
Package ‘modQR’
October 13, 2022

Encoding UTF-8

Version 0.1.3

Date 2022-05-03

Title Multiple-Output Directional Quantile Regression

Author Miroslav Šiman [aut],
Pavel Boček [aut, cre]

Maintainer Pavel Boček <bocek@utia.cas.cz>

Copyright The Institute of Information Theory and Automation of the
Czech Academy of Sciences, Pod Vodarenskou vezi 4, CZ-18208
Prague 8, Czech Republic, email: utia@utia.cas.cz, phone: +420
266 053 111

Description Contains basic tools for performing
multiple-output quantile regression and computing
regression quantile contours by means of directional
regression quantiles. In the location case, one can thus
obtain halfspace depth contours in two to six dimensions.
Hallin, M., Paindaveine, D. and Šiman, M. (2010)
Multivariate quantiles and multiple-output regression quantiles:
from L1 optimization to halfspace depth. Annals of Statistics 38, 635-669
For more references about the method, see Help pages.

Classification/MSC 62H05, 62J99, 62G08, 65C60

Repository CRAN

Depends R (>= 2.5.0), lpSolve (>= 5.6.1), geometry (>= 0.3-1)

Suggests rgl

License LGPL-2

Collate addItem.R findItem.R delItem.R addRow.R findRow.R checkArray.R
checkCTechSTu.R getCTechSTM1u.R getCTechSTM2u.R getCharSTM1u.R
getCharSTM2u.R findOptimalBasisM1FromScratch.R
findOptimalBasisM2FromScratch.R compContourM1u.R
compContourM2u.R evalContour.R

NeedsCompilation no

Date/Publication 2022-05-11 12:10:07 UTC

1

2 compContourM1/2u

R topics documented:
compContourM1/2u . 2
evalContour . 5
getCharSTM1u . 7
getCharSTM2u . 9
getCTechSTM1/2u . 12

Index 14

compContourM1/2u Directional Regression Quantile Computation

Description

The functions compContourM1u and compContourM2u may be used to obtain not only directional re-
gression quantiles for all directions, but also some related overall statistics. Their output may also be
used for the evaluation of the corresponding regression quantile regions by means of evalContour.
The functions use different methods and algorithms, namely compContourM1u is based on [01]
and [06] and compContourM2u results from [03] and [07]. The corresponding regression quantile
regions are nevertheless virtually the same. See all the references below for further details and
possible applications.

Usage

compContourM1u(Tau = 0.2, YMat = NULL, XMat = NULL, CTechST = NULL)
compContourM2u(Tau = 0.2, YMat = NULL, XMat = NULL, CTechST = NULL)

Arguments

Tau the quantile level in (0, 0.5).

YMat the N x M response matrix with two to six columns, N > M+P-1. Each row cor-
responds to one observation.

XMat the N x P design matrix including the (first) intercept column. The default NULL
value corresponds to the unit vector of the right length. Each row corresponds
to one observation.

CTechST the (optional) list with some parameters influencing the computation and its out-
put. Its default value can be generated by method-dependent getCTechSTM1/2u
and then modified by the user before its use in compContourM1/2u.

Details

Generally, the performance of the functions deteriorates with increasing Tau, N, M, and P as for their
reliability and time requirements. Nevertheless, they should work fine at least for two-dimensional
problems up to N = 10000 and P = 10, for three-dimensional problems up to N = 500 and P = 5,
and for four-dimensional problems up to N = 150 and P = 3.

compContourM1/2u 3

Furthemore, common problems related to the computation can fortunately be prevented or overcome
easily.

Bad data - the computation may fail if the processed data points are in a bad configuration (i.e., if
they are not in general position or if they would lead to a quantile hyperplane with at least one zero
coefficient), which mostly happens when discrete-valued/rounded/repeated observations, dummy
variables or bad random number generators are employed. Such problems can often be prevented
if one perturbs the data with a random noise of a reasonably small magnitude before the compu-
tation, splits the model into separate or independent submodels, cleverly uses affine equivariance,
or replaces a few identical observations with a copy of them weighted by the total number of their
occurrences.

Bad Tau - the computation may fail for a finite number of problematic quantile levels, e.g., if Tau
is an integer multiple of 1/N in the location case with unit weights (when the sample quantiles are
not uniquely defined). Such a situation may occur easily for Tau’s with only a few decimal digits or
in a fractional form, especially when the number of observations changes automatically during the
computation. The problem can be fixed easily by perturbing Tau with a sufficiently small number
in the right direction, which should not affect the resulting regression quantile contours although it
may slightly change the other output. The strategy is also adopted by compContourM1/2u, but only
in the location case and with a warning output message explaining it.

Bad scale - the computation may fail easily for badly scaled data. That is to say that the func-
tionality has been heavily tested only for the observations coming from a centered unit hypercube.
Nevertheless, you can always change the units of measurements or employ full affine equivariance
to avoid all the troubles. Similar problems may also arise when properly scaled data are used with
highly non-uniform weights, which frequently happens in local(ly) polynomial regression. Then
the weights can be rescaled in a suitable way and the observations with virtually zero weights can
be excluded from the computation.

Bad expectations - the computation and its output need not meet false expectations. Every user
should be aware of the facts that the computation may take a long time or fail even for moder-
ately sized three-dimensional data sets, that the HypMat component is not always present in the list
COutST$CharST by default, and that the sample regression quantile contours can be not only empty,
but also unbounded and crossing one another in the general regression case.

Bad interpretation - the output results may be easily interpreted misleadingly or erroneously. That
is to say that the quantile level Tau is not linked to the probability content of the sample (regression)
Tau-quantile region in any straightforward way. Furthermore, any meaningful parametric quantile
regression model should include as regressors not only the variables influencing the trend, but also
all those affecting the dispersion of the multivariate responses. Even then the cuts of the resulting re-
gression quantile contours parallel to the response space cannot be safely interpreted as conditional
multivariate quantiles except for some very special cases. Nevertheless, such a conclusion could
somehow be warranted in case of nonparametric multiple-output quantile regression; see [09].

Value

Both compContourM1u and compContourM2u may display some auxiliary information regarding
the computation on the screen (if CTechST$ReportI = 1) or store their in-depth output (determined
by CTechST$BriefOutputI) in the output files (if CTechST$OutSaveI = 1) with the filenames
beginning with the string contained in CTechST$OutFilePrefS, followed by the file number padded
with zeros to form six digits and by the extension ‘.dqo’, respectively. The first output file produced
by compContourM1u would thus be named ‘DQOutputM1_000001.dqo’.

4 compContourM1/2u

Both compContourM1u and compContourM2u always return a list with the same components.
Their interpretation is also the same (except for CharST that itself contains some components that
are method-specific):

CharST the list with some default or user-defined output. The default one is provided by
function getCharSTM1u for compContourM1u and by function getCharSTM2u
for compContourM2u. A user-defined function generating its own output can be
employed instead by changing CTechST$getCharST.

CTechSTMsgS the (possibly empty) string that informs about the problems with input CTechST.

ProbSizeMsgS the (possibly empty) string that warns if the input problem is very large.

TauMsgS the (possibly empty) string that announces an internal perturbation of Tau.

CompErrMsgS the (possibly empty) string that decribes the error interrupting the computation.

NDQFiles the counter of (possible) output files, i.e., as if CTechST$OutSaveI = 1.

NumB the counter of (not necessarily distinct) optimal bases considered.

PosVec the vector of length N that desribes the position of individual (regression) ob-
servations with respect to the exact (regression) Tau-quantile contour. The iden-
tification is reliable only after a successful computation. PosVec[i] = 0/1/2
if the i-th observation is in/on/out of the contour. If compContourM2u is used
with CTechST$SkipRedI = 1, then PosVec correctly detects only all the outer
observations.

MaxLWidth the maximum width of one layer of the internal algorithm.

NIniNone the number of trials when the initial solution could not be found at all.

NIniBad the number of trials when the found initial solution did not have the right number
of clearly nonzero coordinates.

NSkipCone the number of skipped cones (where an interior point could not be found).

If CTechST.CubRegWiseI = 1, then the last four components are calculated over all the individual
orthants.

References

[01] Hallin, M., Paindaveine, D. and Šiman, M. (2010) Multivariate quantiles and multiple-output
regression quantiles: from L1 optimization to halfspace depth. Annals of Statistics 38, 635–669.

[02] Hallin, M., Paindaveine, D. and Šiman, M. (2010) Rejoinder (to [01]). Annals of Statistics 38,
694–703.

[03] Paindaveine, D. and Šiman, M. (2011) On directional multiple-output quantile regression.
Journal of Multivariate Analysis 102, 193–212.

[04] Šiman, M. (2011) On exact computation of some statistics based on projection pursuit in a
general regression context. Communications in Statistics - Simulation and Computation 40, 948–
956.

[05] McKeague, I. W., López-Pintado, S., Hallin, M. and Šiman, M. (2011) Analyzing growth
trajectories. Journal of Developmental Origins of Health and Disease 2, 322–329.

[06] Paindaveine, D. and Šiman, M. (2012) Computing multiple-output regression quantile regions.
Computational Statistics & Data Analysis 56, 840–853.

evalContour 5

[07] Paindaveine, D. and Šiman, M. (2012) Computing multiple-output regression quantile regions
from projection quantiles. Computational Statistics 27, 29–49.

[08] Šiman, M. (2014) Precision index in the multivariate context. Communications in Statistics -
Theory and Methods 43, 377–387.

[09] Hallin, M., Lu, Z., Paindaveine, D. and Šiman, M. (2015) Local bilinear multiple-output quan-
tile/depth regression. Bernoulli 21, 1435–1466.

Examples

##computing all directional 0.15-quantiles of 199 random points
##uniformly distributed in the unit square centered at zero
##- preparing the input
Tau <- 0.15
XMat <- matrix(1, 199, 1)
YMat <- matrix(runif(2*199, -0.5, 0.5), 199, 2)
##- Method 1:
COutST <- compContourM1u(Tau, YMat, XMat)
##- Method 2:
COutST <- compContourM2u(Tau, YMat, XMat)

evalContour Evaluating Convex Polytopes

Description

Given the system of inequalities AAMat%*%ZVec <= BBVec describing a convex polytope/contour
with an interior point IPVec in the Euclidean space of dimension two to six, this function identifies
all nonredundant constraints and computes some characteristics of the resulting convex polytope
such as its vertices, facets, volume and surface area.

Usage

evalContour(AAMat, BBVec = NULL, IPVec = NULL)

Arguments

AAMat the constraints matrix from the system of inequalities defining the convex poly-
tope. It should be a numeric matrix with two to six columns.

BBVec the right-hand side from the system of inequalities defining the convex polytope.
It should be a numeric column vector of the same length as the first column of
AAMat.

IPVec an interior point of the investigated convex polytope. This argument can be
omitted or set equal to a numeric column vector of the same length as the first
row of AAMat. If IPVec is NULL or if given IPVec does not lie well inside the
convex contour, then a well-positioned interior point is searched for internally,
which may slow down the computation and make it less reliable.

6 evalContour

Details

This function is included to be used for evaluating (regression) quantile contours or their cuts.

In fact, the function analyzes not the polytope itself, but its regularized intersection with the zero-
centered hypercube of the edge length 2 000 that is employed as an artificial bounding box to avoid
the problems with unbounded contours. The regularization consists of rounding the vertices (i.e.,
all of their coordinates) of such an intersection to the seventh decimal digit and of considering only
the polytope determined by all the distinct rounded vertices for the final analysis.

Value

evalContour returns a list with the following components describing the resulting convex polytope:

Status 0 - OK.
2 - the contour seems virtually empty.
3 - the search for a well-positioned interior point IPVec failed.
4 - the number of input parameters is too low.
5 - AAMat is not a numeric matrix with two to six columns.
6 - BBVec is not a numeric column vector of the right length.
7 - IPVec is not a numeric column vector of the right length.

TVVMat the matrix with clearly distinct contour vertices (in rows).

TKKMat the matrix with clearly distinct elementary facets (in rows). Each row contains
the indices of the rows of TVVMat where the facet vertices are stored. Each facet
has the same number of vertices equal to the number of columns of AAMat. See
also help(convhulln) for the meaning of TKKMat.

NumF the number of clearly distinct contour facets.

NumV the number of clearly distinct contour vertices.

Vol the volume of the contour (the area in 2D).

Area the surface area of the contour (the circumference in 2D and the surface in 3D).

Examples

##- a simple example using a tilted zero-centered square
AAMat <- rbind(c(-1,-1), c(1,-1), c(1,1), c(-1,1))
BBVec <- c(1, 1, 1, 1)
IPVec <- c(0, 0)
CST <- evalContour(AAMat, BBVec, IPVec)
print(CST)

##- computing and evaluating the 0.15-quantile contour of 199
##random points uniformly distributed in the unit square
##centered at zero
Tau <- 0.15
YMat <- matrix(runif(2*199, -0.5, 0.5), 199, 2)
C <- compContourM1u(Tau, YMat)
CST <- evalContour(-C$CharST$HypMat[,1:2], -C$CharST$HypMat[,3])
print(CST)

getCharSTM1u 7

##See also the examples ExampleA to ExampleE for some
##more elaborate ways of computing, evaluating and
##plotting the (regression) quantile contours.

getCharSTM1u Computing Some Overall Characteristics in compContourM1u

Description

The function computes some overall characteristics of directional regression quantiles in the output
of compContourM1u, namely the list COutST$CharST. It makes possible to obtain some useful in-
formation without saving any file on the disk, and it can be easily modified by the users according
to their wishes.

Usage

getCharSTM1u(Tau, N, M, P, BriefDQMat, CharST, IsFirst)

Arguments

Tau the quantile level in (0, 0.5).

N the number of observations.

M the dimension of responses.

P the dimension of regressors including the intercept.

BriefDQMat the method-specific matrix containing the rows of a potential individual output
file corresponding to CTechST$BriefOutputI = 1. See the details below.

CharST the output list, updated with each run of the function.

IsFirst the indicator equal to one in the first run of getCharSTM1u (when CharST is
initialized) and equal to zero otherwise.

Details

This function is called inside compContourM1u. First, it is called with BriefDQMat = NULL, CharST
= NULL and IsFirst = 1 to initialize the output list CharST, and then it is called with IsFirst = 0
successively for the content of each potential output file corresponding to CTechST$BriefOutputI
= 1, i.e., even if the output file(s) are not stored on the disk owing to CTechST$OutSaveI = 0.

It still remains to describe in detail the content of possible output files, describing the optimal conic
segmentation of the directional space that lies behind the optimization problem involved.

If CTechST$BriefOutputI = 1, then the rows of such files are vectors of length 1+1+M+M+P+1 of
the form c(ConeID, Nu, UVec, BDVec, ADVec, LambdaD) where

ConeID is the number/order of the cone related to the line. If M > 2, then a cone can appear in the
output repeatedly (under different numbers).

Nu is the number of corresponding negative residuals.

8 getCharSTM1u

UVec is a normalized vector of the cone. It is usually its vertex direction but it may also be its
interior vector pointing to a vertex of the artificial intersection of the cone with the bounding
box [-1,1]^M. The max normalization is used if the breadth-first search algorithm is employed
and the L2 normalization is used in the other case (when M = 2 and CTechST$D2SpecI = 1).

BDVec is the vector c(b_1,...,b_M), i.e., the constant vector denominator of BVec, where BVec
= BDVec/(t(BDVec)%*%UVec).

ADVec is the vector c(a_1,...,a_P), i.e., the constant vector denominator of AVec, where AVec
= ADVec/(t(BDVec)%*%UVec).

LambdaD is the constant scalar denominator of Lambda = LambdaD/(t(BDVec)%*%UVec).

Recall that c(BVec, AVec) stands for the coefficients of the regression quantile hyperplane associ-
ated with UVec and that Lambda denotes the Lagrange multiplier equal to the optimal value Psi of
the objective function for that direction.

If CTechST$BriefOutputI = 0, then the rows of the potential output file(s) are longer (of length
1+1+M+M+P+1+(P+M-1)*M+(P+M-1)) because they contain two more vectors appended at the end.
The rows are of the form c(ConeID, Nu, UVec, BDVec, ADVec, LambdaD, vec(VUMat), IZ) where

VUMat is the matrix for computing the multiplier vector MuR0Vec associated with zero residuals,
MuR0Vec = (VUMat%*%UVec)/(t(BDVec)%*%UVec). That is to say that all directions from
the interior of the cone result in the regression Tau-quantile hyperplanes containing the same
P+M-1 observations because all such hyperplanes are the same up to a scaling factor multiply-
ing their coefficients.

IZ is the vector containing original indices of the M+P-1 observations with zero residuals for all
directions from the interior of the cone.

Value

getCharSTM1u returns a list with the following components:

NUESkip the number of (skipped) directions (and corresponding hyperplanes) artificially
induced by intersecting the cones with the [-1,1]^M bounding box.

NAZSkip the number of (skipped) hyperplanes (and corresponding directions) not counted
in NUESkip and with at least one coordinate of AVec zero.

NBZSkip the number of (skipped) hyperplanes (and corresponding directions) not counted
in NUESkip and with at least one coordinate of BVec zero.

HypMat (for M > 4) the component is missing
(for M <= 4) the matrix with M + P columns containing (in rows) all the distinct re-
gression Tau-quantile hyperplane coefficients c(BVec, AVec) normalized with
|BVec|, rounded to the eighth decimal digit, and sorted lexicographically. This
matrix can be used for the computation of the regression Tau-quantile contour.

CharMaxMat the matrix with the (slightly rounded) maxima of certain directional regression
Tau-quantile characteristics over all remaining vertex directions.
If P = 1, then CharMaxMat has only three rows:
c(UVec, max(|BVec|)),
c(UVec, max(Lambda)), and
c(UVec, max(Lambda/|BVec|)),
respectively.

getCharSTM2u 9

If P > 1, then the rows of CharMaxMat are as follows:
c(UVec, max(|BVec|)),
c(UVec, max(Lambda)),
c(UVec, max(Lambda/|BVec|)),
c(UVec, max(|c(a_2,...,a_P)|)),
c(UVec, max(|c(a_2,...,a_P)|/|BVec|)),
c(UVec, max(|a_2|)),
c(UVec, max(|a_2|/|BVec|)),
...,
c(UVec, max(|a_P|)), and
c(UVec, max(|a_P|/|BVec|)),
respectively. If P = 2, then the last two rows are missing for not being included
twice.

CharMinMat the matrix with the (slightly rounded) minima of certain directional regression
Tau-quantile characteristics over all remaining vertex directions.
If P = 1, then CharMinMat has only three rows:
c(UVec, min(|BVec|)),
c(UVec, min(Lambda)), and
c(UVec, min(Lambda/|BVec|)),
respectively.
If P > 1, then CharMinMat has five rows:
c(UVec, min(|BVec|)),
c(UVec, min(Lambda)),
c(UVec, min(Lambda/|BVec|)),
c(UVec, min(|c(a_2,...,a_P)|)), and
c(UVec, min(|c(a_2,...,a_P)|/|BVec|)),
respectively.

Note that || symbolizes the Euclidean norm, and that the vertices (UVec) in the rows of CharMaxMat
and CharMinMat are generally different and denote (one of) the direction(s) where the row maxi-
mum or minimum is attained.

Examples

##Run print(getCharSTM1u) to examine the default setting.

getCharSTM2u Computing Some Overall Characteristics in compContourM2u

Description

The function computes some overall characteristics of directional regression quantiles in the output
of compContourM2u, namely the list COutST$CharST. It makes possible to obtain some useful in-
formation without saving any file on the disk, and it can be easily modified by the users according
to their wishes.

10 getCharSTM2u

Usage

getCharSTM2u(Tau, N, M, P, BriefDQMat, CharST, IsFirst)

Arguments

Tau the quantile level in (0, 0.5).

N the number of observations.

M the dimension of responses.

P the dimension of regressors including the intercept.

BriefDQMat the method-specific matrix containing the rows of a potential individual output
file corresponding to CTechST$BriefOutputI = 1. See the details below.

CharST the output list, updated with each run of the function.

IsFirst the indicator equal to one in the first run of getCharSTM2u (when CharST is
initialized) and equal to zero otherwise.

Details

This function is called inside compContourM2u. First, it is called with BriefDQMat = NULL, CharST
= NULL and IsFirst = 1 to initialize the output list CharST, and then it is called with IsFirst = 0
successively for the content of each potential output file corresponding to CTechST$BriefOutputI
= 1, i.e., even if the output file(s) are not stored on the disk owing to CTechST$OutSaveI = 0.

It still remains to describe in detail the content of possible output files, describing the optimal conic
segmentation of the directional space that lies behind the optimization problem involved.

If CTechST$BriefOutputI = 1, then the rows of such files are vectors of length 1+1+M+P*M+M of
the form c(ConeID, Nu, UVec, vec(ACOMat), MuBRow) where

ConeID is the number/order of the cone related to the line. If M > 2, then a cone can appear in the
output repeatedly (under different numbers).

Nu is the number of negative residuals corresponding to the interior directions of the cone.

UVec is a normalized vector of the cone. It is usually its vertex direction but it may also be its
interior vector pointing to a vertex of the artificial intersection of the cone with the bounding
box [-1,1]^M. The max normalization is used if the breadth-first search algorithm is employed
and the L2 normalization is used in the other case (when M = 2 and CTechST$D2SpecI = 1).

ACOMat is the matrix describing AVec, AVec = ACOMat%*%UVec.

MuBRow is the constant vector of the Lagrange multipliers corresponding to BVec. Its inner prod-
uct with UVec is equal to the optimal value Psi of the objective function for that direction.

Recall that c(BVec, AVec) stands for the coefficients of the regression quantile hyperplane associ-
ated with UVec and always BVec = UVec.

If CTechST$BriefOutputI = 0, then the rows of the potential output file(s) are longer (of length
1+1+P*M+M+P+P) because they contain two more vectors appended at the end. The rows are of the
form c(ConeID, Nu, UVec, vec(ACOMat), MuBRow, MuR0Row, IZ) where

MuRORow is the constant vector of the Lagrange multipliers corresponding to zero residuals as-
sociated with the interior of the cone. That is to say that all directions from the interior of the
cone result in the regression Tau-quantile hyperplanes containing the same P observations.

getCharSTM2u 11

IZ is the vector containing original indices of the P observations with zero residuals for all direc-
tions from the interior of the cone.

Value

getCharSTM2u returns a list with the following components:

NUESkip the number of (skipped) directions (and corresponding hyperplanes) artificially
induced by intersecting the cones with the [-1,1]^M bounding box

NAZSkip the number of (skipped) hyperplanes (and corresponding directions) not counted
in NUESkip and with at least one coordinate of AVec zero.

NBZSkip the number of (skipped) hyperplanes (and corresponding directions) not counted
in NUESkip and with at least one coordinate of BVec zero.

HypMat (for M > 4) the component is missing
(for M <= 4) the matrix with M + P columns containing (in rows) all the distinct
regression Tau-quantile hyperplane coefficients c(BVec, AVec) rounded to the
eighth decimal digit and sorted lexicographically. This matrix can be used for
the computation of the regression Tau-quantile contour.

CharMaxMat the matrix with the (slightly rounded) maxima of certain directional regression
Tau-quantile characteristics over all remaining vertex directions.
If P = 1, then CharMaxMat has only two rows:
c(UVec, max(Psi)), and
c(UVec, max(|MuBRow|)),
respectively.
If P > 1, then the rows of CharMaxMat are as follows:
c(UVec, max(|Psi|)),
c(UVec, max(MuBRow)),
c(UVec, max(|c(a_2,...,a_P)|)),
c(UVec, max(|a_2|)),
...,
c(UVec, max(|a_P|)),
respectively. If P = 2, then the last row is missing for not being included twice.

CharMinMat the matrix with the (slightly rounded) minima of certain directional regression
Tau-quantile characteristics over all remaining vertex directions.
If P = 1, then CharMinMat has only two rows:
c(UVec, min(Psi)), and
c(UVec, min(|MuBRow|)),
respectively.
If P > 1, then CharMinMat has three rows:
c(UVec, min(Psi)),
c(UVec, min(|MuBRow|)), and
c(UVec, min(|c(a_2,...,a_P)|)),
respectively.

Note that || symbolizes the Euclidean norm, and that the vertices (UVec) in the rows of CharMaxMat
and CharMinMat are generally different and denote (one of) the direction(s) where the row maxi-
mum or minimum is attained.

12 getCTechSTM1/2u

Examples

##Run print(getCharSTM2u) to examine the default setting.

getCTechSTM1/2u Getting the List of Options CTechST for compContourM1/2u

Description

The functions getCTechSTM1u and getCTechSTM2u set the default list of options CTechST for com-
puting all the directional (regression) quantiles by means of compContourM1u and compContourM2u,
respectively.

Usage

getCTechSTM1u()
getCTechSTM2u()

Arguments

none

Details

Fortunately, the default list of options usually leads to a satisfactory performance in all but very
large problems.

Value

Both getCTechSTM1u and getCTechSTM2u produce a list with a few components whose default
values are stated below after the equality sign.

The components OutFilePrefS and getCharST are initialized in a method-specific way.

The components CubRegWiseI, ArchAllFI, and SkipRedI are relevant only if D2SpecI is zero or
if the dimension of directions/responses is higher than two, i.e., if the breadth-first search algorithm
is used.

Most of the components are generated by both functions. Nevertheless, the component SkipRedI
is only generated by getCTechSTM2u and used by compContourM2u.

The output components are as follows:

ReportI = 0; if some information (such as the progress of computation) is displayed
on the screen (1) or not (0). The display mode may slightly slow down the
computation, especially when the dimension of responses is higher than two.
On the other hand, it shows the new value of the quantile level (Tau) (if the
input one has been changed internally), the initial L2-normed directional vector
used (U0Vec), the number of failures to find an initial solution (NNotFound), the
number of found initial solutions not having the right number of clearly nonzero
coordinates (NBad), and also the width of each layer of the breadth-first search
algorithm if it is employed.

getCTechSTM1/2u 13

OutSaveI = 0; if the detailed output is stored in file(s) into the working directory (1) or
not (0). The file output seems necessary only for very large problems if some
information about individual cones has to be recorded (such as all the regression
quantile hyperplanes used for the regression quantile contour computation).

D2SpecI = 1; this option is relevant only for bivariate directions/responses and determines
if the cones are visited counter-clockwise (1) or by means of the breadth-first
search algorithm as in the general case (0). The default option (1) leads to a
more precise and reliable computation than the other.

BriefOutputI = 1; if the brief (1) or verbose (0) output is prepared by compContourM1/2u.
Even the default option (1) is sufficient for almost all common applications.
See also getCharSTM1u and getCharSTM2u for the description of the possible
method-specific file output in both cases.

CubRegWiseI = 1; if the directional space is divided into orthants investigated separately (1) or
not (0). On the one hand, the default option (1) splits the problem into smaller
ones. On the other hand, it also generates some artificial cones with at least one
facet in the orthant borders.

ArchAllFI = 1; if all the past cone facet identifiers (1) or only those from the last few
layers (0) are stored during the computation. The default option (1) makes
the computation more likely to terminate successfully than the other. Unfor-
tunately, it is also slower and more memory demanding. If the dimension of
responses is higher than three, then ArchAllFI = 1 is considered internally by
compContourM1/2u no matter what the input CTechST actually says.

SkipRedI = 0; if the information should be skipped (1) or stored (0) also from the cones
with all non-artificial facets already known (such cones are redundant/irrelevant
with probability one if only all the quantile regression hyperplanes necessary
for the quantile contour computation are required from compContourM2u). The
skipping makes the output smaller but maybe also slightly less reliable. It
also affects the reliability of the information regarding the inner points; see
compContourM2u.

OutFilePrefS = ‘DQOutputM1_’/‘DQOutputM2_’; the prefix of possible output file name(s).

getCharST = getCharSTM1u/getCharSTM2u; the function computing some overall charac-
teristics that can be replaced with a user-defined one. See getCharSTM1u and
getCharSTM2u for the default choices.

Examples

##- a typical use of getCTechSTM1u:
##computing all directional 0.01-quantiles of 49 random points
##(uniformly distributed in the unit cube centered at zero)
##after changing the default settings
Tau <- 0.01
XMat <- matrix(1, 49, 1)
YMat <- matrix(runif(3*49, -0.5, 0.5), 49, 3)
CTechST <- getCTechSTM1u()
CTechST$ReportI <- 1
COutST <- compContourM1u(Tau, YMat, XMat, CTechST)

Index

compContourM1/2u, 2, 13
compContourM1u, 7, 12
compContourM1u (compContourM1/2u), 2
compContourM2u, 9, 10, 12, 13
compContourM2u (compContourM1/2u), 2

evalContour, 2, 5

getCharSTM1u, 4, 7, 13
getCharSTM2u, 4, 9, 13
getCTechSTM1/2u, 2, 12
getCTechSTM1u (getCTechSTM1/2u), 12
getCTechSTM2u (getCTechSTM1/2u), 12

14

	compContourM1/2u
	evalContour
	getCharSTM1u
	getCharSTM2u
	getCTechSTM1/2u
	Index

