Package ‘matrixStrucTest’

October 13, 2022

Version 1.0.0

Date 2019-07-14
Title Tests of Matrix Structure for Construct Validation
Description Tests for block-diagonal structure in symmetric matrices (e.g. correlation matrices) under the null hypothesis of exchangeable off-diagonal elements. As described in Segal et al. (2019), these tests can be useful for construct validation either by themselves or as a complement to confirmatory factor analysis. Monte Carlo methods are used to approximate the permutation p-value with Hubert's Gamma (Hubert, 1976) and a t-statistic. This package also implements the chi-squared statistic described by Steiger (1980). Please see Segal, et al. (2019) doi:10.1007/s11336-018-9647-4 for more information.
Depends R (>=3.1)
Suggests ggplot2, reshape2
Author Brian D. Segal [aut, cre]
Maintainer Brian D. Segal bdsegal@umich.edu
License GPL (>= 3)
URL https://github.com/bdsegal/matrixStrucTest
LazyData true
RoxygenNote 6.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2019-07-18 06:35:48 UTC

R topics documented:

big5 . 2
deltaSub . 4
makeGroupList . 5
matrixStrucTest . 5
matrixStrucTestSub . 7
multiSub . 8
prepBoxPlots . 9
print.mst 10
sigmaRhoFun 10
sigmaZFun 11
X2Fun 11
Index 12
big5 Big Five personality questionnaire

Description

A dataset containing answers to a Big Five Personality Test conducted by http://personality-testing.info. These data were collected (c. 2012) through an interactive online personality test. The test was constructed with items from the International Personality Item Pool. Participants were informed that their responses would be recorded and used for research at the beginning of the test and asked to confirm their consent at the end of the test. The items were rated on a five point scale where 1=Disagree, 3=Neutral, 5=Agree. All were presented on one page in the order E1, N1, A1, C1, O1, E2,...

Usage

big5

Format

A data frame with 19,719 rows of 57 variables:
race 1=Mixed Race, 2=Arctic (Siberian, Eskimo), 3=Caucasian (European), 4=Caucasian (Indian), 5=Caucasian (Middle East), 6=Caucasian (North African, Other), 7=Indigenous Australian, $8=$ Native American, $9=$ North East Asian (Mongol, Tibetan, Korean Japanese, etc), 10=Pacific (Polynesian, Micronesian, etc), 11=South East Asian (Chinese, Thai, Malay, Filipino, etc), 12=West African, Bushmen, Ethiopian, 13=Other
age Entered as text (individuals reporting age <13 were not recorded)
engnat Response to "is English your native language?". 1=yes, 2=no
gender $1=$ Male, $2=$ Female, $3=$ Other
hand "What hand do you use to write with?". 1=Right, 2=Left, 3=Both
country The participant's technical location. ISO country code
source How the participant came to the test. Based on HTTP Referer. 1=from another page on the test website, $2=$ from google, $3=$ from facebook, $4=$ from any url with ".edu" in its domain name, $6=$ other source, or HTTP Referer not provided

E1 I am the life of the party.
E2 I don't talk a lot.
E3 I feel comfortable around people.
E4 I keep in the background.

E5 I start conversations.
E6 I have little to say.
E7 I talk to a lot of different people at parties.
E8 I don't like to draw attention to myself.
E9 I don't mind being the center of attention.
E10 I am quiet around strangers.
N1 I get stressed out easily.
N2 I am relaxed most of the time.
N3 I worry about things.
N4 I seldom feel blue.
N5 I am easily disturbed.
N6 I get upset easily.
N7 I change my mood a lot.
N8 I have frequent mood swings.
N9 I get irritated easily.
N10 I often feel blue.
A1 I feel little concern for others.
A2 I am interested in people.
A3 I insult people.
A4 I sympathize with others' feelings.
A5 I am not interested in other people's problems.
A6 I have a soft heart.
A7 I am not really interested in others.
A8 I take time out for others.
A9 I feel others' emotions.
A10 I make people feel at ease.
C1 I am always prepared.
C2 I leave my belongings around.
C3 I pay attention to details.
C4 I make a mess of things.
C5 I get chores done right away.
C6 I often forget to put things back in their proper place.
C7 I like order.
C8 I shirk my duties.
C9 I follow a schedule.
C10 I am exacting in my work.
O1 I have a rich vocabulary.

O2 I have difficulty understanding abstract ideas.
O3 I have a vivid imagination.
O4 I am not interested in abstract ideas.
O5 I have excellent ideas.
O6 I do not have a good imagination.
O7 I am quick to understand things.
O8 I use difficult words.
09 I spend time reflecting on things.
O10 I am full of ideas.

Details

This dataset is for demonstration purposes only. Please see http://personality-testing.info/privacypolicy.html and http://personality-testing.info/about for more information.

Source

```
    http://personality-testing.info/_rawdata/
```

 deltaSub Sub-routine to create Delta matrix

Description

This sub-routine outputs 1 if i and j are in at least one group together, and 0 otherwise, and is called by matrixStrucTest and prepBoxPlots.

Usage

deltaSub(i, j, group_list)

Arguments

i First index
$j \quad$ Second index
group_list List of indices for each block

Description

This sub-routine is called by matrixStrucTest and prepBoxPlots.

Usage

makeGroupList(groups, A)

Arguments

groups	Character string in lavaan syntax specifying groups
A	A Distance or similarity matrix. Must have column names

Value

group_list List of column indices of A corresponding to each group

```
matrixStrucTest

\section*{Description}

This function computes permutation p-values for Hubert's Gamma and t-statistics for both overall and block-specific tests.

\section*{Usage}
matrixStrucTest(A, group_list \(=\) NULL, groups \(=\) NULL, \(B=1000\), absolute = TRUE)

\section*{Arguments}

A
group_list List of column indices of A for each group. Either groups or group_list but not both must be supplied.
groups CFA model in lavaan syntax. Either groups or group_list but not both must be supplied.
B Number of Monte Carlo resamples (defaults to \(B=1000\) )
absolute Use the absolute values of A (defaults to TRUE)

\section*{Value}
pt_overall_one_sided: Overall one-sided p-value using t statistic
pt_overall_two_sided: Overall two-sided p-value using t statistic
pt_multi_one_sided: Block-specific one-sided p-values using t statistic
pt_multi_two_sided: Block-specific two-sided p-values using t statistic
t0 Observed overall: t statistic
t0k: Observed block-specific t statistic
\(t\) _overall: Vector of overall \(t\) statistics from permuted A
t_max_one_sided: Vector of max \(t\) statistics from permuted A (one-sided)
t_max_two_sided: Vector of max t statistics from permuted A (two-sided)
pG_overall_one_sided: Overall one-sided p-value using Hubert's Gamma
pG_overall_two_sided: Overall two-sided p-value using Hubert's Gamma
pG_multi_one_sided: Block-specific one-sided p-values using Hubert's Gamma
pG_multi_two_sided: Block-specific two-sided p-values using Hubert's Gamma
Gamma0: Observed overall Hubert's Gamma
Gamma0k: Observed block-specific Hubert's Gamma
Gamma_overall: Vector of Hubert's Gamma statistics from permuted A
Gamma_max_one_sided: Vector of max Hubert's Gamma statistics from permuted A (one-sided)
Gamma_max_two_sided: Vector of max Hubert's Gamma statistics from permuted A (two-sided)
B: number of Monte Carlo resamples
group_list: List of column/row indices corresponding to each group

\section*{Examples}
```


example for matrixStrucTest package

library(matrixStrucTest)
data("big5")

get column numbers for questionnaire items

items <- grep("[0-9]", colnames(big5))

compute Spearman's correlation matrix

A <- cor(big5[, items], use = "complete.obs", method = "spearman")

specify the groups

groups <- "extrovert ~ E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10
neurotic ~ N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10
agreeable ~ A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10
conscientious ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10
open ~ 01 + 02 + 03 + 04 + 05 + 06 + 07 + 08 + 09 + 010"
\# compute permutation p-values
\# Note: Using small B for fast checking on CRAN. Set B >= 1000 in practice.
result <- matrixStrucTest(A = A, groups = groups, B = 100, absolute = TRUE)

```
```


Note: two-sided p-values from Hubert's Gamma printed by default

other results available by directing accessing them from the

returned object

result

Alternative approach for specifying the groups as a list of column/row indices

extrovert <- grep("E", colnames(A))
neurotic <- grep("N", colnames(A))
agreeable <- grep("A", colnames(A))
conscientious <- grep("C", colnames(A))
open <- grep("O", colnames(A))

put blocks/groups in list

group_list <- list(extrovert = extrovert,
neurotic = neurotic,
agreeable = agreeable,
conscientious = conscientious,
open = open)

Note: Using small B for fast checking on CRAN. Set B >= 1000 in practice.

result <- matrixStrucTest(A = A, group_list = group_list, B = 100, absolute = TRUE)

Note: two-sided p-values from Hubert's Gamma printed by default

other results available by directing accessing them from the

returned object

result

Visualize groups

library(ggplot2)
library(reshape2)
ord <- unlist(result$group_list)
diag(A) <- NA # remove diagonals from color scale
Am <- melt(A[ord, ord])
names(Am) <- c("x", "y", "value")
Am$y <- factor(Am$y, levels = rev(levels(Am$y)))
ggplot(aes(x = x, y = y, fill = abs(value)), data = Am)+
geom_tile()+
theme_bw(18)+
scale_fill_gradient2(space="Lab", name="abs(Cor)", lim = c(0, 1))+
labs(x = "", y = "")+
theme(axis.text.x = element_text(angle = 90, vjust = . 35,hjust=1))

```

\section*{Description}

This sub-routine is called by matrixStrucTest and prepBoxPlots.

\section*{Usage}
matrixStrucTestSub(A, group_list_ord, Delta, multi_group_ind, A_upper_ind, K)

\section*{Arguments}

A
Distance or similarity matrix, e.g. correlation
group_list_ord List of groupings for ordered matrix A
Delta Delta matrix
multi_group_ind
List of indicator matrices for membership in block \(k\) test
A_upper_ind indicator matrix for upper triangular elements
K Total number of hypothesized blocks

\section*{Value}

Gamma_overall: Overall Hubert's Gamma
Gamma_multi: Block-specific Hubert's Gamma
t_overall: Overall t-statistic (unequal variance)
t_multi: Block-specific t-statistics
Ak_list: List of values in A used for each block-specific test
Deltak_list: List of values in Delta used for each block-specific test
A_upper: Upper triangular elements of A (used for box plot function)
Delta_upper: Upper triangular elements of Delta (used for box plot function)
multiSub Sub-routine to create Delta matrix for block-specific tests

\section*{Description}

This sub-routine outputs TRUE if either \(i\) or \(j\) are in group, FALSE otherwise, and is called by matrixStrucTest and prepBoxPlots.

\section*{Usage}
multiSub(i, j, group)

\section*{Arguments}
i
First index
j Second index
group Indices for items in group

\section*{Description}

This function prepares the data for making box plots.

\section*{Usage}
prepBoxPlots(A, groups = NULL, group_list = NULL, absolute = TRUE)

\section*{Arguments}

A
Distance or similarity matrix, e.g. correlation
groups
CFA model in lavaan syntax. Either groups or group_list but not both must be supplied.
group_list List of groupings. Either groups or group_list but not both must be supplied.
absolute Use the absolute values of A (defaults to TRUE)

\section*{Value}
multi: data frame for making box plots for block-specific tests
overall: data frame for making box plots for overall test

\section*{Examples}
```

library(matrixStrucTest)
library(ggplot2)
data("big5")

get column numbers for questionnaire items

items <- grep("[0-9]", colnames(big5))

compute Spearman's correlation matrix

A <- cor(big5[, items], use = "complete.obs", method = "spearman")
groups <- "extrovert ~ E1 + E2 + E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10
neurotic ~ N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9 + N10
agreeable ~ A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8 + A9 + A10
conscientious ~ C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9 + C10
open ~ 01 + 02 + 03 + 04 + 05 + 06 + 07 + 08 + 09 + 010"

```
    \# Make box plots contrasting within and between group correlations
    box <- prepBoxPlots(A = A, groups = groups, absolute = TRUE)
    ggplot(aes(x = as.factor(delta), \(y=a)\), data \(=\) box\$overall)+
    geom_boxplot()+
```

 theme_bw(22)+
 labs(x = expression(Delta), y="|a|")
 dev.new(width = 12, height = 5)
 ggplot(aes(x = as.factor(delta), y = a), data = box$multi)+
 geom_boxplot()+
 facet_grid(~block)+
 theme_bw(22)+
 labs(x = expression(Delta), y = "|a|")

```
print.mst Print results from matrixStrucTest

\section*{Description}

This function prints results from an object returned by matrixStrucTest.

\section*{Usage}
\#\# S3 method for class 'mst'
print(x, ...)

\section*{Arguments}
x
Output from matrixStrucTest
...
Further arguments passed to print
sigmaRhoFun Sub-routine to compute OLS estimates of covariance between correlations

\section*{Description}

This sub-routine is called by X2fun.

\section*{Usage}
sigmaRhoFun(j, k, h, m, A)

\section*{Arguments}
j
k Second index
h
m Fourth index
A

First index

Third index

Correlation matrix
sigmaZFun Sub-routine to get covariance of z-transformed variables

\section*{Description}

This sub-routine is called by X2fun.

\section*{Usage}
sigmaZFun(s, t, index, A, Sigma)

\section*{Arguments}
\begin{tabular}{ll}
s & First index \\
t & Second index \\
index & Matrix with two columns with index pairs given by rows \\
A & Correlation matrix \\
Sigma & Variance-covariances of correlation matrix A
\end{tabular}
X2Fun Goodness-of-fit chi-squared statistic described by Steiger (1980).

\section*{Description}

This function computed the goodness-of-fit chi-squared statistic described by Steiger (1980). Reference: Steiger, J. H. (1980). Tests for comparing elements of a correlation matrix. Psychological Bulletin, 87(2) 245-251.

\section*{Usage}

X2Fun(data, group_list, corMethod = "spearman")

\section*{Arguments}
\begin{tabular}{ll} 
data & Data frame \\
group_list & List of column indices of A for each group \\
corMethod & Type of correlations; passed to cor()
\end{tabular}

\section*{Index}
```

* datasets
big5, 2
* matrixStrucTest
print.mst, 10
* print
print.mst, 10
big5, 2
deltaSub, 4
makeGroupList,5
matrixStrucTest,5
matrixStrucTestSub, 7
multiSub, 8
prepBoxPlots,9
print.mst,10
sigmaRhoFun,10
sigmaZFun, 11
X2Fun, 11

```
```

