the car has adjustable steering ("no" or "standard").

AlarmSystem factor; whether the car has an alarm system ("no/optional" or "standard").

Automatic factor; whether the car has an automatic transmission ("no", "optional" or "standard").

Bluetooth factor; whether the car has bluetooth ("no", "optional" or "standard").

ClimateControl factor; whether the car has climate control ("no", "optional" or "standard").

CruiseControl factor; whether the car has cruise control ("no", "optional" or "standard").

ElectricSeats factor; whether the car has electric seats ("no", "optional" or "standard").

Leather factor; whether the car has a leather interior ("no", "optional" or "standard").

ParkingSensors factor; whether the car has parking sensors ("no", "optional" or "standard").

PowerSteering factor; whether the car has power steering ("no" or "standard").

SatNav factor; whether the car has a satellite navigation system ("no", "optional" or "standard").

ESP factor; whether the car has ESP ("no", "optional" or "standard").

Verdict numeric; review score between 1 (lowest) and 10 (highest).

Origin factor; the origin of the car maker ("Asia", "Europe" or "USA").

Source

The data were scraped from http://www.topgear.com/uk/ on 2014-02-24. Variable Origin was
added based on the car maker information.

62 tsBlocks

Examples

data("TopGear")
summary(TopGear)

tsBlocks Construct predictor blocks for time series models

Description

Construct blocks of original and lagged values for autoregressive time series models with exogenous
inputs. The typical use case is to supply the output as newdata argument to the predict method of
robust groupwise least angle regression models.

Usage

tsBlocks(x, y, p = 2, subset = NULL, intercept = TRUE)

Arguments

x a numeric matrix or data frame containing the exogenous predictor series.

y a numeric vector containing the response series.

p an integer giving the number of lags to include (defaults to 2).

subset a logical or integer vector defining a subset of observations from which to con-
struct the matrix of predictor blocks.

intercept a logical indicating whether a column of ones should be added to the matrix of
predictor blocks to account for the intercept.

Value

A matrix containing blocks of original and lagged values of the time series y and x.

Author(s)

Andreas Alfons

See Also

predict.tslars, tslars, predict.tslarsP, tslarsP

tslars 63

tslars (Robust) least angle regression for time series data

Description

(Robustly) sequence groups of candidate predictors and their respective lagged values according to
their predictive content and find the optimal model along the sequence. Note that lagged values of
the response are included as a predictor group as well.

Usage

tslars(x, ...)

S3 method for class 'formula'
tslars(formula, data, ...)

Default S3 method:
tslars(
x,
y,
h = 1,
pMax = 3,
sMax = NA,
fit = TRUE,
s = c(0, sMax),
crit = "BIC",
ncores = 1,
cl = NULL,
model = TRUE,
...

)

rtslars(x, ...)

S3 method for class 'formula'
rtslars(formula, data, ...)

Default S3 method:
rtslars(
x,
y,
h = 1,
pMax = 3,
sMax = NA,
centerFun = median,
scaleFun = mad,
regFun = lmrob,

64 tslars

regArgs = list(),
combine = c("min", "euclidean", "mahalanobis"),
winsorize = FALSE,
const = 2,
prob = 0.95,
fit = TRUE,
s = c(0, sMax),
crit = "BIC",
ncores = 1,
cl = NULL,
seed = NULL,
model = TRUE,
...

)

Arguments

x a numeric matrix or data frame containing the candidate predictor series.

... additional arguments to be passed down.

formula a formula describing the full model.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which tslars or rtslars is called.

y a numeric vector containing the response series.

h an integer giving the forecast horizon (defaults to 1).

pMax an integer giving the maximum number of lags in the model (defaults to 3).

sMax an integer giving the number of predictor series to be sequenced. If it is NA
(the default), predictor groups are sequenced as long as there are twice as many
observations as predictor variables.

fit a logical indicating whether to fit submodels along the sequence (TRUE, the de-
fault) or to simply return the sequence (FALSE).

s an integer vector of length two giving the first and last step along the sequence
for which to compute submodels. The default is to start with a model containing
only an intercept (step 0) and iteratively add all series along the sequence (step
sMax). If the second element is NA, predictor groups are added to the model as
long as there are twice as many observations as predictor variables. If only one
value is supplied, it is recycled.

crit a character string specifying the optimality criterion to be used for selecting
the final model. Currently, only "BIC" for the Bayes information criterion is
implemented.

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all available
processor cores are used. For each lag length, parallel computing for obtaining
the data cleaning weights and for fitting models along the sequence is imple-
mented on the R level using package parallel. Otherwise parallel computing for

tslars 65

some of of the more computer-intensive computations in the sequencing step is
implemented on the C++ level via OpenMP (https://www.openmp.org/).

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for tasks that are parallelized on the R level, in which
case ncores is only used for tasks that are parallelized on the C++ level.

model a logical indicating whether the model data should be included in the returned
object.

centerFun a function to compute a robust estimate for the center (defaults to median).

scaleFun a function to compute a robust estimate for the scale (defaults to mad).

regFun a function to compute robust linear regressions that can be interpreted as weighted
least squares (defaults to lmrob).

regArgs a list of arguments to be passed to regFun.

combine a character string specifying how to combine the data cleaning weights from
the robust regressions with each predictor group. Possible values are "min"
for taking the minimum weight for each observation, "euclidean" for weights
based on Euclidean distances of the multivariate set of standardized residuals
(i.e., multivariate winsorization of the standardized residuals assuming indepen-
dence), or "mahalanobis" for weights based on Mahalanobis distances of the
multivariate set of standardized residuals (i.e., multivariate winsorization of the
standardized residuals).

winsorize a logical indicating whether to clean the data by multivariate winsorization.

const numeric; tuning constant for multivariate winsorization to be used in the initial
corralation estimates based on adjusted univariate winsorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in multi-
variate winsorization (defaults to 0.95).

seed optional initial seed for the random number generator (see .Random.seed),
which is useful because many robust regression functions (including lmrob) in-
volve randomness. On parallel R worker processes, random number streams are
used and the seed is set via clusterSetRNGStream.

Value

If fit is FALSE, an integer matrix in which each column contains the indices of the sequenced
predictor series for the corresponding lag length.

Otherwise an object of class "tslars" with the following components:

pFit a list containing the fits for the respective lag lengths (see tslarsP).

pOpt an integer giving the optimal number of lags.

pMax the maximum number of lags considered.

x the matrix of candidate predictor series (if model is TRUE).

y the response series (if model is TRUE).

call the matched function call.

https://www.openmp.org/

66 tslarsP

Note

The predictor group of lagged values of the response is indicated by the index 0.

Author(s)

Andreas Alfons, based on code by Sarah Gelper

References

Alfons, A., Croux, C. and Gelper, S. (2016) Robust groupwise least angle regression. Computa-
tional Statistics & Data Analysis, 93, 421–435. doi:10.1016/j.csda.2015.02.007

See Also

coef, fitted, plot, predict, residuals, tslarsP, lmrob

tslarsP (Robust) least angle regression for time series data with fixed lag
length

Description

(Robustly) sequence groups of candidate predictors and their respective lagged values according to
their predictive content and find the optimal model along the sequence. Note that lagged values of
the response are included as a predictor group as well.

Usage

tslarsP(x, ...)

S3 method for class 'formula'
tslarsP(formula, data, ...)

Default S3 method:
tslarsP(
x,
y,
h = 1,
p = 2,
sMax = NA,
fit = TRUE,
s = c(0, sMax),
crit = "BIC",
ncores = 1,
cl = NULL,
model = TRUE,
...

https://doi.org/10.1016/j.csda.2015.02.007

tslarsP 67

)

rtslarsP(x, ...)

S3 method for class 'formula'
rtslarsP(formula, data, ...)

Default S3 method:
rtslarsP(
x,
y,
h = 1,
p = 2,
sMax = NA,
centerFun = median,
scaleFun = mad,
regFun = lmrob,
regArgs = list(),
combine = c("min", "euclidean", "mahalanobis"),
winsorize = FALSE,
const = 2,
prob = 0.95,
fit = TRUE,
s = c(0, sMax),
crit = "BIC",
ncores = 1,
cl = NULL,
seed = NULL,
model = TRUE,
...

)

Arguments

x a numeric matrix or data frame containing the candidate predictor series.

... additional arguments to be passed down.

formula a formula describing the full model.

data an optional data frame, list or environment (or object coercible to a data frame
by as.data.frame) containing the variables in the model. If not found in data,
the variables are taken from environment(formula), typically the environment
from which tslarsP or rtslarsP is called.

y a numeric vector containing the response series.

h an integer giving the forecast horizon (defaults to 1).

p an integer giving the number of lags in the model (defaults to 2).

sMax an integer giving the number of predictor series to be sequenced. If it is NA
(the default), predictor groups are sequenced as long as there are twice as many
observations as predictor variables.

68 tslarsP

fit a logical indicating whether to fit submodels along the sequence (TRUE, the de-
fault) or to simply return the sequence (FALSE).

s an integer vector of length two giving the first and last step along the sequence
for which to compute submodels. The default is to start with a model containing
only an intercept (step 0) and iteratively add all series along the sequence (step
sMax). If the second element is NA, predictor groups are added to the model as
long as there are twice as many observations as predictor variables. If only one
value is supplied, it is recycled.

crit a character string specifying the optimality criterion to be used for selecting
the final model. Currently, only "BIC" for the Bayes information criterion is
implemented.

ncores a positive integer giving the number of processor cores to be used for parallel
computing (the default is 1 for no parallelization). If this is set to NA, all available
processor cores are used. For obtaining the data cleaning weights and for fitting
models along the sequence, parallel computing is implemented on the R level
using package parallel. Otherwise parallel computing for some of of the more
computer-intensive computations in the sequencing step is implemented on the
C++ level via OpenMP (https://www.openmp.org/).

cl a parallel cluster for parallel computing as generated by makeCluster. This is
preferred over ncores for tasks that are parallelized on the R level, in which
case ncores is only used for tasks that are parallelized on the C++ level.

model a logical indicating whether the model data should be included in the returned
object.

centerFun a function to compute a robust estimate for the center (defaults to median).

scaleFun a function to compute a robust estimate for the scale (defaults to mad).

regFun a function to compute robust linear regressions that can be interpreted as weighted
least squares (defaults to lmrob).

regArgs a list of arguments to be passed to regFun.

combine a character string specifying how to combine the data cleaning weights from
the robust regressions with each predictor group. Possible values are "min"
for taking the minimum weight for each observation, "euclidean" for weights
based on Euclidean distances of the multivariate set of standardized residuals
(i.e., multivariate winsorization of the standardized residuals assuming indepen-
dence), or "mahalanobis" for weights based on Mahalanobis distances of the
multivariate set of standardized residuals (i.e., multivariate winsorization of the
standardized residuals).

winsorize a logical indicating whether to clean the data by multivariate winsorization.

const numeric; tuning constant for multivariate winsorization to be used in the initial
corralation estimates based on adjusted univariate winsorization (defaults to 2).

prob numeric; probability for the quantile of the χ2 distribution to be used in multi-
variate winsorization (defaults to 0.95).

seed optional initial seed for the random number generator (see .Random.seed),
which is useful because many robust regression functions (including lmrob) in-
volve randomness. On parallel R worker processes, random number streams are
used and the seed is set via clusterSetRNGStream.

https://www.openmp.org/

tslarsP 69

Value

If fit is FALSE, an integer vector containing the indices of the sequenced predictor series.

Otherwise an object of class "tslarsP" (inheriting from classes "grplars" and "seqModel") with
the following components:

active an integer vector containing the sequence of predictor series.

s an integer vector containing the steps for which submodels along the sequence have been com-
puted.

coefficients a numeric matrix in which each column contains the regression coefficients of the
corresponding submodel along the sequence.

fitted.values a numeric matrix in which each column contains the fitted values of the corre-
sponding submodel along the sequence.

residuals a numeric matrix in which each column contains the residuals of the corresponding
submodel along the sequence.

df an integer vector containing the degrees of freedom of the submodels along the sequence (i.e.,
the number of estimated coefficients).

robust a logical indicating whether a robust fit was computed.

scale a numeric vector giving the robust residual scale estimates for the submodels along the
sequence (only returned for a robust fit).

crit an object of class "bicSelect" containing the BIC values and indicating the final model
(only returned if argument crit is "BIC" and argument s indicates more than one step along
the sequence).

muX a numeric vector containing the center estimates of the predictor variables.

sigmaX a numeric vector containing the scale estimates of the predictor variables.

muY numeric; the center estimate of the response.

sigmaY numeric; the scale estimate of the response.

x the matrix of candidate predictor series (if model is TRUE).

y the response series (if model is TRUE).

assign an integer vector giving the predictor group to which each predictor variable belongs.

w a numeric vector giving the data cleaning weights (only returned for a robust fit).

h the forecast horizon.

p the number of lags in the model.

call the matched function call.

Note

The predictor group of lagged values of the response is indicated by the index 0.

Author(s)

Andreas Alfons, based on code by Sarah Gelper

70 weights.sparseLTS

References

Alfons, A., Croux, C. and Gelper, S. (2016) Robust groupwise least angle regression. Computa-
tional Statistics & Data Analysis, 93, 421–435. doi:10.1016/j.csda.2015.02.007

See Also

coef, fitted, plot, predict, residuals, rstandard, tslars, lmrob

weights.sparseLTS Extract outlier weights from sparse LTS regression models

Description

Extract binary weights that indicate outliers from sparse least trimmed squares regression models.

Usage

S3 method for class 'sparseLTS'
weights(
object,
type = "robustness",
s = NA,
fit = c("reweighted", "raw", "both"),
drop = !is.null(s),
...

)

Arguments

object the model fit from which to extract outlier weights.

type the type of weights to be returned. Currently only robustness weights are imple-
mented ("robustness").

s an integer vector giving the indices of the models for which to extract outlier
weights. If fit is "both", this can be a list with two components, with the first
component giving the indices of the reweighted fits and the second the indices
of the raw fits. The default is to use the optimal model for each of the requested
estimators. Note that the optimal models may not correspond to the same value
of the penalty parameter for the reweighted and the raw estimator.

fit a character string specifying for which estimator to extract outlier weights. Pos-
sible values are "reweighted" (the default) for weights indicating outliers from
the reweighted fit, "raw" for weights indicating outliers from the raw fit, or
"both" for the outlier weights from both estimators.

drop a logical indicating whether to reduce the dimension to a vector in case of only
one model.

... currently ignored.

https://doi.org/10.1016/j.csda.2015.02.007

weights.sparseLTS 71

Value

A numeric vector or matrix containing the requested outlier weights.

Note

The weights are 1 for observations with reasonably small residuals and 0 for observations with large
residuals.

Author(s)

Andreas Alfons

See Also

sparseLTS

Examples

generate data
example is not high-dimensional to keep computation time low
library("mvtnorm")
set.seed(1234) # for reproducibility
n <- 100 # number of observations
p <- 25 # number of variables
beta <- rep.int(c(1, 0), c(5, p-5)) # coefficients
sigma <- 0.5 # controls signal-to-noise ratio
epsilon <- 0.1 # contamination level
Sigma <- 0.5^t(sapply(1:p, function(i, j) abs(i-j), 1:p))
x <- rmvnorm(n, sigma=Sigma) # predictor matrix
e <- rnorm(n) # error terms
i <- 1:ceiling(epsilon*n) # observations to be contaminated
e[i] <- e[i] + 5 # vertical outliers
y <- c(x %*% beta + sigma * e) # response
x[i,] <- x[i,] + 5 # bad leverage points

sparse LTS over a grid of values for lambda
fit model
frac <- seq(0.2, 0.05, by = -0.05)
fitGrid <- sparseLTS(x, y, lambda = frac, mode = "fraction")
extract outlier weights
weights(fitGrid)
head(weights(fitGrid, fit = "both"))
head(weights(fitGrid, s = NULL))
head(weights(fitGrid, fit = "both", s = NULL))

72 winsorize

winsorize Data cleaning by winsorization

Description

Clean data by means of winsorization, i.e., by shrinking outlying observations to the border of the
main part of the data.

Usage

winsorize(x, ...)

Default S3 method:
winsorize(

x,
standardized = FALSE,
centerFun = median,
scaleFun = mad,
const = 2,
return = c("data", "weights"),
...

)

S3 method for class 'matrix'
winsorize(
x,
standardized = FALSE,
centerFun = median,
scaleFun = mad,
const = 2,
prob = 0.95,
tol = .Machine$double.eps^0.5,
return = c("data", "weights"),
...

)

S3 method for class 'data.frame'
winsorize(x, ...)

Arguments

x a numeric vector, matrix or data frame to be cleaned.

... for the generic function, additional arguments to be passed down to methods.
For the "data.frame" method, additional arguments to be passed down to the
"matrix" method. For the other methods, additional arguments to be passed
down to robStandardize.

winsorize 73

standardized a logical indicating whether the data are already robustly standardized.

centerFun a function to compute a robust estimate for the center to be used for robust
standardization (defaults to median). Ignored if standardized is TRUE.

scaleFun a function to compute a robust estimate for the scale to be used for robust stan-
dardization (defaults to mad). Ignored if standardized is TRUE.

const numeric; tuning constant to be used in univariate winsorization (defaults to 2).

return character string; if standardized is TRUE, this specifies the type of return value.
Possible values are "data" for returning the cleaned data, or "weights" for
returning data cleaning weights.

prob numeric; probability for the quantile of the χ2 distribution to be used in multi-
variate winsorization (defaults to 0.95).

tol a small positive numeric value used to determine singularity issues in the compu-
tation of correlation estimates based on bivariate winsorization (see corHuber).

Details

The borders of the main part of the data are defined on the scale of the robustly standardized data. In
the univariate case, the borders are given by +/−const, thus a symmetric distribution is assumed.
In the multivariate case, a normal distribution is assumed and the data are shrunken towards the
boundary of a tolerance ellipse with coverage probability prob. The boundary of this ellipse is
thereby given by all points that have a squared Mahalanobis distance equal to the quantile of the χ2

distribution given by prob.

Value

If standardize is TRUE and return is "weights", a set of data cleaning weights. Multiplying each
observation of the standardized data by the corresponding weight yields the cleaned standardized
data.

Otherwise an object of the same type as the original data x containing the cleaned data is returned.

Note

Data cleaning weights are only meaningful for standardized data. In the general case, the data
need to be standardized first, then the data cleaning weights can be computed and applied to the
standardized data, after which the cleaned standardized data need to be backtransformed to the
original scale.

Author(s)

Andreas Alfons, based on code by Jafar A. Khan, Stefan Van Aelst and Ruben H. Zamar

References

Khan, J.A., Van Aelst, S. and Zamar, R.H. (2007) Robust linear model selection based on least angle
regression. Journal of the American Statistical Association, 102(480), 1289–1299. doi:10.1198/
016214507000000950

https://doi.org/10.1198/016214507000000950
https://doi.org/10.1198/016214507000000950

74 winsorize

See Also

corHuber

Examples

generate data
set.seed(1234) # for reproducibility
x <- rnorm(10) # standard normal
x[1] <- x[1] * 10 # introduce outlier

winsorize data
x
winsorize(x)

Index

∗ array
standardize, 59

∗ datasets
TopGear, 60

∗ hplot
coefPlot, 9
critPlot, 13
diagnosticPlot, 15
plot.seqModel, 34

∗ multivariate
corHuber, 11

∗ package
robustHD-package, 2

∗ regression
AIC.seqModel, 4
coef.seqModel, 6
fitted.seqModel, 19
getScale, 21
grplars, 22
predict.seqModel, 35
residuals.seqModel, 38
rlars, 40
rstandard.seqModel, 44
sparseLTS, 54
tslars, 63
tslarsP, 66
weights.sparseLTS, 70

∗ robust
corHuber, 11
grplars, 22
lambda0, 27
rlars, 40
sparseLTS, 54
tslars, 63
tslarsP, 66
winsorize, 72

∗ ts
tsBlocks, 62
tslars, 63

tslarsP, 66
∗ utilities

lambda0, 27
partialOrder, 30
perry.seqModel, 31
setupCoefPlot, 46
setupCritPlot, 48
setupDiagnosticPlot, 51

.Random.seed, 25, 32, 42, 57, 65, 68

AIC, 5, 6, 22
AIC.seqModel, 4
AIC.sparseLTS (AIC.seqModel), 4
as.data.frame, 24, 41, 55, 64, 67

BIC.seqModel (AIC.seqModel), 4
BIC.sparseLTS (AIC.seqModel), 4
bootControl, 32
bootSamples, 32

cellLineInfo (nci60), 29
clusterSetRNGStream, 25, 32, 42, 57, 65, 68
coef, 8, 26, 36, 43, 58, 66, 70
coef.grplars (coef.seqModel), 6
coef.perrySeqModel (coef.seqModel), 6
coef.rlars (coef.seqModel), 6
coef.seqModel, 6
coef.sparseLTS (coef.seqModel), 6
coef.tslars (coef.seqModel), 6
coef.tslarsP (coef.seqModel), 6
coefPlot, 9, 34, 35, 48
corHuber, 11, 27, 73, 74
cost, 24, 32, 33, 42, 56
covMcd, 17, 18, 52, 53
critPlot, 13, 34, 35, 50
cvFolds, 32

devAskNewPage, 17
diagnosticPlot, 15, 34, 35, 53

facet_grid, 10, 17

75

76 INDEX

facet_wrap, 10, 17
fitted, 20, 26, 43, 58, 66, 70
fitted.grplars (fitted.seqModel), 19
fitted.perrySeqModel (fitted.seqModel),

19
fitted.rlars (fitted.seqModel), 19
fitted.seqModel, 19
fitted.sparseLTS (fitted.seqModel), 19
fitted.tslars (fitted.seqModel), 19
fitted.tslarsP (fitted.seqModel), 19
foldControl, 32

gene (nci60), 29
geneInfo (nci60), 29
geom_boxplot, 14
geom_density, 14
geom_line, 9, 14
geom_point, 9, 16
geom_pointrange, 14
getScale, 21
ggplot, 10, 14, 15, 18, 34
grplars, 8, 10, 15, 18, 20, 22, 35, 37, 39, 45,

48, 50, 53

h.alpha.n, 18, 52

lambda0, 27
lmrob, 22, 25, 26, 41–43, 65, 66, 68, 70
ltsReg, 22, 58

mad, 12, 25, 41, 60, 65, 68, 73
makeCluster, 25, 32, 42, 57, 65, 68
mean, 59, 60
median, 12, 25, 41, 60, 65, 68, 73

nci60, 29

order, 31

partialOrder, 30
perry, 24, 33, 42
perry.rlars (perry.seqModel), 31
perry.seqModel, 31
perry.sparseLTS (perry.seqModel), 31
perryPlot, 14, 15
perrySelect, 24, 42
perryTuning, 25, 56, 57
plot, 26, 43, 58, 66, 70
plot.grplars (plot.seqModel), 34
plot.lts, 18

plot.perrySeqModel (plot.seqModel), 34
plot.perrySparseLTS (plot.seqModel), 34
plot.rlars (plot.seqModel), 34
plot.seqModel, 34
plot.sparseLTS (plot.seqModel), 34
plot.tslars (plot.seqModel), 34
plot.tslarsP (plot.seqModel), 34
predict, 26, 33, 37, 43, 58, 62, 66, 70
predict.grplars (predict.seqModel), 35
predict.rlars (predict.seqModel), 35
predict.seqModel, 35
predict.sparseLTS (predict.seqModel), 35
predict.tslars, 62
predict.tslars (predict.seqModel), 35
predict.tslarsP, 62
predict.tslarsP (predict.seqModel), 35
print.grplars (grplars), 22
print.rlars (rlars), 40
print.sparseLTS (sparseLTS), 54
print.tslars (tslars), 63
print.tslarsP (tslarsP), 66
protein (nci60), 29
proteinInfo (nci60), 29

randomSplits, 32
residuals, 26, 39, 43, 45, 58, 66, 70
residuals.grplars (residuals.seqModel),

38
residuals.perrySeqModel

(residuals.seqModel), 38
residuals.rlars (residuals.seqModel), 38
residuals.seqModel, 38
residuals.sparseLTS

(residuals.seqModel), 38
residuals.tslars (residuals.seqModel),

38
residuals.tslarsP (residuals.seqModel),

38
rgrplars, 8, 10, 15, 18, 20, 35, 37, 39, 45, 48,

50, 53
rgrplars (grplars), 22
rlars, 6, 8, 10, 15, 18, 20, 22, 33, 35, 37, 39,

40, 45, 48, 50, 53
rlm, 22
robStandardize, 12, 27, 41, 72
robStandardize (standardize), 59
robustHD-package, 2
rstandard, 26, 38, 39, 43, 45, 58, 70

INDEX 77

rstandard.grplars (rstandard.seqModel),
44

rstandard.perrySeqModel
(rstandard.seqModel), 44

rstandard.rlars (rstandard.seqModel), 44
rstandard.seqModel, 44
rstandard.sparseLTS

(rstandard.seqModel), 44
rstandard.tslars (rstandard.seqModel),

44
rstandard.tslarsP (rstandard.seqModel),

44
rtslars, 8, 10, 15, 18, 20, 35, 37, 39, 45, 48,

50, 53
rtslars (tslars), 63
rtslarsP, 8, 10, 15, 18, 20, 35, 37, 39, 45, 48,

50, 53
rtslarsP (tslarsP), 66

scale, 60
sd, 59, 60
setupCoefPlot, 46
setupCritPlot, 14, 48
setupDiagnosticPlot, 16, 18, 51
sparseLTS, 6, 8, 10, 15, 18, 20, 22, 28, 33, 35,

37, 39, 45, 48, 50, 52, 53, 54, 71
splitControl, 32
standardize, 59
sweep, 60

TopGear, 60
tsBlocks, 62
tslars, 8, 10, 15, 18, 20, 35, 37, 39, 45, 48,

50, 53, 62, 63, 70
tslarsP, 8, 10, 15, 18, 20, 35, 37, 39, 45, 48,

50, 53, 62, 65, 66, 66

weights, 17, 58
weights.sparseLTS, 70
winsorize, 13, 28, 72

	robustHD-package
	AIC.seqModel
	coef.seqModel
	coefPlot
	corHuber
	critPlot
	diagnosticPlot
	fitted.seqModel
	getScale
	grplars
	lambda0
	nci60
	partialOrder
	perry.seqModel
	plot.seqModel
	predict.seqModel
	residuals.seqModel
	rlars
	rstandard.seqModel
	setupCoefPlot
	setupCritPlot
	setupDiagnosticPlot
	sparseLTS
	standardize
	TopGear
	tsBlocks
	tslars
	tslarsP
	weights.sparseLTS
	winsorize
	Index

