
Package ‘influential’
December 9, 2023

Type Package

Title Identification and Classification of the Most Influential Nodes

Language en-US

Version 2.2.9

Author Abbas (Adrian) Salavaty [aut, cre], Mirana Ramialison [ths], Peter D. Currie [ths]

Maintainer Adrian Salavaty <abbas.salavaty@gmail.com>

Description Contains functions for the classification and ranking of top candidate features, reconstruc-
tion of networks from
adjacency matrices and data frames, analysis of the topology of the network
and calculation of centrality measures, and identification of the most
influential nodes. Also, a function is provided for running SIRIR model, which
is the combination of leave-one-out cross validation technique and the conven-
tional SIR model, on a network to unsupervisedly rank the true influence of vertices. Addition-
ally, some functions have been provided for the assessment
of dependence and correlation of two network centrality measures as well as
the conditional probability of deviation from their corresponding means in opposite direction.
Fred Viole and David Nawrocki (2013, ISBN:1490523995).
Csardi G, Nepusz T (2006). ``The igraph software package for complex network research.'' Inter-
Journal, Complex Systems, 1695.
Adopted algorithms and sources are referenced in function document.

Imports igraph, janitor, ranger, coop, foreach, doParallel,
data.table, ggplot2, BiocManager

Suggests Hmisc (>= 4.3-0), mgcv (>= 1.8-31), nortest (>= 1.0-4), NNS
(>= 0.4.7.1), readr, parallel, shiny, shinythemes,
shinyWidgets, shinyjs, shinycssloaders, colourpicker, magrittr,
DT, knitr, rmarkdown

Depends R (>= 2.10)

URL https://github.com/asalavaty/influential,

https://asalavaty.github.io/influential/

BugReports https://github.com/asalavaty/influential/issues

License GPL-3

1

https://github.com/asalavaty/influential
https://asalavaty.github.io/influential/
https://github.com/asalavaty/influential/issues


2 R topics documented:

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2023-12-09 08:20:02 UTC

R topics documented:

betweenness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
centrality.measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
cent_network.vis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
clusterRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
coexpression.adjacency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
coexpression.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
collective.influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
comp_manipulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
cond.prob.analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
diff_data.assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
double.cent.assess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
double.cent.assess.noRegression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
exir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
exir.vis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
fcor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
hubness.score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
h_index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
ivi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
ivi.from.indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
lh_index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
neighborhood.connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
runShinyApp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
sif2igraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
sirir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
spreading.score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Index 40



betweenness 3

betweenness Vertex betweenness centrality

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage

betweenness(
graph,
v = V(graph),
directed = TRUE,
weights = NULL,
normalized = FALSE,
...

)

Arguments

graph The graph to analyze (an igraph graph).

v The vertices for which the vertex betweenness will be calculated.

directed Logical, whether directed paths should be considered while determining the
shortest paths.

weights Optional positive weight vector for calculating weighted betweenness. If the
graph has a weight edge attribute, then this is used by default. Weights are used
to calculate weighted shortest paths, so they are interpreted as distances.

normalized Logical scalar, whether to normalize the betweenness scores. If TRUE, then the
results are normalized.

... Additional arguments according to the original betweenness function in the
package igraph.

Value

A numeric vector with the betweenness score for each vertex in v.

See Also

ivi, cent_network.vis, and betweenness for a complete description on this function

Other centrality functions: clusterRank(), collective.influence(), h_index(), lh_index(),
neighborhood.connectivity(), sirir()



4 centrality.measures

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
My_graph_betweenness <- betweenness(My_graph, v = GraphVertices,

directed = FALSE, normalized = FALSE)

## End(Not run)

centrality.measures Centrality measures dataset

Description

The centrality measures of a co-expression network of lncRNAs and mRNAs in lung adenocarci-
noma

Usage

centrality.measures

Format

A data frame with 794 rows and 6 variables:

\

DC Degree Centrality

CR ClusterRank

NC Neighborhood Connectivity

LH_index Local H-index

BC Betweenness Centrality

CI Collective Influence ...

Source

https://pubmed.ncbi.nlm.nih.gov/31211495/

https://pubmed.ncbi.nlm.nih.gov/31211495/


cent_network.vis 5

cent_network.vis Centrality-based network visualization

Description

This function has been developed for the visualization of a network based on applying a cen-
trality measure to the size and color of network nodes. You are also able to adjust the direct-
edness and weight of connections. Some of the documentations of the arguments of this func-
tion have been adapted from ggplot2 and igraph packages. A shiny app has also been devel-
oped for the calculation of IVI as well as IVI-based network visualization, which is accessible
using the ‘influential::runShinyApp("IVI")‘ command. You can also access the shiny app online at
https://influential.erc.monash.edu/.

Usage

cent_network.vis(
graph,
cent.metric,
layout = "kk",
node.color = "viridis",
node.size.min = 3,
node.size.max = 15,
dist.power = 1,
node.shape = "circle",
stroke.size = 1.5,
stroke.color = "identical",
stroke.alpha = 0.6,
show.labels = TRUE,
label.cex = 0.4,
label.color = "black",
directed = FALSE,
arrow.width = 25,
arrow.length = 0.07,
edge.width = 0.5,
weighted = FALSE,
edge.width.min = 0.2,
edge.width.max = 1,
edge.color = "grey75",
edge.linetype = "solid",
legend.position = "right",
legend.direction = "vertical",
legend.title = "Centrality\nmeasure",
boxed.legend = TRUE,
show.plot.title = TRUE,
plot.title = "Centrality Measure-based Network",
title.position = "center",
show.bottom.border = TRUE,



6 cent_network.vis

show.left.border = TRUE,
seed = 1234

)

Arguments

graph A graph (network) of the igraph class.

cent.metric A numeric vector of the desired centrality measure previously calculated by any
means. For example, you may use the function ivi for the calculation of the
Integrated Value of Influence (IVI) of network nodes. Please note that if the cen-
trality measure has been calculated by any means other than the influential
package, make sure that the order of the values in the cent.metric vector is
consistent with the order of vertices in the network (V(graph)).

layout The layout to be used for organizing network nodes. Current available layouts
include "kk", "star", "tree", "components", "circle", "automatic", "grid","sphere",
"random", "dh", "drl", "fr", "gem", "graphopt", "lgl", "mds", and "sugiyama"
(default is set to "kk"). For a complete description of different layouts and their
underlying algorithms please refer to the function layout_.

node.color A character string indicating the colormap option to use. Five options are avail-
able: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D",
the default option) and "cividis" (or "E").

node.size.min The size of nodes with the lowest value of the centrality measure (default is set
to 3).

node.size.max The size of nodes with the highest value of the centrality measure (default is set
to 15).

dist.power The power to be used to visualize more distinction between nodes with high and
low centrality measure values. The higher the power, the smaller the nodes with
lower values of the centrality measure will become. Default is set to 1, meaning
the relative sizes of nodes are reflective of their actual centrality measure values.

node.shape The shape of nodes. Current available shapes include "circle","square",
"diamond", "triangle", and "inverted triangle" (default is set to "circle").
You can also set different shapes to different groups of nodes by providing a
character vector of shapes of nodes with the same length and order of network
vertices. This is useful when plotting a network that include different type of
node (for example, up- and down-regulated features).

stroke.size The size of stroke (border) around the nodes (default is set to 1.5).

stroke.color The color of stroke (border) around the nodes (default is set to "identical" mean-
ing that the stroke color of a node will be identical to its corresponding node
color). You can also set different colors to different groups of nodes by pro-
viding a character vector of colors of nodes with the same length and order of
network vertices. This is useful when plotting a network that include different
type of node (for example, up- and down-regulated features).

stroke.alpha The transparency of the stroke (border) around the nodes which should be a
number between 0 and 1 (default is set to 0.6).

show.labels Logical scalar, whether to show node labels or not (default is set to TRUE).



cent_network.vis 7

label.cex The amount by which node labels should be scaled relative to the node sizes
(default is set to 0.4).

label.color The color of node labels (default is set to "black").

directed Logical scalar, whether to draw the network as directed or not (default is set to
FALSE).

arrow.width The width of arrows in the case the network is directed (default is set to 25).

arrow.length The length of arrows in inch in the case the network is directed (default is set to
0.07).

edge.width The constant width of edges if the network is unweighted (default is set to 0.5).

weighted Logical scalar, whether the network is a weighted network or not (default is set
to FALSE).

edge.width.min The width of edges with the lowest weight (default is set to 0.2). This parameter
is ignored for unweighted networks.

edge.width.max The width of edges with the highest weight (default is set to 1). This parameter
is ignored for unweighted networks.

edge.color The color of edges (default is set to "grey75").

edge.linetype The line type of edges. Current available linetypes include "twodash", "longdash",
"dotdash", "dotted", "dashed", and "solid" (default is set to "solid").

legend.position

The position of legends ("none", "left", "right", "bottom", "top", or two-element
numeric vector). The default is set to "right".

legend.direction

layout of items in legends ("horizontal" or "vertical"). The default is set to "ver-
tical".

legend.title The legend title in the string format (default is set to "Centrality measure").

boxed.legend Logical scalar, whether to draw a box around the legend or not (default is set to
TRUE).

show.plot.title

Logical scalar, whether to show the plot title or not (default is set to TRUE).

plot.title The plot title in the string format (default is set to "Centrality Measure-based
Network").

title.position The position of title ("left", "center", or "right"). The default is set to "center".
show.bottom.border

Logical scalar, whether to draw the bottom border line (default is set to TRUE).
show.left.border

Logical scalar, whether to draw the left border line (default is set to TRUE).

seed A single value, interpreted as an integer to be used for random number genera-
tion for preparing the network layout (default is set to 1234).

Value

A plot with the class ggplot.



8 clusterRank

See Also

ivi

Other visualization functions: exir.vis()

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
Graph_IVI <- ivi(graph = My_graph, mode = "all")
Graph_IVI_plot <- cent_network.vis(graph = My_graph, cent.metric = Graph_IVI,

legend.title = "IVI",
plot.title = "IVI-based Network")

## End(Not run)

clusterRank ClusterRank (CR)

Description

This function calculates the ClusterRank of input vertices and works with both directed and undi-
rected networks. This function and all of its descriptions have been adapted from the centiserve
package with some minor modifications. ClusterRank is a local ranking algorithm which takes into
account not only the number of neighbors and the neighbors’ influences, but also the clustering
coefficient.

Usage

clusterRank(
graph,
vids = V(graph),
directed = FALSE,
loops = TRUE,
ncores = "default",
verbose = FALSE

)

Arguments

graph The input graph as igraph object

vids Vertex sequence, the vertices for which the centrality values are returned. De-
fault is all vertices.

directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

loops Logical; whether the loop edges are also counted.



coexpression.adjacency 9

ncores Integer; the number of cores to be used for parallel processing. If ncores ==
"default" (default), the number of cores to be used will be the max(number of
available cores) - 1. We recommend leaving ncores argument as is (ncores =
"default").

verbose Logical; whether the accomplishment of different stages of the algorithm should
be printed (default is FALSE).

Value

A numeric vector contaning the ClusterRank centrality scores for the selected vertices.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), collective.influence(), h_index(), lh_index(),
neighborhood.connectivity(), sirir()

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
cr <- clusterRank(graph = My_graph, vids = GraphVertices,
directed = FALSE, loops = TRUE, ncores = 1)

## End(Not run)

coexpression.adjacency

Adjacency matrix

Description

The adjacency matrix of a co-expression network of lncRNAs and mRNAs in lung adenocarcinoma
that was generated using igraph functions

Usage

coexpression.adjacency

Format

A data frame with 794 rows and 794 variables:

lncRNA lncRNA symbol

lncRNA lncRNA symbol ...



10 collective.influence

Source

https://pubmed.ncbi.nlm.nih.gov/31211495/

coexpression.data Co-expression dataset

Description

A co-expression dataset of lncRNAs and mRNAs in lung adenocarcinoma

Usage

coexpression.data

Format

A data frame with 2410 rows and 2 variables:

lncRNA lncRNA symbol

Coexpressed.Gene Co-expressed gene symbol ...

Source

https://pubmed.ncbi.nlm.nih.gov/31211495/

collective.influence Collective Influence (CI)

Description

This function calculates the collective influence of input vertices and works with both directed and
undirected networks. This function and its descriptions are obtained from https://github.com/ronammar/collective_influence
with minor modifications. Collective Influence as described by Morone & Makse (2015). In simple
terms, it is the product of the reduced degree (degree - 1) of a node and the total (sum of) reduced
degrees of all nodes at a distance d from the node.

Usage

collective.influence(
graph,
vertices = V(graph),
mode = "all",
d = 3,
verbose = FALSE

)

https://pubmed.ncbi.nlm.nih.gov/31211495/
https://pubmed.ncbi.nlm.nih.gov/31211495/


comp_manipulate 11

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

mode The mode of collective influence depending on the directedness of the graph. If
the graph is undirected, the mode "all" should be specified. Otherwise, for the
calculation of collective influence based on incoming connections select "in"
and for the outgoing connections select "out". Also, if all of the connections are
desired, specify the "all" mode. Default mode is set to "all".

d The distance, expressed in number of steps from a given node (default=3). Dis-
tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604),
optimal results can be reached at d=3,4, but this depends on the size/"radius" of
the network. NOTE: the distance d is not inclusive. This means that nodes at a
distance of 3 from our node-of-interest do not include nodes at distances 1 and
2. Only 3.

verbose Logical; whether the accomplishment of different stages of the algorithm should
be printed (default is FALSE).

Value

A vector of collective influence for each vertex of the graph corresponding to the order of vertices
output by V(graph).

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), h_index(), lh_index(), neighborhood.connectivity(),
sirir()

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
ci <- collective.influence(graph = My_graph, vertices = GraphVertices, mode = "all", d=3)

## End(Not run)

comp_manipulate Computational manipulation of cells



12 comp_manipulate

Description

This function works based on the SIRIR (SIR-based Influence Ranking) model and could be ap-
plied on the output of the ExIR model or any other independent association network. For feature
(gene/protein/etc.) knockout the SIRIR model is used to remove the feature from the network and
assess its impact on the flow of information (signaling) within the network. On the other hand, in
case of up-regulation a node similar to the desired node is added to the network with exactly the
same connections (edges) as of the original node. Next, the SIRIR model is used to evaluate the
difference in the flow of information/signaling after adding (up-regulating) the desired feature/node
compared with the original network. In case you are applying this function on the output of ExIR
model, you may note that as the gene/protein knockout would impact on the integrity of the under-
investigation network as well as the networks of other overlapping biological processes/pathways,
it is recommended to select those features that simultaneously have the highest (most significant)
ExIR-based rank and lowest knockout rank. In contrast, as the up-regulation would not affect the
integrity of the network, you may select the features with highest (most significant) ExIR-based and
up-regulation-based ranks. A shiny app has also been developed for Running the ExIR model, vi-
sualization of its results as well as computational simulation of knockout and/or up-regulation of its
top candidate outputs, which is accessible using the ‘influential::runShinyApp("ExIR")‘ command.
You can also access the shiny app online at https://influential.erc.monash.edu/.

Usage

comp_manipulate(
exir_output = NULL,
graph = NULL,
ko_vertices = igraph::V(graph),
upregulate_vertices = igraph::V(graph),
beta = 0.5,
gamma = 1,
no.sim = 100,
node_verbose = FALSE,
loop_verbose = TRUE,
ncores = "default",
seed = 1234

)

Arguments

exir_output The output of the ExIR model (optional).

graph A graph (network) of the igraph class (not required if the exir_output is in-
putted).

ko_vertices A vector of desired vertices/features to knockout. Default is set to V(graph)
meaning to assess the knockout of all vertices/features.

upregulate_vertices

A vector of desired vertices/features to up-regulate. Default is set to V(graph)
meaning to assess the up-regulation of all vertices/features.

beta Non-negative scalar corresponding to the SIRIR model. The rate of infection of
an individual that is susceptible and has a single infected neighbor. The infec-



comp_manipulate 13

tion rate of a susceptible individual with n infected neighbors is n times beta.
Formally this is the rate parameter of an exponential distribution.

gamma Positive scalar corresponding to the SIRIR model. The rate of recovery of an
infected individual. Formally, this is the rate parameter of an exponential distri-
bution.

no.sim Integer scalar corresponding to the SIRIR model. The number of simulation runs
to perform SIR model on for the original network as well perturbed networks
generated by leave-one-out technique. You may choose a different no.sim based
on the available memory on your system.

node_verbose Logical; whether the process of Parallel Socket Cluster creation should be printed
(default is FALSE).

loop_verbose Logical; whether the accomplishment of the evaluation of network nodes in each
loop should be printed (default is TRUE).

ncores Integer; the number of cores to be used for parallel processing. If ncores ==
"default" (default), the number of cores to be used will be the max(number of
available cores) - 1. We recommend leaving ncores argument as is (ncores =
"default").

seed A single value, interpreted as an integer to be used for random number genera-
tion.

Value

Depending on the input data, a list including one to three data frames of knockout/up-regulation
rankings.

See Also

exir, sirir, and sir for a complete description on SIR model

Other integrative ranking functions: exir(), hubness.score(), ivi.from.indices(), ivi(),
spreading.score()

Examples

## Not run:
set.seed(1234)
My_graph <- igraph::sample_gnp(n=50, p=0.05)
GraphVertices <- V(My_graph)
Computational_manipulation <- comp_manipulate(graph = My_graph, beta = 0.5,

gamma = 1, no.sim = 10, seed = 1234)

## End(Not run)



14 cond.prob.analysis

cond.prob.analysis Conditional probability of deviation from means

Description

This function calculates the conditional probability of deviation of two centrality measures (or any
two other continuous variables) from their corresponding means in opposite directions.

Usage

cond.prob.analysis(data, nodes.colname, Desired.colname, Condition.colname)

Arguments

data A data frame containing the values of two continuous variables and the name of
observations (nodes).

nodes.colname The character format (quoted) name of the column containing the name of ob-
servations (nodes).

Desired.colname

The character format (quoted) name of the column containing the values of the
desired variable.

Condition.colname

The character format (quoted) name of the column containing the values of the
condition variable.

Value

A list of two objects including the conditional probability of deviation of two centrality measures
(or any two other continuous variables) from their corresponding means in opposite directions based
on both the entire network and the split-half random sample of network nodes.

See Also

Other centrality association assessment functions: double.cent.assess.noRegression(), double.cent.assess()

Examples

## Not run:
MyData <- centrality.measures
My.conditional.prob <- cond.prob.analysis(data = MyData,

nodes.colname = rownames(MyData),
Desired.colname = "BC",
Condition.colname = "NC")

## End(Not run)



diff_data.assembly 15

diff_data.assembly Assembling the differential/regression data

Description

This function assembles a dataframe required for running the ExIR model. You may provide as
many differential/regression data as you wish. Also, the datasets should be filtered beforehand ac-
cording to your desired thresholds and, consequently, should only include the significant data. Each
dataset provided should be a dataframe with one or two columns. The first column should always in-
clude differential/regression values and the second one (if provided) the significance values. Please
also note that the significance (adjusted P-value) column is mandatory for differential datasets.

Usage

diff_data.assembly(...)

Arguments

... Desired datasets/dataframes.

Value

A dataframe including the collective list of features in rows and all of the differential/regression
data and their statistical significance in columns with the same order provided by the user.

See Also

exir

Examples

## Not run:
my.Diff_data <- diff_data.assembly(Differential_data1,

Differential_data2,
Regression_data1)

## End(Not run)



16 double.cent.assess

double.cent.assess Assessment of innate features and associations of two network central-
ity measures (dependent and independent)

Description

This function assesses innate features and the association of two centrality measures (or any two
other continuous variables) from the aspect of distribution mode, dependence, linearity, monotonic-
ity, partial-moments based correlation, and conditional probability of deviating from corresponding
means in opposite direction. This function assumes one variable as dependent and the other as inde-
pendent for regression analyses. The non-linear nature of the association of two centrality measures
is evaluated based on generalized additive models (GAM). The monotonicity of the association
is evaluated based on comparing the squared coefficient of Spearman correlation and R-squared of
rank regression analysis. Also, the correlation between two variables is assessed via non-linear non-
parametric statistics (NNS). For the conditional probability assessment, the independent variable is
considered as the condition variable.

Usage

double.cent.assess(
data,
nodes.colname,
dependent.colname,
independent.colname,
plot = FALSE

)

Arguments

data A data frame containing the values of two continuous variables and the name of
observations (nodes).

nodes.colname The character format (quoted) name of the column containing the name of ob-
servations (nodes).

dependent.colname

The character format (quoted) name of the column containing the values of the
dependent variable.

independent.colname

The character format (quoted) name of the column containing the values of the
independent variable.

plot logical; FALSE (default) Plots quadrant means of NNS correlation analysis.

Value

A list of 11 objects including:

- Summary of the basic statistics of two centrality measures (or any two other continuous variables).



double.cent.assess.noRegression 17

- The results of normality assessment of two variable (p-value > 0.05 imply that the variable is
normally distributed).

- Description of the normality assessment of the dependent variable.

- Description of the normality assessment of the independent variable.

- Results of the generalized additive modeling (GAM) of the data.

- The association type based on simultaneous consideration of normality assessment, GAM Compu-
tation with smoothness estimation, Spearman correlation, and ranked regression analysis of splines.

- The Hoeffding’s D Statistic of dependence (ranging from -0.5 to 1).

- Description of the dependence significance.

- Correlation between variables based on the NNS method.

- The last two objects are the conditional probability of deviation of two centrality measures from
their corresponding means in opposite directions based on both the entire network and the split-half
random sample of network nodes.

See Also

ad.test for Anderson-Darling test for normality, gam for Generalized additive models with inte-
grated smoothness estimation, lm for Fitting Linear Models, hoeffd for Matrix of Hoeffding’s D
Statistics, and NNS.dep for NNS Dependence

Other centrality association assessment functions: cond.prob.analysis(), double.cent.assess.noRegression()

Examples

## Not run:
MyData <- centrality.measures
My.metrics.assessment <- double.cent.assess(data = MyData,

nodes.colname = rownames(MyData),
dependent.colname = "BC",
independent.colname = "NC")

## End(Not run)

double.cent.assess.noRegression

Assessment of innate features and associations of two network central-
ity measures

Description

This function assesses innate features and the association of two centrality measures (or any two
other continuous variables) from the aspect of distribution mode, dependence, linearity, partial-
moments based correlation, and conditional probability of deviating from corresponding means in
opposite direction (centrality2 is used as the condition variable). This function doesn’t consider
which variable is dependent and which one is independent and no regression analysis is done. Also,
the correlation between two variables is assessed via non-linear non-parametric statistics (NNS).
For the conditional probability assessment, the centrality2 variable is considered as the condition
variable.



18 double.cent.assess.noRegression

Usage

double.cent.assess.noRegression(
data,
nodes.colname,
centrality1.colname,
centrality2.colname

)

Arguments

data A data frame containing the values of two continuous variables and the name of
observations (nodes).

nodes.colname The character format (quoted) name of the column containing the name of ob-
servations (nodes).

centrality1.colname

The character format (quoted) name of the column containing the values of the
Centrality_1 variable.

centrality2.colname

The character format (quoted) name of the column containing the values of the
Centrality_2 variable.

Value

A list of nine objects including:

- Summary of the basic statistics of two centrality measures (or any two other continuous variables).

- The results of normality assessment of two variable (p-value > 0.05 imply that the variable is
normally distributed).

- Description of the normality assessment of the centrality1 (first variable).

- Description of the normality assessment of the centrality2 (second variable).

- The Hoeffding’s D Statistic of dependence (ranging from -0.5 to 1).

- Description of the dependence significance.

- Correlation between variables based on the NNS method.

- The last two objects are the conditional probability of deviation of two centrality measures from
their corresponding means in opposite directions based on both the entire network and the split-half
random sample of network nodes.

See Also

ad.test for Anderson-Darling test for normality, hoeffd for Matrix of Hoeffding’s D Statistics,
and NNS.dep for NNS Dependence

Other centrality association assessment functions: cond.prob.analysis(), double.cent.assess()



exir 19

Examples

## Not run:
MyData <- centrality.measures
My.metrics.assessment <- double.cent.assess.noRegression(data = MyData,

nodes.colname = rownames(MyData),
centrality1.colname = "BC",
centrality2.colname = "NC")

## End(Not run)

exir Experimental data-based Integrated Ranking

Description

This function runs the Experimental data-based Integrated Ranking (ExIR) model for the classifica-
tion and ranking of top candidate features. The input data could come from any type of experiment
such as transcriptomics and proteomics. A shiny app has also been developed for Running the
ExIR model, visualization of its results as well as computational simulation of knockout and/or up-
regulation of its top candidate outputs, which is accessible using the ‘influential::runShinyApp("ExIR")‘
command. You can also access the shiny app online at https://influential.erc.monash.edu/.

Usage

exir(
Desired_list = NULL,
Diff_data,
Diff_value,
Regr_value = NULL,
Sig_value,
Exptl_data,
Condition_colname,
Normalize = FALSE,
cor_thresh_method = "mr",
r = 0.5,
mr = 20,
max.connections = 50000,
alpha = 0.05,
num_trees = 10000,
mtry = NULL,
num_permutations = 100,
inf_const = 10^10,
ncores = "default",
seed = 1234,
verbose = TRUE

)



20 exir

Arguments

Desired_list (Optional) A character vector of your desired features. This vector could be, for
instance, a list of features obtained from cluster analysis, time-course analysis,
or a list of dysregulated features with a specific sign.

Diff_data A dataframe of all significant differential/regression data and their statistical
significance values (p-value/adjusted p-value). Note that the differential data
should be in the log fold-change (log2FC) format. You may have selected a pro-
portion of the differential data as the significant ones according to your desired
thresholds. A function, named diff_data.assembly, has also been provided
for the convenient assembling of the Diff_data dataframe.

Diff_value An integer vector containing the column number(s) of the differential data in
the Diff_data dataframe. The differential data could result from any type of
differential data analysis. One example could be the fold changes (FCs) obtained
from differential expression analyses. The user may provide as many differential
data as he/she wish.

Regr_value (Optional) An integer vector containing the column number(s) of the regression
data in the Diff_data dataframe. The regression data could result from any type
of regression data analysis or other analyses such as time-course data analyses
that are based on regression models.

Sig_value An integer vector containing the column number(s) of the significance values
(p-value/adjusted p-value) of both differential and regression data (if provided).
Providing significance values for the regression data is optional.

Exptl_data A dataframe containing all of the experimental data including a column for spec-
ifying the conditions. The features/variables of the dataframe should be as the
columns and the samples should come in the rows. The condition column should
be of the character class. For example, if the study includes several replicates of
cancer and normal samples, the condition column should include "cancer" and
"normal" as the conditions of different samples. Also, the prior normalization of
the experimental data is highly recommended. Otherwise, the user may set the
Normalize argument to TRUE for a simple log2 transformation of the data. The
experimental data could come from a variety sources such as transcriptomics
and proteomics assays.

Condition_colname

A string or character vector specifying the name of the column "condition" of
the Exptl_data dataframe.

Normalize Logical; whether the experimental data should be normalized or not (default is
FALSE). If TRUE, the experimental data will be log2 transformed.

cor_thresh_method

A character string indicating the method for filtering the correlation results, ei-
ther "mr" (default; Mutual Rank) or "cor.coefficient".

r The threshold of Spearman correlation coefficient for the selection of correlated
features (default is 0.5).

mr An integer determining the threshold of mutual rank for the selection of corre-
lated features (default is 20). Note that higher mr values considerably increase
the computation time.



exir 21

max.connections

The maximum number of connections to be included in the association network.
Higher max.connections might increase the computation time, cost, and accu-
racy of the results (default is 50,000).

alpha The threshold of the statistical significance (p-value) used throughout the entire
model (default is 0.05)

num_trees Number of trees to be used for the random forests classification (supervised
machine learning). Default is set to 10000.

mtry Number of features to possibly split at in each node. Default is the (rounded
down) square root of the number of variables. Alternatively, a single argument
function returning an integer, given the number of independent variables.

num_permutations

Number of permutations to be used for computation of the statistical significance
(p-values) of the importance scores resulted from random forests classification
(default is 100).

inf_const The constant value to be multiplied by the maximum absolute value of differ-
ential (logFC) values for the substitution with infinite differential values. This
results in noticeably high biomarker values for features with infinite differential
values compared with other features. Having said that, the user can still use
the biomarker rank to compare all of the features. This parameter is ignored if
no infinite value is present within Diff_data. However, this is used in the case
of sc-seq experiments where some genes are uniquely expressed in a specific
cell-type and consequently get infinite differential values. Note that the sign of
differential value is preserved (default is 10^10).

ncores Integer; the number of cores to be used for parallel processing. If ncores ==
"default" (default), the number of cores to be used will be the max(number of
available cores) - 1. We recommend leaving ncores argument as is (ncores =
"default").

seed The seed to be used for all of the random processes throughout the model (de-
fault is 1234).

verbose Logical; whether the accomplishment of different stages of the model should be
printed (default is TRUE).

Value

A list of one graph and one to four tables including:

- Driver table: Top candidate drivers

- DE-mediator table: Top candidate differentially expressed/abundant mediators

- nonDE-mediator table: Top candidate non-differentially expressed/abundant mediators

- Biomarker table: Top candidate biomarkers

The number of returned tables depends on the input data and specified arguments.

See Also

exir.vis, diff_data.assembly, pcor, prcomp, ranger, importance_pvalues



22 exir.vis

Other integrative ranking functions: comp_manipulate(), hubness.score(), ivi.from.indices(),
ivi(), spreading.score()

Examples

## Not run:
MyDesired_list <- Desiredlist
MyDiff_data <- Diffdata
Diff_value <- c(1,3,5)
Regr_value <- 7
Sig_value <- c(2,4,6,8)
MyExptl_data <- Exptldata
Condition_colname <- "condition"
My.exir <- exir(Desired_list = MyDesired_list,

Diff_data = MyDiff_data, Diff_value = Diff_value,
Regr_value = Regr_value, Sig_value = Sig_value,
Exptl_data = MyExptl_data, Condition_colname = Condition_colname)

## End(Not run)

exir.vis Visualization of ExIR results

Description

This function has been developed for the visualization of ExIR results. Some of the documentations
of the arguments of this function have been adapted from ggplot2 package. A shiny app has also
been developed for Running the ExIR model, visualization of its results as well as computational
simulation of knockout and/or up-regulation of its top candidate outputs, which is accessible using
the ‘influential::runShinyApp("ExIR")‘ command. You can also access the shiny app online at
https://influential.erc.monash.edu/.

Usage

exir.vis(
exir.results,
synonyms.table = NULL,
n = 10,
driver.type = "combined",
biomarker.type = "combined",
show.drivers = TRUE,
show.biomarkers = TRUE,
show.de.mediators = TRUE,
show.nonDE.mediators = TRUE,
basis = "Rank",
label.position = "top",
nrow = 1,
dot.size.min = 2,



exir.vis 23

dot.size.max = 5,
type.color = "viridis",
stroke.size = 1.5,
stroke.alpha = 1,
dot.color.low = "blue",
dot.color.high = "red",
legend.position = "bottom",
legend.direction = "vertical",
legends.layout = "horizontal",
boxed.legend = TRUE,
show.plot.title = TRUE,
plot.title = "auto",
title.position = "left",
plot.title.size = 12,
show.plot.subtitle = TRUE,
plot.subtitle = "auto",
subtitle.position = "left",
y.axis.title = "Feature",
show.y.axis.grid = TRUE

)

Arguments

exir.results An object of class "ExIR_Result" which is the output of the function "exir".

synonyms.table (Optional) A data frame or matrix with two columns including a column for the
used feature names in the input data of the "exir" model and the other column
their synonyms. Note, the original feature names should always come as the first
column and the synonyms as the second one. For example, if the original feature
names used for running the "exir" model are Ensembl gene symbols, you can
use their HGNC synonyms in the second column to be used for the visualization
of the ExIR results

n An integer specifying the number of top candidates to be selected from each
category of ExIR results (default is set to 10).

driver.type A string specifying the type of drivers to be used for the selection of top N
candidates. The possible types include "combined" (meaning both driver types),
"accelerator" and "decelerator" (default is set to "combined").

biomarker.type A string specifying the type of biomarkers to be used for the selection of top
N candidates. Possible types include "combined" (meaning both biomarker
types), "up-regulated" and "down-regulated" (default is set to "combined").

show.drivers Logical scalar, whether to show Drivers or not (default is set to TRUE).
show.biomarkers

Logical scalar, whether to show Biomarkers or not (default is set to TRUE).
show.de.mediators

Logical scalar, whether to show DE-mediators or not (default is set to TRUE).
show.nonDE.mediators

Logical scalar, whether to show nonDE-mediators or not (default is set to TRUE).



24 exir.vis

basis A string specifying the basis for the selection of top N candidates from each cat-
egory of the results. Possible options include "Rank" and "Adjusted p-value"
(default is set to "Rank").

label.position By default, the labels are displayed on the top of the plot. Using label.position it
is possible to place the labels on either of the four sides by setting label.position
= c("top", "bottom", "left", "right").

nrow Number of rows of the plot (default is set to 1).

dot.size.min The size of dots with the lowest statistical significance (default is set to 2).

dot.size.max The size of dots with the highest statistical significance (default is set to 5).

type.color A character string or function indicating the color palette to be used for the visu-
alization of different types of candidates. You may choose one of the Viridis
palettes including "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"),
"viridis" (or "D", the default option) and "cividis" (or "E"), use a function speci-
fying your desired palette, or manually specify the vector of colors for different
types.

stroke.size The size of stroke (border) around the dots (default is set to 1.5).

stroke.alpha The transparency of the stroke (border) around the dots which should be a num-
ber between 0 and 1 (default is set to 1).

dot.color.low The color to be used for the visualization of dots (features) with the lowest Z-
score values (default is set to "blue").

dot.color.high The color to be used for the visualization of dots (features) with the highest
Z-score values (default is set to "red").

legend.position

The position of legends ("none", "left", "right", "bottom", "top", or two-element
numeric vector). The default is set to "bottom".

legend.direction

Layout of items in legends ("horizontal" or "vertical"). The default is set to
"vertical".

legends.layout Layout of different legends of the plot ("horizontal" or "vertical"). The default
is set to "horizontal".

boxed.legend Logical scalar, whether to draw a box around the legend or not (default is set to
TRUE).

show.plot.title

Logical scalar, whether to show the plot title or not (default is set to TRUE).

plot.title The plot title in the string format (default is set to "auto" which automatically
generates a title for the plot).

title.position The position of title ("left", "center", or "right"). The default is set to "left".
plot.title.size

The font size of the plot title (default is set to 12).
show.plot.subtitle

Logical scalar, whether to show the plot subtitle or not (default is set to TRUE).

plot.subtitle The plot subtitle in the string format (default is set to "auto" which automatically
generates a subtitle for the plot).



fcor 25

subtitle.position

The position of subtitle ("left", "center", or "right"). The default is set to "left".

y.axis.title The title of the y axis (features title). Default is set to "Features".
show.y.axis.grid

Logical scalar, whether to draw y axis grid lines (default is set to TRUE).

Value

A plot with the class ggplot.

See Also

exir

Other visualization functions: cent_network.vis()

Examples

## Not run:
MyResults <- exir.results
ExIR.plot <- exir.vis(exir.results = MyResults, n = 5)

## End(Not run)

fcor Fast correlation and mutual rank analysis

Description

This function calculates Pearson/Spearman correlations between all pairs of features in a ma-
trix/dataframe much faster than the base R cor function. It is also possible to simultaneously calcu-
late mutual rank (MR) of correlations as well as their p-values and adjusted p-values. Additionally,
this function can automatically combine and flatten the result matrices. Selecting correlated fea-
tures using an MR-based threshold rather than based on their correlation coefficients or an arbitrary
p-value is more efficient and accurate in inferring functional associations in systems, for example
in gene regulatory networks.

Usage

fcor(
data,
use = "everything",
method = "spearman",
mutualRank = TRUE,
mutualRank_mode = "unsigned",
pvalue = FALSE,
adjust = "BH",
flat = TRUE

)



26 hubness.score

Arguments

data a numeric dataframe/matrix (features on columns and samples on rows).

use The NA handler, as in R’s cov() and cor() functions. Options are "everything",
"all.obs", and "complete.obs".

method a character string indicating which correlation coefficient is to be computed.
One of "pearson" or "spearman" (default).

mutualRank logical, whether to calculate mutual ranks of correlations or not.
mutualRank_mode

a character string indicating whether to rank based on "signed" or "unsigned"
(default) correlation values. In the "unsigned" mode, only the level of a cor-
relation value is important and not its sign (the function ranks the absolutes of
correlations). Options are "unsigned", and "signed".

pvalue logical, whether to calculate p-values of correlations or not.

adjust p-value correction method (when pvalue = TRUE), a character string including
any of "BH" (default), "bonferroni", "holm", "hochberg", "hommel", or "none".

flat logical, whether to combine and flatten the result matrices or not.

Value

Depending on the input data, a dataframe or list including cor (correlation coefficients), mr (mutual
ranks of correlation coefficients), p (p-values of correlation coefficients), and p.adj (adjusted p-
values).

See Also

pcor, p.adjust, and graph_from_data_frame

Examples

## Not run:
set.seed(1234)
data <- datasets::attitude
cor <- fcor(data = data)

## End(Not run)

hubness.score Hubness score

Description

This function calculates the Hubness score of the desired nodes from a graph. Hubness score reflects
the power of each node in its surrounding environment and is one of the major components of the
IVI.



hubness.score 27

Usage

hubness.score(
graph,
vertices = V(graph),
directed = FALSE,
mode = "all",
loops = TRUE,
scale = "range",
verbose = FALSE

)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

mode The mode of Hubness score depending on the directedness of the graph. If
the graph is undirected, the mode "all" should be specified. Otherwise, for the
calculation of Hubness score based on incoming connections select "in" and for
the outgoing connections select "out". Also, if all of the connections are desired,
specify the "all" mode. Default mode is set to "all".

loops Logical; whether the loop edges are also counted.

scale Character string; the method used for scaling/normalizing the results. Options
include ’range’ (normalization within a 1-100 range), ’z-scale’ (standardization
using the z-score), and ’none’ (no data scaling). The default selection is ’range’.
Opting for the ’range’ method is suitable when exploring a single network, al-
lowing you to observe the complete spectrum and distribution of node influ-
ences. In this case, there is no intention to establish a specific threshold for
the outcomes. However, it is possible to identify and present the top hub nodes
based on their rankings. Conversely, the ’z-scale’ option proves advantageous if
the aim is to compare node influences across multiple networks or if there is a
desire to establish a threshold (usually z-score > 1.645) for generating a list of
the most hub nodes without manual intervention.

verbose Logical; whether the accomplishment of different stages of the algorithm should
be printed (default is FALSE).

Value

A numeric vector with the Hubness scores.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), ivi.from.indices(), ivi(),
spreading.score()



28 h_index

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
Hubness.score <- hubness.score(graph = My_graph, vertices = GraphVertices,

directed = FALSE, mode = "all",
loops = TRUE, scale = "range")

## End(Not run)

h_index H-index

Description

This function calculates the H-index of input vertices and works with both directed and undirected
networks.

Usage

h_index(graph, vertices = V(graph), mode = "all", verbose = FALSE)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

mode The mode of H-index depending on the directedness of the graph. If the graph
is undirected, the mode "all" should be specified. Otherwise, for the calculation
of H-index based on incoming connections select "in" and for the outgoing con-
nections select "out". Also, if all of the connections are desired, specify the "all"
mode. Default mode is set to "all".

verbose Logical; whether the accomplishment of different stages of the algorithm should
be printed (default is FALSE).

Value

A vector including the H-index of each vertex inputted.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), collective.influence(), lh_index(),
neighborhood.connectivity(), sirir()



ivi 29

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
h.index <- h_index(graph = My_graph, vertices = GraphVertices, mode = "all")

## End(Not run)

ivi Integrated Value of Influence (IVI)

Description

This function calculates the IVI of the desired nodes from a graph. #’ A shiny app has also been
developed for the calculation of IVI as well as IVI-based network visualization, which is accessible
using the ‘influential::runShinyApp("IVI")‘ command. You can also access the shiny app online at
https://influential.erc.monash.edu/.

Usage

ivi(
graph,
vertices = V(graph),
weights = NULL,
directed = FALSE,
mode = "all",
loops = TRUE,
d = 3,
scale = "range",
ncores = "default",
verbose = FALSE

)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

weights Optional positive weight vector for calculating weighted betweenness centrality
of nodes as a requirement for calculation of IVI. If the graph has a weight edge
attribute, then this is used by default. Weights are used to calculate weighted
shortest paths, so they are interpreted as distances.

directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.



30 ivi

mode The mode of IVI depending on the directedness of the graph. If the graph is
undirected, the mode "all" should be specified. Otherwise, for the calculation of
IVI based on incoming connections select "in" and for the outgoing connections
select "out". Also, if all of the connections are desired, specify the "all" mode.
Default mode is set to "all".

loops Logical; whether the loop edges are also counted.

d The distance, expressed in number of steps from a given node (default=3). Dis-
tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604),
optimal results can be reached at d=3,4, but this depends on the size/"radius" of
the network. NOTE: the distance d is not inclusive. This means that nodes at a
distance of 3 from our node-of-interest do not include nodes at distances 1 and
2. Only 3.

scale Character string; the method used for scaling/normalizing the results. Options
include ’range’ (normalization within a 1-100 range), ’z-scale’ (standardization
using the z-score), and ’none’ (no data scaling). The default selection is ’range’.
Opting for the ’range’ method is suitable when exploring a single network, al-
lowing you to observe the complete spectrum and distribution of node influ-
ences. In this case, there is no intention to establish a specific threshold for
the outcomes. However, it is possible to identify and present the top influential
nodes based on their rankings. Conversely, the ’z-scale’ option proves advan-
tageous if the aim is to compare node influences across multiple networks or if
there is a desire to establish a threshold (usually z-score > 1.645) for generating
a list of the most influential nodes without manual intervention.

ncores Integer; the number of cores to be used for parallel processing. If ncores ==
"default" (default), the number of cores to be used will be the max(number of
available cores) - 1. We recommend leaving ncores argument as is (ncores =
"default").

verbose Logical; whether the accomplishment of different stages of the algorithm should
be printed (default is FALSE).

Value

A numeric vector with the IVI values based on the provided centrality measures.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), hubness.score(), ivi.from.indices(),
spreading.score()

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
My.vertices.IVI <- ivi(graph = My_graph, vertices = GraphVertices,

weights = NULL, directed = FALSE, mode = "all",



ivi.from.indices 31

loops = TRUE, d = 3, scale = "range")

## End(Not run)

ivi.from.indices Integrated Value of Influence (IVI)

Description

This function calculates the IVI of the desired nodes from previously calculated centrality measures.
This function is not dependent to other packages and the required centrality measures, namely
degree centrality, ClusterRank, betweenness centrality, Collective Influence, local H-index, and
neighborhood connectivity could have been calculated by any means beforehand. A shiny app has
also been developed for the calculation of IVI as well as IVI-based network visualization, which
is accessible using the ‘influential::runShinyApp("IVI")‘ command. You can also access the shiny
app online at https://influential.erc.monash.edu/.

Usage

ivi.from.indices(
DC,
CR,
LH_index,
NC,
BC,
CI,
scale = "range",
verbose = FALSE

)

Arguments

DC A vector containing the values of degree centrality of the desired vertices.

CR A vector containing the values of ClusterRank of the desired vertices.

LH_index A vector containing the values of local H-index of the desired vertices.

NC A vector containing the values of neighborhood connectivity of the desired ver-
tices.

BC A vector containing the values of betweenness centrality of the desired vertices.

CI A vector containing the values of Collective Influence of the desired vertices.

scale Character string; the method used for scaling/normalizing the results. Options
include ’range’ (normalization within a 1-100 range), ’z-scale’ (standardization
using the z-score), and ’none’ (no data scaling). The default selection is ’range’.
Opting for the ’range’ method is suitable when exploring a single network, al-
lowing you to observe the complete spectrum and distribution of node influ-
ences. In this case, there is no intention to establish a specific threshold for



32 lh_index

the outcomes. However, it is possible to identify and present the top influential
nodes based on their rankings. Conversely, the ’z-scale’ option proves advan-
tageous if the aim is to compare node influences across multiple networks or if
there is a desire to establish a threshold (usually z-score > 1.645) for generating
a list of the most influential nodes without manual intervention.

verbose Logical; whether the accomplishment of different stages of the algorithm should
be printed (default is FALSE).

Value

A numeric vector with the IVI values based on the provided centrality measures.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), hubness.score(), ivi(), spreading.score()

Examples

## Not run:
MyData <- centrality.measures
My.vertices.IVI <- ivi.from.indices(DC = centrality.measures$DC,

CR = centrality.measures$CR,
NC = centrality.measures$NC,
LH_index = centrality.measures$LH_index,
BC = centrality.measures$BC,
CI = centrality.measures$CI)

## End(Not run)

lh_index local H-index (LH-index)

Description

This function calculates the local H-index of input vertices and works with both directed and undi-
rected networks.

Usage

lh_index(
graph,
vertices = V(graph),
mode = "all",
ncores = "default",
verbose = FALSE

)



neighborhood.connectivity 33

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

mode The mode of local H-index depending on the directedness of the graph. If the
graph is undirected, the mode "all" should be specified. Otherwise, for the cal-
culation of local H-index based on incoming connections select "in" and for the
outgoing connections select "out". Also, if all of the connections are desired,
specify the "all" mode. Default mode is set to "all".

ncores Integer; the number of cores to be used for parallel processing. If ncores ==
"default" (default), the number of cores to be used will be the max(number of
available cores) - 1. We recommend leaving ncores argument as is (ncores =
"default").

verbose Logical; whether the accomplishment of different stages of the algorithm should
be printed (default is FALSE).

Value

A vector including the local H-index of each vertex inputted.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), collective.influence(), h_index(),
neighborhood.connectivity(), sirir()

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
lh.index <- lh_index(graph = My_graph, vertices = GraphVertices, mode = "all", ncores = 1)

## End(Not run)

neighborhood.connectivity

Neighborhood connectivity

Description

This function calculates the neighborhood connectivity of input vertices and works with both di-
rected and undirected networks.



34 neighborhood.connectivity

Usage

neighborhood.connectivity(
graph,
vertices = V(graph),
mode = "all",
verbose = FALSE

)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

mode The mode of neighborhood connectivity depending on the directedness of the
graph. If the graph is undirected, the mode "all" should be specified. Otherwise,
for the calculation of neighborhood connectivity based on incoming connections
select "in" and for the outgoing connections select "out". Also, if all of the
connections are desired, specify the "all" mode. Default mode is set to "all".

verbose Logical; whether the accomplishment of different stages of the algorithm should
be printed (default is FALSE).

Value

A vector including the neighborhood connectivity score of each vertex inputted.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), collective.influence(), h_index(),
lh_index(), sirir()

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
neighrhood.co <- neighborhood.connectivity(graph = My_graph,

vertices = GraphVertices,
mode = "all")

## End(Not run)



runShinyApp 35

runShinyApp Run shiny app

Description

Run shiny apps included in the influential R package. Also, a web-based Influential Software Pack-
age with a convenient user-interface (UI) has been developed for the comfort of all users including
those without a coding background.

Usage

runShinyApp(shinyApp)

Arguments

shinyApp The name of the shiny app you want to run. You can get the exact name of the
available shiny apps via the following command. list.files(system.file("ShinyApps",
package = "influential")). Please also note this function is case-sensitive.

Value

A shiny app.

Examples

## Not run:
runShinyApp(shinyApp = "IVI")

## End(Not run)

sif2igraph SIF to igraph

Description

This function imports and converts a SIF file from your local hard drive, cloud space, or internet
into a graph with an igraph class, which can then be used for the identification of most influential
nodes via the ivi function, for instance.

Usage

sif2igraph(Path, directed = FALSE)

https://influential.erc.monash.edu/
https://influential.erc.monash.edu/


36 sirir

Arguments

Path A string or character vector indicating the path to the desired SIF file. The SIF
file could be on your local hard drive, cloud space, or on the internet.

directed Logical scalar, whether or not to create a directed graph.

Value

An igraph graph object.

Examples

## Not run:
MyGraph <- sif2igraph(Path = "/Users/User1/Desktop/mygraph.sif", directed=FALSE)

## End(Not run)

sirir SIR-based Influence Ranking

Description

This function is achieved by the integration susceptible-infected-recovered (SIR) model with the
leave-one-out cross validation technique and ranks network nodes based on their true universal
influence. One of the applications of this function is the assessment of performance of a novel al-
gorithm in identification of network influential nodes by considering the SIRIR ranks as the ground
truth (gold standard).

Usage

sirir(
graph,
vertices = V(graph),
beta = 0.5,
gamma = 1,
no.sim = 100,
ncores = "default",
seed = 1234,
loop_verbose = TRUE,
node_verbose = FALSE

)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.



sirir 37

beta Non-negative scalar. The rate of infection of an individual that is susceptible
and has a single infected neighbor. The infection rate of a susceptible individual
with n infected neighbors is n times beta. Formally this is the rate parameter of
an exponential distribution.

gamma Positive scalar. The rate of recovery of an infected individual. Formally, this is
the rate parameter of an exponential distribution.

no.sim Integer scalar, the number of simulation runs to perform SIR model on the origi-
nal network as well as perturbed networks generated by leave-one-out technique.
You may choose a different no.sim based on the available memory on your sys-
tem.

ncores Integer; the number of cores to be used for parallel processing. If ncores ==
"default" (default), the number of cores to be used will be the max(number of
available cores) - 1. We recommend leaving ncores argument as is (ncores =
"default").

seed A single value, interpreted as an integer to be used for random number genera-
tion.

loop_verbose Logical; whether the accomplishment of the evaluation of network nodes in each
loop should be printed (default is TRUE).

node_verbose Logical; whether the process of Parallel Socket Cluster creation should be printed
(default is FALSE).

Value

A two-column dataframe; a column containing the difference values of the original and perturbed
networks and a column containing node influence rankings

See Also

cent_network.vis, and sir for a complete description on SIR model

Other centrality functions: betweenness(), clusterRank(), collective.influence(), h_index(),
lh_index(), neighborhood.connectivity()

Examples

## Not run:
set.seed(1234)
My_graph <- igraph::sample_gnp(n=50, p=0.05)
GraphVertices <- V(My_graph)
Influence.Ranks <- sirir(graph = My_graph, vertices = GraphVertices,

beta = 0.5, gamma = 1, ncores = "default", no.sim = 10, seed = 1234)

## End(Not run)



38 spreading.score

spreading.score Spreading score

Description

This function calculates the Spreading score of the desired nodes from a graph. Spreading score
reflects the spreading potential of each node within a network and is one of the major components
of the IVI.

Usage

spreading.score(
graph,
vertices = V(graph),
weights = NULL,
directed = FALSE,
mode = "all",
loops = TRUE,
d = 3,
scale = "range",
verbose = FALSE

)

Arguments

graph A graph (network) of the igraph class.

vertices A vector of desired vertices, which could be obtained by the V function.

weights Optional positive weight vector for calculating weighted betweenness centrality
of nodes as a requirement for calculation of spreading score. If the graph has a
weight edge attribute, then this is used by default. Weights are used to calculate
weighted shortest paths, so they are interpreted as distances.

directed Logical scalar, whether to directed graph is analyzed. This argument is ignored
for undirected graphs.

mode The mode of Spreading score depending on the directedness of the graph. If
the graph is undirected, the mode "all" should be specified. Otherwise, for the
calculation of Spreading score based on incoming connections select "in" and
for the outgoing connections select "out". Also, if all of the connections are
desired, specify the "all" mode. Default mode is set to "all".

loops Logical; whether the loop edges are also counted.

d The distance, expressed in number of steps from a given node (default=3). Dis-
tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604),
optimal results can be reached at d=3,4, but this depends on the size/"radius" of
the network. NOTE: the distance d is not inclusive. This means that nodes at a
distance of 3 from our node-of-interest do not include nodes at distances 1 and
2. Only 3.



spreading.score 39

scale Character string; the method used for scaling/normalizing the results. Options
include ’range’ (normalization within a 1-100 range), ’z-scale’ (standardization
using the z-score), and ’none’ (no data scaling). The default selection is ’range’.
Opting for the ’range’ method is suitable when exploring a single network, al-
lowing you to observe the complete spectrum and distribution of node influ-
ences. In this case, there is no intention to establish a specific threshold for the
outcomes. However, it is possible to identify and present the top spreading nodes
based on their rankings. Conversely, the ’z-scale’ option proves advantageous if
the aim is to compare node influences across multiple networks or if there is a
desire to establish a threshold (usually z-score > 1.645) for generating a list of
the most spreading nodes without manual intervention.

verbose Logical; whether the accomplishment of different stages of the algorithm should
be printed (default is FALSE).

Value

A numeric vector with Spreading scores.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), hubness.score(), ivi.from.indices(),
ivi()

Examples

## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
Spreading.score <- spreading.score(graph = My_graph, vertices = GraphVertices,

weights = NULL, directed = FALSE, mode = "all",
loops = TRUE, d = 3, scale = "range")

## End(Not run)



Index

∗ IVI
ivi, 29

∗ SIF.to.igraph
sif2igraph, 35

∗ association_assessment
cond.prob.analysis, 14
double.cent.assess, 16
double.cent.assess.noRegression,

17
∗ betweenness_centrality

betweenness, 3
∗ cent_network.vis

cent_network.vis, 5
∗ centrality association assessment functions

cond.prob.analysis, 14
double.cent.assess, 16
double.cent.assess.noRegression,

17
∗ centrality functions

betweenness, 3
clusterRank, 8
collective.influence, 10
h_index, 28
lh_index, 32
neighborhood.connectivity, 33
sirir, 36

∗ clusterRank
clusterRank, 8

∗ collective.influence
collective.influence, 10

∗ comp_manipulate
comp_manipulate, 11

∗ conditional_probability
cond.prob.analysis, 14

∗ datasets
centrality.measures, 4
coexpression.adjacency, 9
coexpression.data, 10

∗ dependence_assessment

double.cent.assess, 16
double.cent.assess.noRegression,

17
∗ diff_data.assembly

diff_data.assembly, 15
∗ exir.vis

exir.vis, 22
∗ exir

exir, 19
∗ fcor

fcor, 25
∗ h_index

h_index, 28
∗ hubness.score

hubness.score, 26
∗ integrated_value_of_influence

ivi, 29
∗ integrative ranking functions

comp_manipulate, 11
exir, 19
hubness.score, 26
ivi, 29
ivi.from.indices, 31
spreading.score, 38

∗ ivi.from.indices
ivi.from.indices, 31

∗ lh_index
lh_index, 32

∗ neighborhood_connectivity
neighborhood.connectivity, 33

∗ network_reconstruction functions
sif2igraph, 35

∗ runShinyApp
runShinyApp, 35

∗ sirir
sirir, 36

∗ spreading.score
spreading.score, 38

∗ visualization functions

40



INDEX 41

cent_network.vis, 5
exir.vis, 22

ad.test, 17, 18

BC (betweenness), 3
betweenness, 3, 3, 9, 11, 28, 33, 34, 37

cent_network.vis, 3, 5, 9, 11, 25, 27, 28, 30,
32–34, 37, 39

centrality.measures, 4
CI (collective.influence), 10
clusterRank, 3, 8, 11, 28, 33, 34, 37
coexpression.adjacency, 9
coexpression.data, 10
collective.influence, 3, 9, 10, 28, 33, 34,

37
comp_manipulate, 11, 22, 27, 30, 32, 39
cond.prob.analysis, 14, 17, 18
CPA (cond.prob.analysis), 14
CR (clusterRank), 8

DCA (double.cent.assess), 16
DCANR

(double.cent.assess.noRegression),
17

DDA (diff_data.assembly), 15
diff_data.assembly, 15, 20, 21
double.cent.assess, 14, 16, 18
double.cent.assess.noRegression, 14, 17,

17

ExIR (exir), 19
exir, 13, 15, 19, 25, 27, 30, 32, 39
exir.vis, 8, 21, 22

fcor, 25

gam, 17
graph_from_data_frame, 26

h.index (h_index), 28
h_index, 3, 9, 11, 28, 33, 34, 37
hoeffd, 17, 18
hubness.score, 13, 22, 26, 30, 32, 39

importance_pvalues, 21
IVI (ivi), 29
ivi, 3, 6, 8, 9, 11, 13, 22, 27, 28, 29, 32–34, 39
IVI.FI (ivi.from.indices), 31

ivi.from.indices, 13, 22, 27, 30, 31, 39

layout_, 6
lh.index (lh_index), 32
lh_index, 3, 9, 11, 28, 32, 34, 37
lm, 17

NC (neighborhood.connectivity), 33
neighborhood.connectivity, 3, 9, 11, 28,

33, 33, 37
NNS.dep, 17, 18

p.adjust, 26
pcor, 21, 26
prcomp, 21

ranger, 21
runShinyApp, 35

sif2igraph, 35
sir, 13, 37
SIRIR (sirir), 36
sirir, 3, 9, 11, 13, 28, 33, 34, 36
spreading.score, 13, 22, 27, 30, 32, 38


	betweenness
	centrality.measures
	cent_network.vis
	clusterRank
	coexpression.adjacency
	coexpression.data
	collective.influence
	comp_manipulate
	cond.prob.analysis
	diff_data.assembly
	double.cent.assess
	double.cent.assess.noRegression
	exir
	exir.vis
	fcor
	hubness.score
	h_index
	ivi
	ivi.from.indices
	lh_index
	neighborhood.connectivity
	runShinyApp
	sif2igraph
	sirir
	spreading.score
	Index

