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Abstract

This short paper serves as a vignette for the R package “prac-

ticalSigni” describing the usage of pvTarald() and qTarald(), re-

spectively, for computing the p-values and quantiles of Taraldsen’s

new exact sampling distribution of Pearson correlation coefficient and

its generalized versions. A new table allows practitioners to see one-

sided critical values from Taraldsen’s (2023) exact sampling distri-

bution, which generalizes Fisher’s z-transform. It computes p-values

and quantiles for the arbitrary hypothesized value of the population

correlation coefficient, ρ ∈ [−1, 1].
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1 Introduction

Since sample correlation coefficient rij from a bivariate normal parent has a

non-normal distribution, Sir R. A. Fisher developed his famous z-transformation

in the 1920s. He proved that the following transformed statistic rTij is ap-

proximately normal with a stable variance,

rTij = (1/2) log
(1 + rij)

(1− rij)
∼ N(0, 1/n), (1)

provided rij ̸= 1. Recent work has developed the exact sampling distribution

of rij. This short paper directly computes a confidence interval for the arbi-

trary hypothesized value ρ ∈ [−1, 1] of the population correlation coefficient.

Let r be the empirical correlation of a random sample of size n from a

bivariate normal parent. Fisher’s famous z-transformation was extended by

C. R. Rao in 1973. Unfortunately, Rao’s elegant derivation is impractical

to implement computationally, according to Taraldsen (2023). Taraldsen’s

Theorem 2.1 provides a computable exact density with v = (n− 1) > 1 as

f(ρ|r, v) = v(v−1)Γ(v−1))√
(2π)Γ(v+0.5)

(1− r2)
v−1
2 (1− ρ2)

v−2
2 (1− rρ)

1−2v
2 (2)

F (3
2
;−0.5; v + 0.5; 1+rρ

2
),

where F(.;.;.;.) denotes the Gaussian hypergeometric function, available in

the R package hypergeom by R.K.S Hankin. Our code computes (2) over a

grid of r values used in constructing our Table 1 and Figures 1 and 2 below.
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The first term, called ‘Trm1’ in our algorithm pvTarald(.) inside the

package’s code, involves a ratio of two gamma (factorial) functions appear-

ing in (2). For n > 164, each gamma becomes infinitely large, and ‘Trm1’

becomes ‘NaN’ or not a number. Hence, our code replaces (Winsorizes)

expression involving Γ(n− 1) for n > 164 by Γ(163).

Assuming that the data come from a bivariate normal parent, the sam-

pling distribution of any correlation coefficient is (2). Hence, the sampling

distribution of unequal off-diagonal elements of the matrix of generalized cor-

relations R∗ based on Vinod (2014) also follows (2). Vinod (2021) and its

eight vignettes describe an R package for computing elements of the general-

ized correlation matrix R∗. One uses the function gmcmtx0(mtx) if the data

are in the form of a matrix denoted as ‘mtx.’ If, on the other hand, there

are two data columns (x, y), the R function is rstar(x, y), which further

provides p-values using Fisher’s z-transform.

When we test the null hypothesis H0 : ρ = 0, the relevant sampling

distribution is obtained by plugging ρ = 0 in (2), depicted in Figure 1, for

two selected sample sizes. Both distributions are centered at the null value

ρ = 0.

We obtain a two-tail (95%, say) confidence interval by using the sam-

pling distribution’s 2.5% and 97.5% quantiles. If the observed correlation

coefficient r is inside the confidence interval, we say that the observed r

is statistically insignificant, because it could have arisen from a population

where the null value ρ = 0 holds.
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Figure 1: Taraldsen’s exact sampling density of a correlation coefficient under
the null of ρ = 0, solid line n=50, dashed line n=15
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Similarly, one can test the nonzero null hypothesis H0 : ρ = 0.5 using the

equation obtained by plugging ρ = 0.5 in (2) depicted in Figure 2.

Figures 1 and 2 show that the formula (2) and our numerical implementa-

tion are ready for practical use. These exact densities depend on the sample

size and the population correlation coefficient, −1 ≤ ρ ≤ 1. Given any hy-

pothesized ρ and sample size, our computer algorithm computes the exact

density, similar to Figures 1 and 2. Suppose we wish to help typical practi-

tioners who want the tail areas helpful in testing the null hypothesis ρ = 0.

Then, we need to create a table of a set of typical quantiles evaluated at spe-

cific cumulative probabilities and a corresponding selected set of standard

sample sizes with a fixed ρ = 0.

Because of the complicated form of the density (2), it is not surprising that

its (cumulative) distribution function
∫ r

−1
f(ρ|r, v) by analytical methods is

4



Figure 2: Taraldsen’s exact sampling density of correlation coefficient under
the null of ρ = 0.5, solid line n=50, dashed line n=15
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not available in the literature. Hence, let us compute cumulative probabilities

by numerical integration defined as the rescaled area under the curve f(r, v)

for specified ρ. See Figure 1 for two choices of v(= n − 1) for sample sizes

(n=50, 15) and ρ = 0. The cumulative probability becomes a sum of rescaled

areas of small-width rectangles whose heights are determined by the curve

tracing f(r, v). The accuracy of numerical approximation to the area is better

the larger the number of rectangles (i.e., finer the evaluation grid’s width).

We use r ∈ [−1, 1] sequence created by the R command r=seq(-1,1,

by =0.001), yielding 2001 rectangles. Denote the height of f(r, v) by Hf =

Hf(r,v). Now, the area between any two r ∈ [−1, 1] limits, say rLo and rUp,

is a summation of areas (height times width=0.001) of all rectangles. Now,
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the cumulative probabilities in the range are

ΣrUp
rLo

Hf/Σ
1
−1Hf , (3)

where the common width cancels, and where the denominator Σ1
−1Hf con-

verts the rectangle areas into probabilities. More generally, we can use nu-

merical densities f(ρ, r, v) for any hypothesized null value of ρ ∈ [−1, 1].

Thus, we have a numerical approximation to the exact (cumulative) dis-

tribution function under the bivariate normality of the parent,

F (ρ, r, v) =

∫ r

−1

f(ρ|r, v).

The transform from f(.) to F (.) is called the probability integral transform,

and its inverse F−1(c|ρ, v) gives relevant correlation coefficients r as quantiles

for specified cumulative probability c or “cum” as the argument. A computer

algorithm to find such quantiles qTarald(n, rho, cum) is included in the

package practicalSigni.

The computable version of the exact F−1(c|ρ, v) allows the construction

of confidence intervals based on quantiles for each ρ and sample size. For

example, a 95% two-tail confidence interval uses the 2.5% quantile F−1(c =

0.025) as the lower limit, and 97.5% quantile F−1(c = 0.975) as the upper

limit. These limits depend on hypothesized ρ and sample size. Since ρ = 0 is

a common null hypothesis for correlation coefficients, let us provide a table

of F−1(c) quantiles for eleven sample sizes (listed in row names) and eight
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cumulative probabilities listed in column titles of Table 1.

The p-values in statistical inference are defined as the probability of ob-

serving the random variable (correlation coefficient) as extreme or more ex-

treme than the observed value of the correlation coefficient r for a given null

value ρ = 0. Any one-tail p-values based on f(ρ|r, v) of (2) for arbitrary

nonzero “null” values of ρ can be similarly computed by numerical integra-

tion defined as the area under the curve.

Table 1: Critical values for powerful one-sided tests for Pearson’s r(i,j) when
ρ = 0. We report quantiles evaluated at specified cumulative probabilities
(c=.) using Taraldsen’s exact sampling distribution for various sample sizes.

c= c=
c=0.01 0.025 c=0.05 c=0.1 c=0.9 c=0.95 0.975 c=0.99

n=5 -0.83 -0.75 -0.67 -0.55 0.55 0.67 0.75 0.83
n=10 -0.66 -0.58 -0.50 -0.40 0.40 0.50 0.58 0.66
n=15 -0.56 -0.48 -0.41 -0.33 0.33 0.41 0.48 0.56
n=20 -0.49 -0.42 -0.36 -0.28 0.28 0.36 0.42 0.49
n=25 -0.44 -0.38 -0.32 -0.26 0.26 0.32 0.38 0.44
n=30 -0.41 -0.35 -0.30 -0.23 0.23 0.30 0.35 0.41
n=40 -0.36 -0.30 -0.26 -0.20 0.20 0.26 0.30 0.36
n=70 -0.27 -0.23 -0.20 -0.15 0.15 0.20 0.23 0.27
n=90 -0.24 -0.20 -0.17 -0.14 0.14 0.17 0.20 0.24
n=100 -0.23 -0.20 -0.16 -0.13 0.13 0.16 0.20 0.23
n=150 -0.19 -0.16 -0.13 -0.10 0.10 0.13 0.16 0.19

For the convenience of practitioners, we explain how to use the cumulative

probabilities in Table 1 in the context of testing the null hypothesis ρ = 0. A

close look at Table 1 confirms that the distribution is symmetric around ρ =

0, as in Figure 1. Let us consider some examples. If n=100, the critical value

from Table 1 for a one-tail 95% test is 0.16 (line n=100, column c=0.95). Let
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the observed positive r be 0.3. Since r exceeds the critical value (r > 0.16),

we reject ρ = 0. If n=25, the critical value for a 5% left tail in Table 1 is

−0.32. If the observed r = −0.44 is more extreme than the critical value

−0.32, it implies that the observed r falls (outside the confidence interval) in

the left tail. Hence, we reject ρ = 0 to conclude that the observed r = −0.44

is significantly negative.

Table 1 can also be used as follows for constructing two-tail 95% confi-

dence intervals. If the sample size is 30, we see along the row n=30, that col-

umn c=0.025 gives −0.35 as the lower confidence limit, and column c=0.975

gives 0.35 as the upper confidence limit. In other words, for n=30, any

correlation coefficient smaller than 0.35 in absolute value is statistically in-

significant.

1.1 Confidence Intervals Without Normality

Now, we outline the basic idea behind using bootstrap replicated data to con-

struct sampling distribution elements without assuming bivariate normality.

The method is well known and applies to Pearson’s correlation coefficient

and generalizations.

A bootstrap creates a large number J = 999, say, versions of data

(Xiℓ, Xjℓ) variables. They are identified by a marker (ℓ = 1, . . . J). We use

the maximum entropy bootstrap (R package meboot) designed for depen-

dent data, Vinod and López-de-Lacalle (2009). Each version of data from

a maximum entropy density yields a new Pearson correlation r(ij; ℓ) and
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generalized correlation r∗(i|j; ℓ), r∗(j|i; ℓ) values. The large set of J repli-

cates of these correlations gives a numerical approximation to the sampling

distribution of these correlations. Note that such a bootstrap sampling dis-

tribution is data-driven. It does not assume bivariate normality needed for

the construction of Table 1 based on (2).

The sampling distribution is empirically realized by sorting the replicated

correlations from the smallest to the largest. Sorting yields their “order

statistics” by inserting parentheses around ℓ as r(ij; (ℓ)), r∗(i|j; (ℓ)), and

r∗(j|i; (ℓ)). The smallest value is identified by (ℓ = 1) and the largest by (ℓ =

J). By definition, a left-tail 95% confidence interval leaves a 5% probability

mass in the left tail. The resulting approximate 95% left tail interval when

J = 999 starts at the 50-th order statistic and ends at unity, [rij; (50)), 1].

If the hypothesized ρ = 0 is inside the one-tail interval, one fails to reject

(accept) the null hypothesis H0 : ρ = 0. Two-sided 95% intervals start at

the 25th order statistic and end at the 975-th order statistic described above

when J = 999.

The tabulation of Taraldsen’s exact sampling distribution of correlation

coefficients in Table 1 is new and deserves greater attention. It is an im-

provement over standard significance tests of correlation coefficients based

on Fisher’s z-transform, especially for a nonzero null hypothesis on ρ.
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2 Examples & Tests

This section considers some examples and tests for illustration of the soft-

ware. Our first example deals with fuel economy in automobile design. R

software comes with ‘mtcars’ data on ten aspects of automobile design and

performance for 32 automobiles. We consider two design features for illustra-

tion: miles per gallon (mpg), and horsepower (hp). Vinod (2014) reports the

Pearson correlation coefficient r(mpg, hp) = −0.78 in his Figure 2. The neg-

ative sign correctly shows that one gets reduced mpg when a car has larger

horsepower hp. Table 2 in Vinod (2014) reports two generalized correlation

coefficients obtained by using kernel regressions as r∗(mpg|hp) = −0.938 and

r∗(hp|mpg) = −0.853.

Three R commands for the computation of generalized correlation co-

efficients are library(generalCorr); attach(mtcars); rstar(mpg,hp).

Note that the implicit assumption of linearity makes Pearson’s correlation co-

efficient (=-0.78) numerically “smaller” in magnitude than both generalized

correlations r∗. There is no advantage in assuming linearity.

Now, let’s consult Table 1 for inference regarding the “mtcars” data. See

the row marked “n=30,” and the column entitled “c=0.05”. A left-tail critical

value is −0.30. The observed correlation r∗(mpg|hp) = −0.938 is more nega-

tive than the critical value, or falls in the rejection region. Thus, the negative

dependence of fuel economy (mpg) on the car’s horsepower is statistically sig-

nificant. We re-confirm the significance by computing the one-tail p-value
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(= 1e-16) using an R command pvTarald(n=32,rho=0, obsr=-0.938). An

extremely small p-value suggests strong statistical significance.

3 Taraldsen and practicalSigni Package

The practicalSigni package generally suggests giving less importance to

formal statistical significance (p-values) and reports the practical significance

as indicated by thirteen magnitudes m1 to m13. See the first vignette of the

package for details.

If desired, the Taraldsen method can be applied to three measures (of

thirteen) involving correlation coefficients. One can then estimate more

exact p-values of the following correlation measures using the R function

pvTarald(.) discussed here.

m4 is the Pearson correlation measure. For example, between fuel econ-

omy mpg and one of three regressors (weight, cylinders, and horsepower).

m5 is the larger of the two generalized correlation coefficients. For ex-

ample max(r∗(mpg|x), r∗(x|mpg)) for x = (cyl, hp, wt)

m6 is the generalized partial correlation coefficient (GPCC). It measures

the generalized nonlinear nonparametric correlation between two variables af-

ter removing the effect of other variables. For example,max(r∗(mpg|x), r∗(x|mpg))

for one of three (cyl, hp, wt) while explicitly removing the effect of the other

two regressors.

The practical significance (magnitude importance) ranking of three re-
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gressors (weight, cylinders, and horsepower) in determining the fuel economy

(mpg) as reported in the first vignette of this package from the ‘mtcars’ data

is (wt = 0.868 > cyl = 0.852 > hp = 0.776) for m4, the Pearson correlations

with mpg.

It is customary to regard a regressor with “small” p-values as more sta-

tistically significant (hence, more important). The following results from

R show that significance ranking (wt > cyl > hp) retains the magnitude

ranking, even when one uses p-values.

> pvTarald(n=32,rho=0,obsr=0.776)

[hp] 3.374095e-08

> pvTarald(n=32,rho=0,obsr=0.852)

[cyl] 7.837853e-11

> pvTarald(n=32,rho=0,obsr=0.868)

[wt] 1.40794e-11

Actually, unchanging ranking is intuitively obvious from (2) and related

figures when the null is ρ = 0. In other words, Taraldsen’s sampling distribu-

tion is a nicety, not particularly insightful for reporting practical significance

when the hypothesized null value is ρ = 0.

Comparable m5 values max(r∗(mpg|x), r∗(x|mpg)) for x = (cyl, hp, wt)

are (0.943, 0.938, 0.917), respectively. The generalized partial correlation

coefficient GPCC estimates denoted m6 are (0.0019, 0.3886, 0.4812) with

mpg for the same regressors (cyl, hp, wt), respectively. Using the new func-

tion pvTarald( n=32, rho=0, obsr) for m5, m6 estimates as ‘obsr’ or
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observed correlations keep the practical significance ranking based on mag-

nitudes of these observed correlations unchanged.

If there are theoretical reasons for hypothesizing another null value, ρ ∈

[−1, 1], then Taraldsen’s becomes a new tool in assessing practical significance

of a regressor in a model.

4 Final Remarks

Table 1 provides new critical values for powerful one-sided tests for Pear-

son’s r(i, j) and generalized r∗(i, j) when ρ = 0 under bivariate normality.

The reported cumulative probabilities are based on a recent generalization

of Fisher’s famous z-transformation by Taraldsen (2023).

We claim that one-tail p-values of the Taraldsen’s density can overcome

conventional Pearson correlation’s inference inaccuracy based on older Fisher’s

z-transform. However, it does not matter for reporting practical significance,

unless there are theoretical reasons for hypothesizing a nonzero null value in

the range ρ ∈ [−1, 1].
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