Package 'rMOST'

November 9, 2023
Title Estimates Pareto-Optimal Solution for Hiring with 3 Objectives
Version 1.0.1
Description Estimates Pareto-optimal solution for personnel selection with 3 objectives using Normal Boundary Intersection (NBI) algorithm introduced by Das and Dennis (1998) doi:10.1137/S1052623496307510. Takes predictor intercorrelations and predictor-objective relations as input and generates a series of solutions containing predictor weights as output. Accepts between 3 and 10 selection predictors. Maximum 2 objectives could be adverse impact objectives. Partially modeled after De Corte (2006) TROFSS Fortran program https://users.ugent.be/~wdecorte/trofss.pdf and updated from 'ParetoR' package described in Song et al. (2017)
doi:10.1037/apl0000240. For details, see Study 3 of Zhang et al. (2023).
License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.1
Suggests knitr, rmarkdown, testthat ($>=$ 3.0.0)
VignetteBuilder knitr
Imports graphics, grDevices, nloptr, stats
Config/testthat/edition 3
NeedsCompilation no
Author Chelsea Song [aut, cre] (https://orcid.org/0000-0003-0910-1281),
Yesuel Kim [ctb] (https://orcid.org/0000-0002-8486-7693)
Maintainer Chelsea Song qianqisong@gmail.com
Repository CRAN
Date/Publication 2023-11-08 23:00:02 UTC

R topics documented:

```
MOST2
```

ParetoR_1C_2AIR 4
ParetoR_2C 4
ParetoR_2C_1AIR 5
ParetoR_3C 6
Index 7

MOST

Description

Optimizes 3 objectives with normal boundary intersection algorithm

Usage

MOST(optProb, Rx, Rxy1, Rxy2, Rxy3, sr, prop1, prop2, d1, d2, Spac = 10)

Arguments

optProb Optimization problem. "3C" = no adverse impact objectives and three nonadverse impact objectives; "2C_1AI" = one adverse impact objective and two non-adverse impact objectives; "1C_2AI" = two adverse impact objectives and one non-adverse impact objective.
Rx Predictor intercorrelation matrix
Rxy1 Needs to specify for all three types of optimization problems (optProb). Predictor criterion-related validity for non-adverse impact objective 1 (i.e., correlation between each predictor and non-adverse impact objective 1)
Rxy2 Only specify if optimization problem is "3C" or "2C_1AI". Predictor criterionrelated validity for non-adverse impact objective 2 (i.e., correlation between each predictor and non-adverse impact objective 2)
Rxy3 Only specify if optimization problem is " 3 C ". Predictor criterion-related validity for non-adverse impact objective 3 (i.e., correlation between each predictor and non-adverse impact objective 3)
sr Only specify if optimization problem is "2C_1AI" or "1C_2AI". Overall selection ratio.
prop1 Only specify if optimization problem is "2C_1AI" or "1C_2AI". Proportion of minorityl in the applicant pool; prop1 = (\# of minorityl applicants) $/($ total $\#$ of applicants)
prop2 Only specify if optimization problem is "1C_2AI". Proportion of minority2 in the applicant pool; prop2 = (\# of minority2 applicants)/(total \# of applicants)
d1 Only specify if optimization problem is "2C_1AI" or "1C_2AI". Vector of standardized group-mean differences between majority and minority 1 for each predictor; $\mathrm{d} 1=$ avg_majority $-\operatorname{avg}$ minority 1
d2
Only specify if optimization problem is "1C_2AI". Vector of standardized groupmean differences between majority and minority 2 for each predictor; $\mathrm{d} 2=$ avg_majority - avg_minority2
Spac Determines the number of solutions.

Details

\# Inputs required by optimization problems Different types of optimization problems require different input parameters: * optProb $=$ " $3 \mathrm{C} ": \operatorname{MOST}$ (optProb, Rx, Rxy1, Rxy2, Rxy3) * optProb $=$ "2C_1AI": MOST(optProb, Rx, Rxy1, Rxy2, sr, prop1, d1) * optProb = "1C_2AI": MOST(optProb, Rx, Rxy1, sr, prop1, d1, prop2, d2)
\# Notes regarding the inputs * For personnel selection applications, all predictor-intercorrelations and criterion-related validity inputs should be corrected for range restriction and criterion unreliability to reflect the relations in the applicant sample. * For optimization problems with 2 adverse impact objectives (i.e., optProb = "1C_2AI"), d1 and d2 should be the standardized mean difference between a minority group and the same reference group (e.g., Black-White and Hispanic-White, not Black-White and female-male)
\# Optimization * Optimization may take several minutes to run. * Optimization may fail in some applications due to non-convergence.

For more details, please consult the vignette.

Value

Pareto-Optimal solutions with objective values (e.g., C1, AI1) and the corresponding predictor weights (e.g., P1, P2)

Examples

```
# A sample optimization problem with 3 non-adverse impact objectives and 3 predictors
# For more examples, please consult the vignette.
# Specify inputs
# Predictor inter-correlation matrix (Rx)
Rx <- matrix(c(1, . 50, . 50,
    .50, 1, .50,
    .50, .50, 1), 3, 3)
# Predictor-objective relation vectors (Rxy1, Rxy2, Rxy3)
# Criterion-related validities
## Criterion 1
Rxy1 <- c(-.30, 0, . 30)
## Criterion 2
Rxy2 <- c(0, . 30, -. 30)
## Criterion 3
Rxy3 <- c(.30, -.30, 0)
# Get Pareto-optimal solutions
out <- MOST(optProb = "3C", Rx = Rx, Rxy1 = Rxy1, Rxy2 = Rxy2, Rxy3 = Rxy3, Spac = 10)
out
```

```
ParetoR_1C_2AIR ParetoR_1C_2AIR
```


Description

Command function to optimize 1 non-adverse impact objective and 2 adverse impact objectives via NBI algorithm

Usage

ParetoR_1C_2AIR(sr, prop1, prop2, Rx, Rxy1, d1, d2, Spac = 10)

Arguments

sr Selection ratio in the full applicant pool
prop1 Proportion of minority1 applicants in the full applicant pool
prop2 Proportion of minority2 applicants in the full applicant pool
Rx Matrix with intercorrelations among predictors
Rxy1 Vector with correlation between each predictor and the non-adverse impact objective
d1 Subgroup difference 1; standardized mean differences between minority1 and majority subgroups on each predictor in full applicant pool
d2 Subgroup difference 2; standardized mean differences between minority 2 and majority subgroups on each predictor in full applicant pool

Spac Number of solutions

Value

out Pareto-Optimal solution with objective outcome values (Criterion) and predictor weights (ParetoWeights)
ParetoR_2C ParetoR_2C

Description

Command function to optimize 2 non-adverse impact objectives via NBI algorithm

Usage

ParetoR_2C(Rx, Rxy1, Rxy2, Spac = 10, graph = TRUE)

Arguments

Rx	Matrix with intercorrelations among predictors
Rxy1	Vector with correlation between each predictor and non-adverse impact objec- tive 1
Rxy2	Vector with correlation between each predictor and non-adverse impact objec- tive 2
Spac	Number of Pareto points
graph	If TRUE, plots will be generated for Pareto-optimal curve and predictor weights

Value

out Pareto-Optimal solution with objective outcome values (Criterion) and predictor weights (ParetoWeights)

```
ParetoR_2C_1AIR ParetoR_2C_1AIR
```


Description

Command function to optimize 2 non-adverse impact objectives and 1 adverse impact objective via NBI algorithm

Usage

ParetoR_2C_1AIR(Rx, Rxy1, Rxy2, sr, prop1, d1, Spac = 10)

Arguments

Rx	Matrix with intercorrelations among predictors
Rxy1	Vector with correlation between each predictor and non-adverse impact objec- tive 1
Rxy2	Vector with correlation between each predictor and non-adverse impact objec- tive 2
sr	Selection ratio in full applicant pool
prop1	Proportion of minority applicants in full applicant pool d1
Subgroup difference; standardized mean differences between minority and ma- jority subgroups on each predictor in full applicant pool	
Spac	Number of Pareto points

Value

out Pareto-Optimal solution with objective outcome values (Criterion) and predictor weights (ParetoWeights)

```
ParetoR_3C ParetoR_3C
```


Description

Command function to optimize 3 non-adverse impact objectives via NBI algorithm

Usage

ParetoR_3C(Rx, Rxy1, Rxy2, Rxy3, Spac = 10)

Arguments

Rx	Matrix with intercorrelations among predictors
Rxy1	Vector with correlation between each predictor and non-adverse impact objec- tive 1
Rxy2	Vector with correlation between each predictor and non-adverse impact objec- tive 2
Rxy3	Vector with correlation between each predictor and non-adverse impact objec- tive 3
Spac	Number of solutions

Value

out Pareto-Optimal solution with objective outcome values (Criterion) and predictor weights (ParetoWeights)

Index

MOST, 2
ParetoR_1C_2AIR, 4
ParetoR_2C, 4
ParetoR_2C_1AIR, 5
ParetoR_3C, 6

