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joint.Cox-package Joint Frailty-Copula Models for Tumour Progression and Death in
Meta-Analysis

Description

Fit survival data and perform dynamic prediction under joint frailty-copula models for tumour pro-
gression and death. Likelihood-based methods are employed for estimating model parameters,
where the baseline hazard functions are modeled by the cubic M-spline or the Weibull model. The
methods are applicable for meta-analytic data containing individual-patient information from sev-
eral studies. Survival outcomes need information on both terminal event time (e.g., time-to-death)
and non-terminal event time (e.g., time-to-tumour progression). Methodologies were published in
Emura et al. (2017), Emura et al. (2018), Emura et al. (2020), Wu et al. (2020), Shinohara et al.
(2020), and Emura et al. (2021). See also the book of Emura et al. (2019). Survival data from
ovarian cancer patients are also available.

Details

Package: joint.Cox
Type: Package
Version: 3.16
Date: 2022-2-4
License: GPL-2
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Author(s)

Takeshi Emura Maintainer: Takeshi Emura <takeshiemura@gmail.com>

References

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6):2649-66

Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic predic-
tion of death according to tumour progression and high-dimensional genetic factors: meta-analysis
with a joint model, Stat Methods Med Res 27(9):2842-58

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints, Joint Frailty-
Copula Models, JSS Research Series in Statistics, Springer

Emura T, Shih JH, Ha ID, Wilke RA (2020), Comparison of the marginal hazard model and the
sub-distribution hazard model for competing risks under an assumed Copula, Stat Methods Med
Res 29(8):2307-27

Emura T, Sofeu C, Rondeau V (2021), Conditional copula models for correlated survival end-
points: individual patient data meta-analysis of randomized controlled trials, Stat Methods Med
Res 30(12):2634-50

Shinohara S, Lin YH, Michimae H, Emura T (2020), Dynamic lifetime prediction using a Weibull-
based bivariate failure time model: a meta-analysis of individual-patient data, Comm Stat-Simul,
DOI:10.1080/03610918.2020.1855449

Wu BH, Michimae H, Emura T (2020), Meta-analysis of individual patient data with semi-competing
risks under the Weibull joint frailty-copula model, Comp Stat 35(4):1525-52

cmprskCox.reg The Competing Risks Version of Penalized Likelihood Estimation un-
der the Joint Cox Models Between Tumour Progression and Death for
Meta-Analysis

Description

Perform regression analyses under a copula-based joint Cox proportional hazards model between
tumour progression and death for meta-analysis, which is proposed in Section 6.2 of Emura et al.
(2017) and Section 5.1 of Emura et al. (2020). This is the competing risks version of "jointCox.reg".
To avoid the indentifiability problem, the copula parameter (theta) should be given by user, e.g.,
theta=2. The method is applicable for meta-analysis combining several studies or for cluster survival
data.

Usage

cmprskCox.reg(t.event, event1, event2, Z1, Z2, group, theta, alpha = 1,
kappa1 = c(seq(10, 1e+17, length = 30)), kappa2 = c(seq(10, 1e+17, length = 30)),
LCV.plot = TRUE, Randomize_num = 10, Adj = 500,convergence.par=FALSE)



4 cmprskCox.reg

Arguments

t.event a vector for event tims
event1 a vector for event-type 1 indicators (=1 with event; =0 without event)
event2 a vector for event-type 2 indicators (=1 with event; =0 without event)
Z1 a matrix for covariates associated with event-type 1; ncol(Z1)=the number of

covariates
Z2 a matrix for covariates associated with event-type 2; ncol(Z2)=the number of

covariates
group a vector for a group identification number, like 1,2,3....
theta A copula parameter under the Clayton copula (theta > 0)
alpha A value related to the frailty (e.g., alpha=0 or =1); alpha=1 is default
kappa1 a vector for candidate smoothing parameters
kappa2 a vector for candidate smoothing parameters
LCV.plot Plot the LCV curves if "TRUE"
Randomize_num The number of randomizations for the ititial p0
Adj Numerical adjustment to prevent overflow; Adj=500 is recommended
convergence.par

If TRUE, the converged estimate, gradient, and Hessian matrix are given (log-
transformed)

Details

We employ "nlm" routine to maximize the penalized likelihood function with the initial value de-
scribed in Emura et al. (2015). If "nlm" does not converge, then we randomize the initial value by
adding uniform random variables (Hu and Emura, 2015).

Value

count Count for event occurences
beta1 Regression coefficient for Z1
beta2 Regression coefficient for Z2
eta Frailty parameter (variance)
theta Copula parameter under the Clayton copula (fixed by user)
tau Kendall’s tau corresponding to the copula parameter
LCV1 Likelihood cross-validation for event-type 1
LCV2 Likelihood cross-validation for event-type 2
g M-spline coefficients for event-type 1
h M-spline coefficients for event-type 2
g_var Variance of M-spline coefficients for event-type 1
h_var Variance of M-spline coefficients for event-type 2
convergence convergence results for maximizing penalized likelihood
convergence.parameters

converged estimate, gradient, and Hessian matrix (log-transformed)



cmprskCox.reg 5

Error

"Error in integrate(func1, 0.001, 10, stop.on.error = FALSE):non-finite function value", an error
occurring when the penalized likelihood is maximizad by "nlm". The error may frequently occur
during the iterations for maximizing the penalized likelihood, but is not crucial (can simply be
ignored).

Warning

"NA/Inf replaced by maximum positive value", an error occurring when the penalized likelihood is
maximizad by "nlm". The error frequently occurs during the iterations for maximizing the penalized
likelihood, but is not crucial (can simply be ignored).

Author(s)

Takeshi Emura, Shih JH

References

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6): 2649-66

Emura T, Shih JH, Ha ID, Wilke RA (2020), Comparison of the marginal hazard model and the
sub-distribution hazard model for competing risks under an assumed copula, Stat Methods Med
Res, 29(8): 2307-27

Hu YH, Emura T (2015), Maximum likelihood estimation for a special exponential family under
random double-truncation, Compu Stat 30 (4): 1199-1229

Examples

data(dataOvarian)
t.event=dataOvarian$t.event
t.death=dataOvarian$t.death
event=dataOvarian$event
death=dataOvarian$death
non.event=which(event==1 & death==1 & t.event==t.death)
non.death=which(event==1 & death==1 & t.event<t.death)
event[non.event]=0 ## relapse before death
death[non.death]=0 ## death before relapse (tie is counted as death)
Z=as.matrix(dataOvarian$CXCL12)
group=dataOvarian$group
alpha_given=0
theta=2.35
kappa_grid=seq(10,1e+17,length = 30)

#set.seed(1)
#cmprskCox.reg(t.event=t.event,event1=event,event2=death,
# Z1=Z,Z2=Z,group=group,theta=theta,alpha=alpha_given,
# kappa1=kappa_grid,kappa2=kappa_grid,LCV.plot=TRUE,Adj=500)
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condCox.reg Penalized Likelihood Estimation under the Joint Cox Models Between
Tumour Progression and Death for Meta-Analysis; A Conditional
Copula Approach

Description

An extension of the function "joint.Cox(.)" by regression on a conditional copula. Perform joint
regression analyses under a copula-based joint Cox proportional hazards model between tumour
progression and death for meta-analysis, which is proposed by Emura et al. (2021). The method
extends the joint frailty copula model of Emura et al. (2017) by adding a regression function on
a copula parameter. The method is applicable for meta-analysis combining several studies or for
cluster survival data.

Usage

condCox.reg(t.event, event, t.death, death, Z1, Z2, Z12, group, alpha = 1,
kappa1 = c(seq(10, 1e+17, length = 30)),kappa2 = c(seq(10, 1e+17, length = 30)),
LCV.plot = TRUE, Randomize_num = 10, u.min = 0.001, u.max = 10,
Adj = 500,convergence.par=FALSE)

Arguments

t.event a vector for time-to-tumour progression (TTP)

event a vector for progression indicator (=1 if progression; =0 if not progression)

t.death a vector for overall survival (OS), i.e., time-to-death

death a vector for death indicator(=1 if death; =0 if not death)

Z1 a matrix for covariates associated with TTP; ncol(Z1)=the number of covariates

Z2 a matrix for covariates associated with OS; ncol(Z2)=the number of covariates

Z12 a matrix for covariates associated with copula; ncol(Z12)=the number of covari-
ates

group a vector for group identification numbers, like 1,2,3....

alpha A value related to the frailty (e.g., alpha=0 or =1); alpha=1 is default

kappa1 a vector for candidate smoothing parameters

kappa2 a vector for candidate smoothing parameters

LCV.plot Plot the LCV curves if "TRUE"

Randomize_num The number of randomizations for the ititial p0

u.min the lower bound of the numerical integration for the frailty term

u.max the upper bound of the numerical integration for the frailty term

Adj Numerical adjustment to prevent overflow; Adj=500 is recommended
convergence.par

If TRUE, the converged estimate, gradient, and Hessian matrix are given (log-
transformed)
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Details

We employ "nlm" routine to maximize the penalized likelihood function with the initial value de-
scribed in Emura et al. (2017). If "nlm" does not converge, then we randomize the initial value by
adding uniform random variables (Hu and Emura, 2015).

Value

count Count for event occurences

beta1 Regression coefficient for Z1

beta2 Regression coefficient for Z2

eta Frailty parameter (variance)

theta Baseline copula parameter under the Clayton copula

tau Kendall’s tau corresponding to the baseline copula parameter

beta12 Regression coefficient for a copula parameter

LCV1 Likelihood cross-validation for TTP

LCV2 Likelihood cross-validation for OS

g M-spline coefficients for TTP

h M-spline coefficients for OS

g_var Variance of M-spline coefficients for TTP

h_var Variance of M-spline coefficients for OS

convergence convergence results for maximizing penalized likelihood
convergence.parameters

converged estimate, gradient, and Hessian matrix (log-transformed)

Error

"Error in integrate(func1, 0.001, 10, stop.on.error = FALSE):non-finite function value", an error
occurring when the penalized likelihood is maximizad by "nlm". The error may frequently occur
during the iterations for maximizing the penalized likelihood, but is not crucial (can simply be
ignored).

Warning

"NA/Inf replaced by maximum positive value", an error occurring when the penalized likelihood is
maximizad by "nlm". The error frequently occurs during the iterations for maximizing the penalized
likelihood, but is not crucial (can simply be ignored).

Author(s)

Takeshi Emura
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References

Emura T, Sofeu C, Rondeau V (2021), Conditional copula models for correlated survival end-
points: individual patient data meta-analysis of randomized controlled trials, Stat Methods Med
Res 30(12):2634-50

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6):2649-66

Hu YH, Emura T (2015), Maximum likelihood estimation for a special exponential family under
random double-truncation, Computational Stat 30(4):1199-1229

Examples

data=Weibull.simu(G=10,N=50,scale1=1.5,scale2=1,beta1=-0.2,beta2=-0.2,beta12=0.5,
eta=0.5,copula="Clayton",theta=2,alpha=1,
C.max=5,Z.dist=rbinom,size=1,prob=0.5)

t.event=data$t.event
event=data$event
t.death=data$t.death
death=data$death
group=data$group
Z1=as.matrix(data$Z)
Z2=Z12=Z1
kappa=seq(1,10000,length=50)

#condCox.reg(t.event=t.event,event=event,t.death=t.death,death=death,
# Z1=Z1,Z2=Z2,Z12=Z12,group=group,alpha=1,
# kappa1=kappa,kappa2=kappa,Randomize_num=1,LCV.plot=FALSE,u.max=20)

dataOvarian Survival data of 1003 ovarian cancer patients from 4 independent
studies.

Description

The data consist of 1003 surgically treated ovarian cancer patients from four studies (N1=110,
N2=58, N3=278, N4=557). Survival outcomes are given to study if the CXCL12 gene expression
is a prognostic factor in ovarian cancer. The dataset was used in Emura et al. (2017), which is
a subset of the curated ovarian data of Ganzfried et al (2013). We prepared the dataset by using
"patientselection.config" in "Curated ovarian data" around May 2015 in the analysis of Emura et al.
(2017).

Usage

data("dataOvarian")
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Format

A data frame with 1003 observations on the following 6 variables.

t.event : time to event (days from surgery to tumour recurrence)

event : event indicator (1=recurrence, 0=no recurrence)

t.death : time to death (days from surgery to death due to any cause)

death : death indicator (1=death, 0=alive)

group : study ID; group=4, 8, 11, or 14; see the details below

CXCL12 : CXCL12 gene expression

Details

The data include individual-patient information on 1003 patients from 4 studies (group=4, 8, 11, and
14). The numbers 4, 8, 11 and 14 corresponds to the study IDs from the original data of Ganzfried
et al. (2013). "group=4" corresponds to 110 Japanese patients from the study of Yoshihara et al.
(2010) (GEO accession number: GSE17260). Other groupds are the studies of GSE30161 (58
patients), GSE9891 (278 patients), and TCGA (557 patients).

Source

Ganzfried BF et al. (2013), Curated ovarian data: clinically annotated data for the ovarian cancer
transcriptome, Database, Article ID bat013, doi:10.1093/database/bat013.

References

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6): 2649-66

Ganzfried BF et al. (2013), Curated ovarian data: clinically annotated data for the ovarian cancer
transcriptome, Database, Article ID bat013, doi:10.1093/database/bat013.

Yoshihara K et al. (2010) Gene expression profile for predicting survival in advanced-stage serous
ovarian cancer across two independent datasets. PLoS One 12;5(3):e9615

Examples

data(dataOvarian)
study4=dataOvarian[dataOvarian$group==4,] # extract one study
study4
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dataOvarian1 Data on time-to-recurrence and 158 gene expressions for 912 ovarian
cancer patients from 4 independent studies.

Description

Meta-analytic data containing 158 gene expressions and time-to-relapse information for ovarian
cancer patients. The data include time-to-recurrence, residual tumour size (>=1cm> vs. <1cm), and
associated 158 gene expressions. The dataset is a subset of the curated ovarian data of Ganzfried
et al (2013). We prepared the dataset by using "patientselection.config" in "Curated ovarian data"
around October 2016.

Usage

data("dataOvarian1")

Format

A data frame with 912 observations on the following 162 variables.

t.event : time-to-recurrence in days

event : event indicator (1=recurrence, 0=no recurrence)

group : study ID; group=4, 9, 12, or 16

debulk : residual tumour size (>=1cm> vs. <1cm)

ABI3BP a numeric vector

ADAM12 a numeric vector

ADORA3 a numeric vector

ANKRD27 a numeric vector

AP2M1 a numeric vector

AP3S1 a numeric vector

ARHGAP28 a numeric vector

ARHGAP29 a numeric vector

ARTN a numeric vector

ASAP3 a numeric vector

B4GALT5 a numeric vector

BCAP31 a numeric vector

BRD4 a numeric vector

C1QTNF3 a numeric vector

CALD1 a numeric vector

CCNE1 a numeric vector

CCNL1 a numeric vector
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CDC42 a numeric vector

CDV3 a numeric vector

CEBPB a numeric vector

CLIC4 a numeric vector

COL10A1 a numeric vector

COL11A1 a numeric vector

COL16A1 a numeric vector

COL3A1 a numeric vector

COL5A1 a numeric vector

COL5A2 a numeric vector

COMP a numeric vector

CRISPLD2 a numeric vector

CRYAB a numeric vector

CSE1L a numeric vector

CTSK a numeric vector

CXCL12 a numeric vector of gene expressions. The CXCL12 gene expression is a predictive biomarker
of survival in ovarian cancer (Popple et al. 2012). It has been known that CXCL12 promotes
tumour growth, participates in tumour metastasis, and suppresses tumour immunity (Kryczek
et al. 2007). The statistical significance of the CXCL12 expression on survival is first ex-
amined by Popple et al. (2012), and is further confirmed by Ganzfried et al. (2013) based
on the meta-analysis of 14 independent studies. A meta-analysis using a joint model further
confirmed that the expression of CXCL12 gene is predictive of both cancer relapse and death
(Emura et al. 2017; 2018).

CYR61 a numeric vector

DCUN1D1 a numeric vector

DDX27 a numeric vector

DIAPH3 a numeric vector

DNAJB4 a numeric vector

DNAJC13 a numeric vector

DNAJC8 a numeric vector

DPYSL3 a numeric vector

DVL3 a numeric vector

EFNB2 a numeric vector

EIF3K a numeric vector

ELK1 a numeric vector

ENPP1 a numeric vector

EPYC a numeric vector

FABP4 a numeric vector

FAM69A a numeric vector
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FAP a numeric vector

FERMT2 a numeric vector

FGF1 a numeric vector

FN1 a numeric vector

FOSL2 a numeric vector

FSTL1 a numeric vector

GABRG3 a numeric vector

GAS1 a numeric vector

GFRA1 a numeric vector

GFRA3 a numeric vector

GJC1 a numeric vector

GLIPR1 a numeric vector

GPATCH1 a numeric vector

HLTF a numeric vector

HP1BP3 a numeric vector

HSD17B6 a numeric vector

INHBA a numeric vector

ITGB1 a numeric vector

JUN a numeric vector

KIAA0226 a numeric vector

KIAA0355 a numeric vector

KIAA1598 a numeric vector

KIN a numeric vector

KLHL25 a numeric vector

KPNA6 a numeric vector

KRT7 a numeric vector

KRTAP5.8 a numeric vector

L2HGDH a numeric vector

LGALS1 a numeric vector

LOX a numeric vector

LPP a numeric vector

LUM a numeric vector

LUZP1 a numeric vector

MAP7D1 a numeric vector

MAPRE1 a numeric vector

MCL1 a numeric vector

MEOX2 a numeric vector
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METTL9 a numeric vector

MFN1 a numeric vector

MICAL2 a numeric vector

MMP12 a numeric vector

MRPS22 a numeric vector

MXD1 a numeric vector

MXRA8 a numeric vector

N4BP2L2 a numeric vector

NCOA3 a numeric vector of gene expressions. The NCOA3 gene encodes a nuclear receptor coacti-
vator, and amplification of the gene occurs in breast and ovarian cancers (Anzick et al. 1997).
The overexpression of NCOA3 is associated with tumor size (Spears et al. 2012) and tamox-
ifen resistance (Osborne et al. 2003), which are involved in the progression. Yoshida et al.
(2005) reported that NCOA3 could contribute to ovarian cancer progression by promoting cell
migration. In Emura et al. (2018), the overexpression of the gene was highly associated with
time-to-relapse (Coefficient=0.194, P-value<0.00001) and time-to-death (Coefficient=0.237,
P-value<0.00001). This result is consistent with the function of these reports.

NDRG3 a numeric vector

NINJ1 a numeric vector

NNMT a numeric vector

NOTCH2 a numeric vector

NPY a numeric vector

NTM a numeric vector

NUAK1 a numeric vector

OAT a numeric vector

OLFML2B a numeric vector

PARD3 a numeric vector

PCYT1A a numeric vector

PDE1A a numeric vector

PDGFD a numeric vector

PDPN a numeric vector of gene expressions. The PDPN gene encodes the podoplanin protein. It is
reported that cancer cells with higher PDPN expression have higher malignant potential due
to enhanced platelet aggregation, which promotes alteration of metastasis, cell motility, and
epithelial-mesenchymal transition (Shindo et al. 2013). Zhang et al. (2011) reported that over-
expression of PDPN in fibroblasts is significantly associated with a poor prognosis in ovarian
carcinoma. In Emura et al. (2018), the overexpression of the gene was highly associated with
time-to-relapse (Coefficient=0.222, P-value<0.00001) and time-to-death (Coefficient=0.161,
P-value<0.0001).

PGRMC1 a numeric vector

PLAU a numeric vector

PLOD2 a numeric vector
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PLSCR4 a numeric vector

POSTN a numeric vector

PPIC a numeric vector

PRDM2 a numeric vector

PSMC4 a numeric vector

RAB22A a numeric vector

RAB31 a numeric vector

RAB32 a numeric vector

RARRES1 a numeric vector

RPS16 a numeric vector

SERPINE1 a numeric vector

SGK1 a numeric vector

SH3PXD2A a numeric vector

SKIL a numeric vector

SLC12A8 a numeric vector

SPARC a numeric vector

SPHK1 a numeric vector

STAU1 a numeric vector

SULF1 a numeric vector

SUPT5H a numeric vector

TAGLN a numeric vector

TBCB a numeric vector

TEAD1 a numeric vector of gene expressions. TEAD1 encodes a ubiquitous transcriptional en-
hancer factor that is a member of the TEA/ATTS domain family. It is reported that the protein
level of TEAD1 was associated with poor prognosis in prostate cancer patients (Knight et al.
2008). In Emura et al. (2018), the overexpression of the gene was highly associated with
time-to-relapse (Coefficient=0.195, P-value<0.00001) and time-to-death (Coefficient=0.223,
P-value<0.00001).

TESK1 a numeric vector

TGM5 a numeric vector

THEMIS2 a numeric vector

TIMP2 a numeric vector of gene expressions. TIMP2 is a member of the TIMP gene family. The
proteins encoded by this gene family are natural inhibitors of the matrix metalloproteinases
(MMPs). MMPs and their inhibitors (TIMP gene family) play an important regulatory role in
the homeostasis of the extracellular matrix (Halon et al. 2012). In addition to inhibitors of
MMPs, TIMP2 has additional functions that are associated with cell proliferation and survival
(Bourboulia et al., 2011). In Emura et al. (2018), the overexpression of the gene was highly
associated with time-to-relapse (Coefficient=0.235, P-value<0.00001).

TIMP3 a numeric vector

TJP1 a numeric vector
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TP73.AS1 a numeric vector

TPM2 a numeric vector

TPM4 a numeric vector

TSC22D2 a numeric vector

TUBB2A a numeric vector

TUBB6 a numeric vector

TUFT1 a numeric vector

URI1 a numeric vector

USP48 a numeric vector

VCAN a numeric vector

VSIG4 a numeric vector

YWHAB a numeric vector of gene expressions. YWHAB encodes a protein belonging to the 14-3-3
family of proteins, members of which mediate signal transduction by binding to phosphoserine-
containing proteins. It is reported that the protein of YWHAB can regulate cell survival, pro-
liferation, and motility (Tzivion 2006). Actually, it is reported that overexpression of this gene
promotes tumor progression and was associated with extrahepatic metastasis and worse sur-
vival in hepatocellular carcinoma (Liu et al. 2011). In Emura et al. (2018), the overexpression
of the gene was highly associated with time-to-relapse (Coefficient=0.169, P-value<0.0001)
and time-to-death (Coefficient=0.263, P-value<0.00001)

ZFP36 a numeric vector

ZFP36L2 a numeric vector

ZMYM1 a numeric vector

ZNF148 a numeric vector

ZNF79 a numeric vector

Details

4 studies are combined (group=4, 9, 12, and 16). The numbers 4, 9, 12 and 16 corresponds to the
IDs from the original data of Ganzfried et al. (2013).

Source

Ganzfried BF et al. (2013), Curated ovarian data: clinically annotated data for the ovarian cancer
transcriptome, Database, Article ID bat013.

References

Bourboulia D, et al. (2011), Endogenous angiogenesis inhibitor blocks tumor growth via direct and
indirect effects on tumor microenvironment. Am J Pathol 179:2589-600

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6):2649-66

Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic predic-
tion of death according to tumour progression and high-dimensional genetic factors: meta-analysis
with a joint model, Stat Methods Med Res 27(9):2842-58
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Ganzfried BF et al. (2013), Curated ovarian data: clinically annotated data for the ovarian cancer
transcriptome, Database, Article ID bat013.

Halon A, et al. (2012), Enhanced immunoreactivity of TIMP-2 in the stromal compartment of tumor
as a marker of favorable prognosis in ovarian cancer patients. J Histochem Cytochem 60:491-501

Knight JF, et al. (2008), TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with
poor clinical outcome in prostate cancer. Br J Cancer 99:1849-58

Kryczek I, et al. (2007), Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis.
Am J Physiol 292:987-95

Liu TA, et al. (2011), Increased expression of 14-3-3beta promotes tumor progression and predicts
extrahepatic metastasis and worse survival in hepatocellular carcinoma. Am J Pathol 179:2698-708

Osborne CK, et al. (2003), Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu
in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95:353-61

Popple A, et al. (2012), The chemokine, CXCL12, is an independent predictor of poor survival in
ovarian cancer. Br J Cancer 106:1306-13

Shindo K, et al. (2013), Podoplanin expression in cancer-associated fibroblasts enhances tumor
progression of invasive ductal carcinoma of the pancreas. Mol Cancer 12:168

Tzivion G, et al. (2006), 14-3-3 proteins as potential oncogenes. Semin Cancer Biol 16:203-13

Yoshida H, et al. (2005), Steroid receptor coactivator-3, a homolog of Taiman that controls cell
migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Mol Cell
Endocrinol 245:77-85

Zhang Y, et al. (2011), Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carci-
noma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer
Lett 303:47-55

Examples

data(dataOvarian1)
######## univariate Cox ##########
t.event=dataOvarian1$t.event
event=dataOvarian1$event
X.mat=dataOvarian1[,-c(1,2,3,4)] ## gene expression
Symbol=colnames(dataOvarian1)[-c(1,2,3,4)] ## gene symbol

p=ncol(X.mat)
P_value=coef=NULL
for(j in 1:p){

res=summary(coxph(Surv(t.event,event)~X.mat[,j]))$coefficients
P_value=c(P_value,res[5])
coef=c(coef,res[1])

}
data.frame( gene=Symbol[order(P_value)], P=P_value[order(P_value)],
coef=round(coef[order(P_value)],3) )
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dataOvarian2 Data on time-to-death and 128 gene expressions for 912 ovarian can-
cer patients from 4 independent studies.

Description

Meta-analytic data containing 128 gene expressions and time-to-death information for ovarian can-
cer patients. The data include time-to-death, residual tumour size (>=1cm> vs. <1cm), and asso-
ciated 128 gene expressions. The dataset is a subset of the curated ovarian data of Ganzfried et al
(2013). We prepared the dataset by using "patientselection.config" in "Curated ovarian data" around
October 2016.

Usage

data("dataOvarian2")

Format

A data frame with 912 observations on the following 132 variables.

t.death : time to death in days

death : death indicator (1=death, 0=alive)

group : study ID; group=4, 9, 12, or 16

debulk : residual tumour size (>=1cm> vs. <1cm)

ANKRD27 a numeric vector

AP3S1 a numeric vector

APMAP a numeric vector

ARHGAP28 a numeric vector

ASAP1 a numeric vector

ASAP3 a numeric vector

ASB7 a numeric vector

B4GALT5 a numeric vector

BYSL a numeric vector

C1QTNF3 a numeric vector

CASP8 a numeric vector

CCL18 a numeric vector

CD79A a numeric vector

CDK19 a numeric vector

CLIC4 a numeric vector

COL11A1 a numeric vector

COL16A1 a numeric vector
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COL3A1 a numeric vector

COL5A1 a numeric vector

COL5A2 a numeric vector

COMP a numeric vector

COX7A2P2 a numeric vector

CPNE1 a numeric vector

CRISPLD2 a numeric vector

CRYAB a numeric vector

CTNNBL1 a numeric vector

CXCL12 a numeric vector of gene expressions. The CXCL12 gene expression is a predictive biomarker
of survival in ovarian cancer (Popple et al. 2012). It has been known that CXCL12 promotes
tumour growth, participates in tumour metastasis, and suppresses tumour immunity (Kryczek
et al. 2007). The statistical significance of the CXCL12 expression on survival is first ex-
amined by Popple et al. (2012), and is further confirmed by Ganzfried et al. (2013) based
on the meta-analysis of 14 independent studies. A meta-analysis using a joint model further
confirmed that the expression of CXCL12 gene is predictive of both cancer relapse and death
(Emura et al. 2017; 2018)

CXCL9 a numeric vector

CYBRD1 a numeric vector

CYR61 a numeric vector

CYTH3 a numeric vector

DDX27 a numeric vector

DLGAP4 a numeric vector

DNAJC13 a numeric vector

DYNLRB1 a numeric vector

EFNB2 a numeric vector

EIF3K a numeric vector

ELN a numeric vector

EMP1 a numeric vector

ENPP1 a numeric vector

FABP4 a numeric vector

FAP a numeric vector

FBL a numeric vector

FGF1 a numeric vector

FOXN3 a numeric vector

FSTL1 a numeric vector

GABRG3 a numeric vector

GAS1 a numeric vector

GFRA1 a numeric vector
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GJC1 a numeric vector

GPATCH1 a numeric vector

GZMB a numeric vector

HLA.DOB a numeric vector

HOXA5 a numeric vector

HP1BP3 a numeric vector

HSD17B6 a numeric vector

IL2RG a numeric vector

INHBA a numeric vector

ITGB1 a numeric vector

ITPKC a numeric vector

JAM2 a numeric vector

JUN a numeric vector

KCNH4 a numeric vector

KDELC1 a numeric vector

KIAA0355 a numeric vector

KIN a numeric vector

LEP a numeric vector

LOX a numeric vector

LPL a numeric vector

LSM14A a numeric vector

LUM a numeric vector

LUZP1 a numeric vector

MAPRE1 a numeric vector

MCL1 a numeric vector

MEOX2 a numeric vector

MMP12 a numeric vector

N4BP2L2 a numeric vector

NCOA3 a numeric vector of gene expressions. The NCOA3 gene encodes a nuclear receptor coacti-
vator, and amplification of the gene occurs in breast and ovarian cancers (Anzick et al. 1997).
The overexpression of NCOA3 is associated with tumor size (Spears et al. 2012) and tamox-
ifen resistance (Osborne et al. 2003), which are involved in the progression. Yoshida et al.
(2005) reported that NCOA3 could contribute to ovarian cancer progression by promoting cell
migration. In Emura et al. (2018), the overexpression of the gene was highly associated with
time-to-relapse (Coefficient=0.194, P-value<0.00001) and time-to-death (Coefficient=0.237,
P-value<0.00001). This result is consistent with the function of these reports.

NCOA6 a numeric vector of gene expressions

NOTCH2NL a numeric vector

NR1H3 a numeric vector
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NUAK1 a numeric vector

OAT a numeric vector

OMD a numeric vector

PAK4 a numeric vector

PCDH9 a numeric vector

PDP1 a numeric vector

PDPN a numeric vector of gene expressions. The PDPN gene encodes the podoplanin protein. It is
reported that cancer cells with higher PDPN expression have higher malignant potential due
to enhanced platelet aggregation, which promotes alteration of metastasis, cell motility, and
epithelial-mesenchymal transition (Shindo et al. 2013). Zhang et al. (2011) reported that over-
expression of PDPN in fibroblasts is significantly associated with a poor prognosis in ovarian
carcinoma. In Emura et al. (2018), the overexpression of the gene was highly associated with
time-to-relapse (Coefficient=0.222, P-value<0.00001) and time-to-death (Coefficient=0.161,
P-value<0.0001).

PHF20 a numeric vector

PLXNA1 a numeric vector

PSMC4 a numeric vector

PSMD8 a numeric vector

RAB13 a numeric vector

RAI14 a numeric vector

RARRES1 a numeric vector

RBM39 a numeric vector

RECQL a numeric vector

RIN2 a numeric vector

RND3 a numeric vector

RPS16 a numeric vector

SACS a numeric vector

SH3PXD2A a numeric vector

SKI a numeric vector

SLAMF7 a numeric vector

SLC37A4 a numeric vector

SMG5 a numeric vector

SOCS5 a numeric vector

SPARC a numeric vector

SSR4 a numeric vector

STAU1 a numeric vector

SUPT5H a numeric vector

TBCB a numeric vector

TBCC a numeric vector
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TEAD1 a numeric vector of gene expressions. TEAD1 encodes a ubiquitous transcriptional en-
hancer factor that is a member of the TEA/ATTS domain family. It is reported that the protein
level of TEAD1 was associated with poor prognosis in prostate cancer patients (Knight et al.
2008). In Emura et al. (2018), the overexpression of the gene was highly associated with
time-to-relapse (Coefficient=0.195, P-value<0.00001) and time-to-death (Coefficient=0.223,
P-value<0.00001).

TESK1 a numeric vector

TIMP3 a numeric vector

TJP1 a numeric vector

TP53BP2 a numeric vector

TSPAN9 a numeric vector

TTI1 a numeric vector

TUBB2A a numeric vector

TUBB6 a numeric vector

URI1 a numeric vector

USP48 a numeric vector

YWHAB a numeric vector of gene expressions. YWHAB encodes a protein belonging to the 14-3-3
family of proteins, members of which mediate signal transduction by binding to phosphoserine-
containing proteins. It is reported that the protein of YWHAB can regulate cell survival, pro-
liferation, and motility (Tzivion 2006). Actually, it is reported that overexpression of this gene
promotes tumor progression and was associated with extrahepatic metastasis and worse sur-
vival in hepatocellular carcinoma (Liu et al. 2011). In Emura et al. (2018), the overexpression
of the gene was highly associated with time-to-relapse (Coefficient=0.169, P-value<0.0001)
and time-to-death (Coefficient=0.263, P-value<0.00001).

ZFP36 a numeric vector

ZFP36L2 a numeric vector

ZNF148 a numeric vector

Details

4 studies are combined (group=4, 9, 12, and 16). The numbers 4, 9, 12 and 16 corresponds to the
IDs from the original data of Ganzfried et al. (2013).

Source

Ganzfried BF et al. (2013), Curated ovarian data: clinically annotated data for the ovarian cancer
transcriptome, Database, Article ID bat013

References

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6):2649-66

Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic predic-
tion of death according to tumour progression and high-dimensional genetic factors: meta-analysis
with a joint model, Stat Methods Med Res 27(9):2842-58
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Ganzfried BF, et al. (2013), Curated ovarian data: clinically annotated data for the ovarian cancer
transcriptome, Database, Article ID bat013.

Knight JF, et al. (2008), TEAD1 and c-Cbl are novel prostate basal cell markers that correlate with
poor clinical outcome in prostate cancer. Br J Cancer 99:1849-58

Kryczek I, et al. (2007), Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis.
Am J Physiol 292:987-95

Liu TA, et al. (2011), Increased expression of 14-3-3beta promotes tumor progression and predicts
extrahepatic metastasis and worse survival in hepatocellular carcinoma. Am J Pathol 179:2698-708

Osborne CK, et al. (2003), Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu
in tamoxifen resistance in breast cancer. J Natl Cancer Inst 95:353-61

Popple A, et al. (2012), The chemokine, CXCL12, is an independent predictor of poor survival in
ovarian cancer. Br J Cancer 106:1306-13

Shindo K, et al. (2013), Podoplanin expression in cancer-associated fibroblasts enhances tumor
progression of invasive ductal carcinoma of the pancreas. Mol Cancer 12:168

Tzivion G, et al. (2006), 14-3-3 proteins as potential oncogenes. Semin Cancer Biol 16:203-13

Yoshida H, et al. (2005), Steroid receptor coactivator-3, a homolog of Taiman that controls cell
migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Mol Cell
Endocrinol 245:77-85

Zhang Y, et al. (2011), Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carci-
noma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer
Lett 303:47-55

Examples

data(dataOvarian2)
######## univariate Cox ##########
t.death=dataOvarian2$t.death
death=dataOvarian2$death
X.mat=dataOvarian2[,-c(1,2,3,4)] ## gene expression
Symbol=colnames(dataOvarian2)[-c(1,2,3,4)] ## gene symbol

p=ncol(X.mat)
P_value=coef=NULL
for(j in 1:p){

res=summary(coxph(Surv(t.death,death)~X.mat[,j]))$coefficients
P_value=c(P_value,res[5])
coef=c(coef,res[1])

}
data.frame( gene=Symbol[order(P_value)], P=P_value[order(P_value)],
coef=round(coef[order(P_value)],3) )
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F.KM Prediction of death using the Kaplan-Meier estimator

Description

Dynamic prediction of death using using the Kaplan-Meier estimator. Probability of death between
t and t+w is calculated. The prediction probability is F(t,t+w)=1-S(t+w)/S(t), where S is the Kaplan-
Meier estimator.

Usage

F.KM(time, widths, t.death, death)

Arguments

time prediction time (=t)
widths length of window (=w)
t.death a vector object for overall survival (OS), i.e., time-to-death
death a vector object for death indicator(=1 if death; =0 if not death)

Details

Prediction probability of death is calculated without covariates.

Value

time t
widths w
F F(t,t+w)

Author(s)

Takeshi Emura

References

Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic predic-
tion of death according to tumour progression and high-dimensional genetic factors: meta-analysis
with a joint model, Stat Methods Med Res 27(9):2842-58

Examples

time=1
widths=c(0,0.5,1,1.5,2)
t.death=c(0.5,1,1.5,2,2.5,3)
death=c(1,1,1,1,1,1)
F.KM(time=time,width=widths,t.death=t.death,death=death)
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F.prediction Dynamic prediction of death

Description

Dynamic prediction of death using a joint frailty-copula model. Probability of death between t
and t+w is calculated given a tumour progression time X and covariates Z1 and Z2. If X<=t, the
prediction probability is F(t,t+w|X=x, Z1, Z2). If X>t, the prediction probability is F(t,t+w|X>t, Z1,
Z2). This function is a simpler version of F.windows. The guide for using this function shall be
explained by Emura et al. (2019).

Usage

F.prediction(time, widths, X, Z1, Z2, beta1, beta2, eta, theta, alpha,
g, h, xi1, xi3, Fplot = TRUE)

Arguments

time prediction time (=t)

widths length of window (=w)

X time of tumour progression; if tumour progression does not occur before time t,
one can set an arbitrary value X greater than t

Z1 a vector of covariates for progression

Z2 a vector of covariates for death

beta1 a vector of regression coefficients for progression

beta2 a vector of regression coefficients for death

eta frailty variance

theta copula parameter

alpha parameter related to frailty; usually alpha=1

g parameters related to the baseline hazard for progression

h parameters related to the baseline hazard for death

xi1 lower bound for time-to-event

xi3 upper bound for time-to-death

Fplot if FALSE, the plot is not shown

Details

Predicted probability of death is calculated given the event status (X<=t or X>t) and covariates (Z1
and Z2).
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Value

time t

widths w

X X

F F(t,t+w|X=x, Z1, Z2) or F(t,t+w|X>t, Z1, Z2)

Author(s)

Takeshi Emura

References

Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic predic-
tion of death according to tumour progression and high-dimensional genetic factors: meta-analysis
with a joint model, Stat Methods Med Res 27(9):2842-58

Emura T, Michimae H, Matsui S (2019-), A clinician’s guide for dynamic risk prediction of death
using an R package joint.Cox, submitted for publication.

Examples

w=c(0,0.5,1,1.5,2)
par(mfrow=c(1,2))
F.prediction(time=1,X=0.8,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3)
F.prediction(time=1,X=1.5,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3)

F.window Dynamic prediction of death under the joint frailty-copula model

Description

Dynamic prediction of death using a joint frailty-copula model. Probability of death between t
and t+w is calculated given a tumour progression time X and covariates Z1 and Z2. If X<=t, the
prediction probability is F(t,t+w|X=x, Z1, Z2). If X>t, the prediction probability is F(t,t+w|X>t, Z1,
Z2).

Usage

F.window(time, width, X, Z1, Z2, beta1, beta2, eta, theta, alpha,
g, h, xi1, xi3, Fplot = TRUE)
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Arguments

time prediction time (=t)

width length of window (=w)

X time of tumour progression < time

Z1 a vector of covariates for progression

Z2 a vector of covariates for death

beta1 a vector of regression coefficients for progression

beta2 a vector of regression coefficients for death

eta frailty variance

theta copula parameter

alpha parameter related to frailty; usually alpha=1

g parameters related to the baseline hazard for progression

h parameters related to the baseline hazard for death

xi1 lower bound for time to event

xi3 upper bound for time to death

Fplot if FALSE, the plot is not shown

Details

Predicted probability of death is calculated given the event status (X<=t or X>t) and covariates (Z1
and Z2).

Value

time t

width w

X X

F_event_at_X F(t,t+w|X=x, Z1, Z2)

F_noevent F(t,t+w|X>t, Z1, Z2)

Author(s)

Takeshi Emura

References

Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic predic-
tion of death according to tumour progression and high-dimensional genetic factors: meta-analysis
with a joint model, Stat Methods Med Res 27(9):2842-58
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Examples

w=1
par(mfrow=c(1,2))
F.window(time=1,X=0.2,width=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3)
F.window(time=1,X=0.8,width=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3)

F.window.Weibull Dynamic prediction of death under the joint frailty-copula model (the
Weibull baseline hazard functions)

Description

Dynamic prediction of death using a joint frailty-copula model. Probability of death between t
and t+w is calculated given a tumour progression time X and covariates Z1 and Z2. If X<=t, the
prediction probability is F(t,t+w|X=x, Z1, Z2). If X>t, the prediction probability is F(t,t+w|X>t, Z1,
Z2).

Usage

F.window.Weibull(time, width, X, Z1, Z2, beta1, beta2, eta, theta, alpha,
scale1, shape1,scale2,shape2, xi1, xi3, Fplot = TRUE)

Arguments

time prediction time (=t)

width length of window (=w)

X time of tumour progression < time

Z1 a vector of covariates for progression

Z2 a vector of covariates for death

beta1 a vector of regression coefficients for progression

beta2 a vector of regression coefficients for death

eta frailty variance

theta copula parameter

alpha parameter related to frailty; usually alpha=1

scale1 scale parameter related to the baseline hazard for progression

shape1 shape parameter related to the baseline hazard for progression

scale2 scale parameter related to the baseline hazard for death

shape2 shape parameter related to the baseline hazard for death

xi1 lower bound for time to event

xi3 upper bound for time to death

Fplot if FALSE, the plot is not shown
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Details

Predicted probability of death is calculated given the event status (X<=t or X>t) and covariates (Z1
and Z2).

Value

time t

width w

X X

F_event_at_X F(t,t+w|X=x, Z1, Z2)

F_noevent F(t,t+w|X>t, Z1, Z2)

Author(s)

Sayaka Shinohara, Takeshi Emura

References

Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic predic-
tion of death according to tumour progression and high-dimensional genetic factors: meta-analysis
with a joint model, Stat Methods Med Res 27(9):2842-58

Shinohara S, Lin YH, Michimae H, Emura T (2020), Dynamic lifetime prediction using a Weibull-
based bivariate failure time model: a meta-analysis of individual-patient data, Comm Stat Simul,
DOI:10.1080/03610918.2020.1855449

Examples

w=1
par(mfrow=c(1,2))
F.window.Weibull(time=1,X=0.2,width=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,scale1=1,shape1=1,scale2=1,shape2=1,xi1=0,xi3=3)
F.window.Weibull(time=1,X=0.8,width=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,scale1=1,shape1=1,scale2=1,shape2=1,xi1=0,xi3=3)

F.windows Dynamic prediction of death under the joint frailty-copula model

Description

Dynamic prediction of death using a joint frailty-copula model. Probability of death between t
and t+w is calculated given a tumour progression time X and covariates Z1 and Z2. If X<=t, the
prediction probability is F(t,t+w|X=x, Z1, Z2). If X>t, the prediction probability is F(t,t+w|X>t, Z1,
Z2). This is a vector version of F.window.
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Usage

F.windows(time, widths, X, Z1, Z2, beta1, beta2, eta, theta, alpha,
g, h, xi1, xi3, Fplot = TRUE)

Arguments

time prediction time (=t)

widths length of window (=w)

X time of tumour progression < time

Z1 a vector of covariates for progression

Z2 a vector of covariates for death

beta1 regression coefficients for progression

beta2 regression coefficients for death

eta frailty variance

theta copula parameter

alpha parameter related to frailty; usually alpha=1

g parameters related to the baseline hazard for progression

h parameters related to the baseline hazard for death

xi1 lower bound for time to event

xi3 upper bound for time to death

Fplot if FALSE, the plot is not shown

Details

Predicted probability of death is calculated given the event status (X<=t or X>t) and covariates (Z1
and Z2).

Value

time t

widths w

X X

F_event_at_X F(t,t+w|X=x, Z1, Z2)

F_noevent F(t,t+w|X>t, Z1, Z2)

Author(s)

Takeshi Emura

References

Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic predic-
tion of death according to tumour progression and high-dimensional genetic factors: meta-analysis
with a joint model, Stat Methods Med Res 27(9):2842-58
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Examples

w=c(0,0.5,1,1.5,2)
par(mfrow=c(1,2))
F.windows(time=1,X=0.2,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3)
F.windows(time=1,X=0.8,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,g=rep(1,5),h=rep(1,5),xi1=0,xi3=3)

F.windows.Weibull Dynamic prediction of death under the joint frailty-copula model (the
Weibull baseline hazard functions)

Description

Dynamic prediction of death using a joint frailty-copula model. Probability of death between t
and t+w is calculated given a tumour progression time X and covariates Z1 and Z2. If X<=t, the
prediction probability is F(t,t+w|X=x, Z1, Z2). If X>t, the prediction probability is F(t,t+w|X>t, Z1,
Z2). This is a vector version of F.window.Weibull.

Usage

F.windows.Weibull(time, widths, X, Z1, Z2, beta1, beta2, eta, theta, alpha,
scale1, shape1,scale2,shape2, xi1, xi3, Fplot = TRUE)

Arguments

time prediction time (=t)

widths length of window (=w)

X time of tumour progression < time

Z1 a vector of covariates for progression

Z2 a vector of covariates for death

beta1 a vector of regression coefficients for progression

beta2 a vector of regression coefficients for death

eta frailty variance

theta copula parameter

alpha parameter related to frailty; usually alpha=1

scale1 scale parameter related to the baseline hazard for progression

shape1 shape parameter related to the baseline hazard for progression

scale2 scale parameter related to the baseline hazard for death

shape2 shape parameter related to the baseline hazard for death

xi1 lower bound for time to event

xi3 upper bound for time to death

Fplot if FALSE, the plot is not shown
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Details

Predicted probability of death is calculated given the event status (X<=t or X>t) and covariates (Z1
and Z2).

Value

time t

widths w

X X

F_event_at_X F(t,t+w|X=x, Z1, Z2)

F_noevent F(t,t+w|X>t, Z1, Z2)

Author(s)

Sayaka Shinohara, Takeshi Emura

References

Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018), Personalized dynamic predic-
tion of death according to tumour progression and high-dimensional genetic factors: meta-analysis
with a joint model, Stat Methods Med Res 27(9):2842-58

Shinohara S, Lin YH, Michimae H, Emura T (2020), Dynamic lifetime prediction using a Weibull-
based bivariate failure time model: a meta-analysis of individual-patient data, Comm Stat Simul,
DOI:10.1080/03610918.2020.1855449

Examples

w=c(0,0.5,1,1.5,2)
par(mfrow=c(1,2))
F.windows.Weibull(time=1,X=0.2,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,scale1=1,shape1=1,scale2=1,shape2=1,xi1=0,xi3=3)
F.windows.Weibull(time=1,X=0.8,widths=w,Z1=1,Z2=1,beta1=1,beta2=1,eta=0.5,theta=8,

alpha=1,scale1=1,shape1=1,scale2=1,shape2=1,xi1=0,xi3=3)

I.spline I-spline basis function

Description

Calculate the I-spline basis functions (the integrals of the M-spline basis functions).

Usage

I.spline(time, xi1, xi3)
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Arguments

time a vector of time points

xi1 lower bound of time points

xi3 upper bound of time points

Details

The output shows the values of the 5 basis functions at "time", giving a matrix with nrow=length(time)
and ncol=5. The five basis functions were originally given in the Supplementary Material of Emura
et al. (2017). More details can be found in Emura and Chen (2018), Emura et al. (2019),
and Shih and Emura (2021). The "time" argument should be a vector satisfying the contraints
xi1<=time<=xi3. If "time" does not meet the constraints, error messages are shown.

Value

NULL A matrix with nrow=length(time) and ncol=5, containing the values of the 5
I-spline basis functions at "time".

Author(s)

Takeshi Emura

References

Emura T, Chen YH (2018). Analysis of Survival Data with Dependent Censoring, Copula-Based
Approaches, JSS Research Series in Statistics, Springer, Singapore.

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints; Joint Frailty-
Copula Models, JSS Research Series in Statistics, Springer

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6): 2649-66: Supple-
mentary Material.

Shih JH, Emura T (2021) Penalized Cox regression with a five-parameter spline model, Commun
Stat-Theor 50(16):3749-68

Examples

I.spline(time=c(1,2,3),xi1=1,xi3=3)
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jointCox.indep.reg Penalized Likelihood Estimation under the Joint Cox Models Between
Tumour Progression and Death for Meta-Analysis

Description

Perform regression analyses under a joint Cox proportional hazards model between tumour pro-
gression and death for meta-analysis, which is proposed by Rondeau et al. (2015). The method is
applicable for meta-analysis combining several studies or for cluster survival data.

Usage

jointCox.indep.reg(t.event, event, t.death, death, Z1, Z2, group, alpha = 1,
kappa1 = c(seq(10, 1e+17, length = 30)), kappa2 = c(seq(10, 1e+17, length = 30)),
LCV.plot = TRUE,Randomize_num = 10, Adj = 500,convergence.par=FALSE)

Arguments

t.event a vector for time-to-tumour progression (TTP)

event a vector for progression indicator (=1 if progression; =0 if not progression)

t.death a vector for overall survival (OS), i.e., time-to-death

death a vector for death indicator(=1 if death; =0 if not death)

Z1 a matrix for covariates associated with TTP; ncol(Z1)=the number of covariates

Z2 a matrix for covariates associated with OS; ncol(Z2)=the number of covariates

group a vector for group identification numbers, like 1,2,3....

alpha A value related to the frailty (e.g., alpha=0 or =1); alpha=1 is default

kappa1 a vector for candidate smoothing parameters

kappa2 a vector for candidate smoothing parameters

LCV.plot Plot the LCV curves if "TRUE"

Randomize_num The number of randomizations for the ititial p0

Adj Numerical adjustment to prevent overflow; Adj=500 is recommended
convergence.par

If TRUE, the converged estimate, gradient, and Hessian matrix are given (log-
transformed)

Details

We employ "nlm" routine to maximize the penalized likelihood function with the initial value de-
scribed in Emura et al. (2015). If "nlm" does not converge, then we randomize the initial value by
adding uniform random variables (Hu and Emura, 2015).
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Value

count Count for event occurences

beta1 Regression coefficient for Z1

beta2 Regression coefficient for Z2

eta Frailty parameter (variance)

LCV1 Likelihood cross-validation for TTP

LCV2 Likelihood cross-validation for OS

g M-spline coefficients for TTP

h M-spline coefficients for OS

g_var Variance of M-spline coefficients for TTP

h_var Variance of M-spline coefficients for OS

convergence convergence results for maximizing penalized likelihood

convergence.parameters

converged estimate, gradient, and Hessian matrix (log-transformed)

Error

"Error in integrate(func1, 0.001, 10, stop.on.error = FALSE):non-finite function value", an error
occurring when the penalized likelihood is maximizad by "nlm". The error may frequently occur
during the iterations for maximizing the penalized likelihood, but is not crucial (can simply be
ignored).

Warning

"NA/Inf replaced by maximum positive value", an error occurring when the penalized likelihood is
maximizad by "nlm". The error frequently occurs during the iterations for maximizing the penalized
likelihood, but is not crucial (can simply be ignored).

Author(s)

Takeshi Emura

References

Rondeau V, Pignon JP, Michiels S (2015). A joint model for dependence between clustered times
to tumour progression and deaths: A meta-analysis of chemotherapy in head and neck cancer. Stat
Methods Med Res 24(6):711-729.

Hu YH, Emura T (2015), Maximum likelihood estimation for a special exponential family under
random double-truncation, Computational Statist 30(4): 1199-1229
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Examples

############## Reproduce the results of Emura et al. (2015) #############
data(dataOvarian)
t.event=dataOvarian$t.event
event=dataOvarian$event
t.death=dataOvarian$t.death
death=dataOvarian$death
Z1=dataOvarian$CXCL12
group=dataOvarian$group
alpha_given=0
kappa_grid=seq(10,1e+17,length=30)
set.seed(1)
#jointCox.indep.reg(t.event=t.event,event=event,t.death=t.death,death=death,
# Z1=Z1,Z2=Z1,group=group,alpha=alpha_given,
# kappa1=kappa_grid,kappa2=kappa_grid,LCV.plot=TRUE,Adj=500)

jointCox.reg Penalized Likelihood Estimation under the Joint Cox Models Between
Tumour Progression and Death for Meta-Analysis

Description

Perform regression analyses under a copula-based joint Cox proportional hazards model between
tumour progression and death for meta-analysis, which is proposed by Emura et al. (2017). The
methodological details can be found in Emura et al. (2019). The method is applicable for meta-
analysis combining several studies or for cluster survival data.

Usage

jointCox.reg(t.event, event, t.death, death, Z1, Z2, group, alpha = 1,
kappa1 = c(seq(10, 1e+17, length = 30)),kappa2 = c(seq(10, 1e+17, length = 30)),
LCV.plot = TRUE, Randomize_num = 10, u.min = 0.001, u.max = 10,
Adj = 500,convergence.par=FALSE)

Arguments

t.event a vector for time-to-tumour progression (TTP)

event a vector for progression indicator (=1 if progression; =0 if not progression)

t.death a vector for overall survival (OS), i.e., time-to-death

death a vector for death indicator(=1 if death; =0 if not death)

Z1 a matrix for covariates associated with TTP; ncol(Z1)=the number of covariates

Z2 a matrix for covariates associated with OS; ncol(Z2)=the number of covariates

group a vector for group identification numbers, like 1,2,3....

alpha A value related to the frailty (e.g., alpha=0 or =1); alpha=1 is default
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kappa1 a vector for candidate smoothing parameters

kappa2 a vector for candidate smoothing parameters

LCV.plot Plot the LCV curves if "TRUE"

Randomize_num The number of randomizations for the ititial p0

u.min the lower bound of the numerical integration for the frailty term

u.max the upper bound of the numerical integration for the frailty term

Adj Numerical adjustment to prevent overflow; Adj=500 is recommended
convergence.par

If TRUE, the converged estimate, gradient, and Hessian matrix are given (log-
transformed)

Details

We employ "nlm" routine to maximize the penalized likelihood function with the initial value de-
scribed in Emura et al. (2017). If "nlm" does not converge, then we randomize the initial value by
adding uniform random variables (Hu and Emura, 2015).

Value

count Count for event occurences

beta1 Regression coefficient for Z1

beta2 Regression coefficient for Z2

eta Frailty parameter (variance)

theta Copula parameter under the Clayton copula

tau Kendall’s tau corresponding to the copula parameter

LCV1 Likelihood cross-validation for TTP

LCV2 Likelihood cross-validation for OS

g M-spline coefficients for TTP

h M-spline coefficients for OS

g_var Variance of M-spline coefficients for TTP

h_var Variance of M-spline coefficients for OS

convergence convergence results for maximizing penalized likelihood
convergence.parameters

converged estimate, gradient, and Hessian matrix (log-transformed)

Error

"Error in integrate(func1, 0.001, 10, stop.on.error = FALSE):non-finite function value", an error
occurring when the penalized likelihood is maximizad by "nlm". The error may frequently occur
during the iterations for maximizing the penalized likelihood, but is not crucial (can simply be
ignored).
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Warning

"NA/Inf replaced by maximum positive value", an error occurring when the penalized likelihood is
maximizad by "nlm". The error frequently occurs during the iterations for maximizing the penalized
likelihood, but is not crucial (can simply be ignored).

Author(s)

Takeshi Emura

References

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6): 2649-66

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints; Joint Frailty-
Copula Models, JSS Research Series in Statistics, Springer

Hu YH, Emura T (2015), Maximum likelihood estimation for a special exponential family under
random double-truncation, Computational Stat 30 (4): 1199-1229

Examples

############## Reproduce the results of Emura et al. (2017) #############
data(dataOvarian)
t.event=dataOvarian$t.event
event=dataOvarian$event
t.death=dataOvarian$t.death
death=dataOvarian$death
Z1=dataOvarian$CXCL12
group=dataOvarian$group
alpha_given=0
kappa_grid=seq(10,1e+17,length=30)
set.seed(1)
#jointCox.reg(t.event=t.event,event=event,t.death=t.death,death=death,
# Z1=Z1,Z2=Z1,group=group,alpha=alpha_given,
# kappa1=kappa_grid,kappa2=kappa_grid,LCV.plot=TRUE,Adj=500)

jointCox.Weibull.reg Weibull-based Likelihood Estimation under the Joint Cox Models Be-
tween Tumour Progression and Death for Meta-Analysis

Description

Perform Weibull regression analyses under a copula-based joint Cox proportional hazards model
between tumour progression and death for meta-analysis, which is proposed by Wu et al. (2020).

Usage

jointCox.Weibull.reg(t.event, event, t.death, death, Z1, Z2, group, alpha = 1,
Randomize_num = 10, u.min = 0.001, u.max = 10, Adj = 500,convergence.par=FALSE)
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Arguments

t.event a vector for time-to-tumour progression (TTP)

event a vector for progression indicator (=1 if progression; =0 if not progression)

t.death a vector for overall survival (OS), i.e., time-to-death

death a vector for death indicator(=1 if death; =0 if not death)

Z1 a matrix for covariates associated with TTP; ncol(Z1)=the number of covariates

Z2 a matrix for covariates associated with OS; ncol(Z2)=the number of covariates

group a vector for group identification numbers, like 1,2,3....

alpha A value related to the frailty (e.g., alpha=0 or =1); alpha=1 is default

Randomize_num The number of randomizations for the ititial p0

u.min the lower bound of the numerical integration for the frailty term

u.max the upper bound of the numerical integration for the frailty term

Adj Numerical adjustment to prevent overflow; Adj=500 is recommended
convergence.par

If TRUE, the converged estimate, gradient, and Hessian matrix are given (log-
transformed)

Details

We employ "nlm" routine to maximize the penalized likelihood function with the initial value de-
scribed in Wu et al. (2020). If "nlm" does not converge, then we randomize the initial value by
adding uniform random variables (Hu and Emura, 2015).

Value

count Count for event occurences

beta1 Regression coefficient for Z1

beta2 Regression coefficient for Z2

eta Frailty parameter (variance)

theta Copula parameter under the Clayton copula

tau Kendall’s tau corresponding to the copula parameter

scale1 Scale parameter for the Weibull model of TTP

shape1 Shape parameter for the Weibull model of TTP

scale2 Scale parameter for the Weibull model of OS

shape2 Shape parameter for the Weibull model of OS

convergence convergence results for maximizing penalized likelihood
convergence.parameters

converged estimate, gradient, and Hessian matrix (log-transformed)
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Error

"Error in integrate(func1, 0.001, 10, stop.on.error = FALSE):non-finite function value", an error
occurring when the penalized likelihood is maximizad by "nlm". The error may frequently occur
during the iterations for maximizing the penalized likelihood, but is not crucial (can simply be
ignored).

Warning

"NA/Inf replaced by maximum positive value", an error occurring when the penalized likelihood is
maximizad by "nlm". The error frequently occurs during the iterations for maximizing the penalized
likelihood, but is not crucial (can simply be ignored).

Author(s)

Takeshi Emura

References

Wu BH, Michimae H, Emura T (2020), Meta-analysis of individual patient data with semi-competing
risks under the Weibull joint frailty-copula model. Comp Stat 35(4):1525-52

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6): 2649-66

Hu YH, Emura T (2015), Maximum likelihood estimation for a special exponential family under
random double-truncation, Comp Stat 30 (4): 1199-1229

Examples

data(dataOvarian)
t.event=dataOvarian$t.event
event=dataOvarian$event
t.death=dataOvarian$t.death
death=dataOvarian$death
Z1=dataOvarian$CXCL12
group=dataOvarian$group
alpha_given=0

#set.seed(1)
#jointCox.Weibull.reg(t.event=t.event,event=event,t.death=t.death,death=death,
# Z1=Z1,Z2=Z1,group=group,alpha=alpha_given,Adj=500)

M.spline M-spline basis function

Description

Calculate the M-spline basis functions (a M-spline basis is a B-spline basis normalized so that the
integral is 1).
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Usage

M.spline(time, xi1, xi3)

Arguments

time a vector of time points

xi1 lower bound of time points

xi3 upper bound of time points

Details

The output shows the values of the 5 basis functions at "time", giving a matrix with nrow=length(time)
and ncol=5. The five basis functions were originally given in the Supplementary Material of Emura
et al. (2017). More details can be found in Emura and Chen (2018), Emura et al. (2019),
and Shih and Emura (2021). The "time" argument should be a vector satisfying the contraints
xi1<=time<=xi3. If "time" does not meet the constraints, error messages are shown.

Value

NULL A matrix with nrow=length(time) and ncol=5, containing the values of the 5
spline basis functions at "time".

Author(s)

Takeshi Emura

References

Emura T, Chen YH (2018). Analysis of Survival Data with Dependent Censoring, Copula-Based
Approaches, JSS Research Series in Statistics, Springer, Singapore.

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints; Joint Frailty-
Copula Models, JSS Research Series in Statistics, Springer

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6): 2649-66: Supple-
mentary Material.

Shih JH, Emura T (2021) Penalized Cox regression with a five-parameter spline model, Commun
Stat-Theor 50(16):3749-68

Examples

M.spline(time=c(1,2,3),xi1=1,xi3=3)
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splineCox.reg Fitting the Cox model for survival data using a penalized spline model

Description

Fitting the Cox proportional hazards model when the baseline hazard function is specified by a
five-parameter spline model.

Usage

splineCox.reg(t.event, event, Z, xi1 = min(t.event), xi3 = max(t.event),
kappa = c(seq(10, 1e+17, length = 30)), LCV.plot = TRUE,p0=rep(0,5+p))

Arguments

t.event a vector for time-to-event

event a vector for event indicator (=1 event; =0 censoring)

Z a matrix for covariates; nrow(Z)=sample size, ncol(Z)=the number of covariates

xi1 lower bound for the hazard function; the default is min(t.event)

xi3 upper bound for the hazard function; the default is max(t.event)

kappa a vector for candidate smoothing parameters. Only positive values are allowed.
Values too close to zero may yeild errors (see below).

LCV.plot Plot the LCV curves if "TRUE". This plot is used to find the optimal value from
the candidate smoothing parameters given by "kappa".

p0 Initial values to maximize the penalized likelihood (5+p parameters; five M-
spline coefficients and p regression coefficients)

Details

One can perform Cox-type regression for censored survival data with covariates. The method is
essentially the same as as Cox regression (Cox 1972) expect for the models of the baseline haz-
ard function. Unlike the nonparametric model of Cox (1972), the method applies a five-parameter
spline model as originally proposed by Emura et al. (2017). The method is detailed in Section 2.4 of
Emura et al. (2019). See also Shih and Emura (2021) for more details. This method is also used as a
subroutine for computing the optimal smoothing parameter (kappa1 and kappa2) for many advanced
functions, such as "jointCox.reg", "cmprskCox.reg", and "condCox.reg". The definition of LCV is
given in Section 3.7 of Emura et al. (2019). See also Shih and Emura (2021). The error message
"Error in nlm(l.func, p = rep(0, 5 + p), hessian = TRUE):non-finite value supplied by ’nlm’" may im-
ply that some candidate parameters for kappa are too close to zero; please exclude such values from
kappa. The output values are usually similar to those given by "coxph(Surv(t.event,event)~Z)". Un-
reasonable output values are usually caused by a wrong choice of "kappa" and occasionary caused
by a wrong choice of p0.
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Value

beta Regression coefficient for Z

h M-spline coefficients

h_var Variance of M-spline coefficients

kappa smoothing parameter at the optimal LCV

DF degree of freedom at the optimal LCV

LCV the optimal LCV(=logL-DF)

Author(s)

Takeshi Emura

References

Cox DR (1972), Regression models and life-tables, JRSS(B) 34(2):187-202.

Emura T, Matsui S, Rondeau V (2019), Survival Analysis with Correlated Endpoints; Joint Frailty-
Copula Models, JSS Research Series in Statistics, Springer

Emura T, Nakatochi M, Murotani K, Rondeau V (2017), A joint frailty-copula model between
tumour progression and death for meta-analysis, Stat Methods Med Res 26(6): 2649-66: Supple-
mentary Material.

Shih JH, Emura T (2021) Penalized Cox regression with a five-parameter spline model, Commun
Stat-Theor 50(16):3749-68

Examples

data(dataOvarian)
t.event=dataOvarian$t.event
event=dataOvarian$event
t.death=dataOvarian$t.death
death=dataOvarian$death
Z=dataOvarian$CXCL12
#splineCox.reg(t.event,event,Z,kappa=c(seq(10,1e+17,length=30)))

Weibull.simu Simulating data from the Weibull joint frailty-copula model

Description

This function generate clustered (grouped) bivariate event times from the joint frailty-copula model
with the Weibull baseline hazard functions. Simulating (X_ij,D_ij,C_ij), i=1,2,...,G, and j=1,2,...,N,
where G is the number of studies (groups), and N is the number of individuals (patients) within each
study. X_ij is time-to-event, D_ij is time-to-death, and C_ij is time-to-censoring. (X_ij, D_ij) and
C_ij are independent. Dependence structure on (X_ij, D_ij) is modeled by a copula, which can be
the Clayton (default), Frank, Gumbel, or BB1. Covariate effects are specified by the Cox models
given a frailty term.
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Usage

Weibull.simu(G,N,scale1,scale2,shape1,shape2,beta1,beta2,
eta,copula="Clayton",theta,d=0,alpha,beta12=0,C.max,
cmprsk=FALSE,tau=FALSE,Z.dist=runif,...)

Arguments

G The number of studies or groups

N The number of patients within each study

scale1 scale parameter related to the baseline hazard for progression

scale2 scale parameter related to the baseline hazard for death

shape1 shape parameter related to the baseline hazard for progression

shape2 shape parameter related to the baseline hazard for death

beta1 regression coefficients for progression

beta2 regression coefficients for death

eta frailty variance

copula copula function; "Clayton" (default), "Gumbel", "Frank", or "BB1"

theta copula parameter

d BB1 copula’s departure parameter from the Clayton (d=0 is the default)

alpha parameter related to frailty, e.g., alpha=1

beta12 regression coefficients for copula

C.max the upper bound for the censoring distribution

cmprsk if TRUE, simulated data follow the competing risks setting

tau if TRUE, conditional Kendall’s tau given Z is shown

Z.dist the distribution of a covariate Z

... parameters for Z.dist

Details

See Wu et al. (2020) for the algorithms for the Clayton copula. The method was later extended
by including covariate effects on a copula (beta12) via the conditional copula model of Emura et
al. (2021), The available copulas are the Frank, Gumbel, and BB1 copulas. For the BB1 copula,
please see Supplementary Material:Additional simulation studies under the copula misspecification
in Emura et al. (2021),

Value

X : time to event

D : time to death

C : time to independent censoring

t.event : time to event (=min(X,D,C))

event : event indicator (=I(X<=D,X<=C))
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event1 : indicator for Event 1 (=I(X<=D,X<=C))

t.death : time to death (=min(D,C))

death : death indicator (=I(D<=C))

event2 : indicator for Event 2 (=I(D<X,D<=C))

group : study ID (=1,2,...,G)

Z : covariate

tau : Conditional Kendall’s tau given Z

Author(s)

Takeshi Emura

References

Wu BH, Michimae H, Emura T (2020), Meta-analysis of individual patient data with semi-competing
risks under the Weibull joint frailty-copula model. Comp Stat 35(4):1525-52

Emura T, Shih JH, Ha ID, Wilke RA (2020), Comparison of the marginal hazard model and the
sub-distribution hazard model for competing risks under an assumed copula, Stat Methods Med
Res 29(8):2307-27

Emura T, Sofeu C, Rondeau V (2021), Conditional copula models for correlated survival end-
points: individual patient data meta-analysis of randomized controlled trials, Stat Methods Med
Res 30(12):2634-50

Supplementary Material:Additional simulation studies under the copula misspecification in "Emura
T, Sofeu C, Rondeau V (2021), Conditional copula models for correlated survival endpoints: indi-
vidual patient data meta-analysis of randomized controlled trials, Stat Methods Med Res 30(12):2634-
50"

Examples

Weibull.simu(G=5,N=2,scale1=1,scale2=1,shape1=1,shape2=1,
beta1=1,beta2=1,eta=0.5,theta=2,alpha=1,C.max=5)

Weibull.simu(G=5,N=2,scale1=1,scale2=1,shape1=1,shape2=1,
beta1=1,beta2=1,eta=0.5,copula="Gumbel",theta=2,alpha=1,C.max=5)

Weibull.simu(G=5,N=2,scale1=1,scale2=1,shape1=1,shape2=1,
beta1=1,beta2=1,eta=0.5,theta=2,alpha=1,C.max=5,Z.dist=rbinom,size=1,prob=0.5)

## simulated data follow the competing risks setting
Weibull.simu(G=5,N=2,scale1=1,scale2=1,shape1=1,shape2=1,

beta1=1,beta2=1,eta=0.5,theta=2,alpha=1,C.max=5,cmprsk=TRUE)
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