Package 'influential'

December 9, 2023

Type Package Title Identification and Classification of the Most Influential Nodes Language en-US Version 2.2.9 Author Abbas (Adrian) Salavaty [aut, cre], Mirana Ramialison [ths], Peter D. Currie [ths] Maintainer Adrian Salavaty <abbas.salavaty@gmail.com> Description Contains functions for the classification and ranking of top candidate features, reconstruction of networks from adjacency matrices and data frames, analysis of the topology of the network and calculation of centrality measures, and identification of the most influential nodes. Also, a function is provided for running SIRIR model, which is the combination of leave-one-out cross validation technique and the conventional SIR model, on a network to unsupervisedly rank the true influence of vertices. Additionally, some functions have been provided for the assessment of dependence and correlation of two network centrality measures as well as the conditional probability of deviation from their corresponding means in opposite direction. Fred Viole and David Nawrocki (2013, ISBN:1490523995). Csardi G, Nepusz T (2006). "The igraph software package for complex network research." Inter-Journal, Complex Systems, 1695. Adopted algorithms and sources are referenced in function document. Imports igraph, janitor, ranger, coop, foreach, doParallel,

data.table, ggplot2, BiocManager **Suggests** Hmisc (>= 4.3-0), mgcv (>= 1.8-31), nortest (>= 1.0-4), NNS (>= 0.4.7.1), readr, parallel, shiny, shinythemes, shinyWidgets, shinyis, shinycssloaders, colourpicker, magrittr,

DT, knitr, rmarkdown

Depends R (>= 2.10)

URL https://github.com/asalavaty/influential, https://asalavaty.github.io/influential/

BugReports https://github.com/asalavaty/influential/issues License GPL-3 Encoding UTF-8 LazyData true RoxygenNote 7.2.3 VignetteBuilder knitr NeedsCompilation no Repository CRAN Date/Publication 2023-12-09 08:20:02 UTC

R topics documented:

betweenness
centrality.measures
cent_network.vis
clusterRank
coexpression.adjacency
coexpression.data
collective.influence
comp_manipulate
cond.prob.analysis
diff_data.assembly 15
double.cent.assess
double.cent.assess.noRegression
exir
exir.vis
fcor
hubness.score
h_index
ivi
ivi.from.indices
lh_index
neighborhood.connectivity
runShinyApp
sif2igraph
sirir
spreading.score

Index

2

betweenness

Description

This function and all of its descriptions have been obtained from the igraph package.

Usage

```
betweenness(
 graph,
 v = V(graph),
 directed = TRUE,
 weights = NULL,
 normalized = FALSE,
 ...
)
```

Arguments

graph	The graph to analyze (an igraph graph).
v	The vertices for which the vertex betweenness will be calculated.
directed	Logical, whether directed paths should be considered while determining the shortest paths.
weights	Optional positive weight vector for calculating weighted betweenness. If the graph has a weight edge attribute, then this is used by default. Weights are used to calculate weighted shortest paths, so they are interpreted as distances.
normalized	Logical scalar, whether to normalize the betweenness scores. If TRUE, then the results are normalized.
	Additional arguments according to the original betweenness function in the package igraph.

Value

A numeric vector with the betweenness score for each vertex in v.

See Also

ivi, cent_network.vis, and betweenness for a complete description on this function

Other centrality functions: clusterRank(), collective.influence(), h_index(), lh_index(), neighborhood.connectivity(), sirir()

Examples

```
## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
My_graph_betweenness <- betweenness(My_graph, v = GraphVertices,
directed = FALSE, normalized = FALSE)
```

End(Not run)

centrality.measures Centrality measures dataset

Description

The centrality measures of a co-expression network of lncRNAs and mRNAs in lung adenocarcinoma

Usage

centrality.measures

Format

A data frame with 794 rows and 6 variables:

١

- **DC** Degree Centrality
- CR ClusterRank
- NC Neighborhood Connectivity
- LH_index Local H-index
- BC Betweenness Centrality
- CI Collective Influence ...

Source

https://pubmed.ncbi.nlm.nih.gov/31211495/

4

cent_network.vis

Description

This function has been developed for the visualization of a network based on applying a centrality measure to the size and color of network nodes. You are also able to adjust the directedness and weight of connections. Some of the documentations of the arguments of this function have been adapted from ggplot2 and igraph packages. A shiny app has also been developed for the calculation of IVI as well as IVI-based network visualization, which is accessible using the 'influential::runShinyApp("IVI")' command. You can also access the shiny app online at https://influential.erc.monash.edu/.

Usage

```
cent_network.vis(
  graph,
  cent.metric,
  layout = "kk"
  node.color = "viridis",
  node.size.min = 3,
  node.size.max = 15,
  dist.power = 1,
  node.shape = "circle",
  stroke.size = 1.5,
  stroke.color = "identical",
  stroke.alpha = 0.6,
  show.labels = TRUE,
  label.cex = 0.4,
  label.color = "black",
  directed = FALSE,
  arrow.width = 25,
  arrow.length = 0.07,
  edge.width = 0.5,
  weighted = FALSE,
  edge.width.min = 0.2,
  edge.width.max = 1,
  edge.color = "grey75"
  edge.linetype = "solid"
  legend.position = "right",
  legend.direction = "vertical",
  legend.title = "Centrality\nmeasure",
  boxed.legend = TRUE,
  show.plot.title = TRUE,
  plot.title = "Centrality Measure-based Network",
  title.position = "center",
  show.bottom.border = TRUE,
```

```
show.left.border = TRUE,
seed = 1234
)
```

Arguments

graph	A graph (network) of the igraph class.
cent.metric	A numeric vector of the desired centrality measure previously calculated by any means. For example, you may use the function ivi for the calculation of the Integrated Value of Influence (IVI) of network nodes. Please note that if the centrality measure has been calculated by any means other than the influential package, make sure that the order of the values in the cent.metric vector is consistent with the order of vertices in the network (V(graph)).
layout	The layout to be used for organizing network nodes. Current available layouts include "kk", "star", "tree", "components", "circle", "automatic", "grid", "sphere", "random", "dh", "drl", "fr", "gem", "graphopt", "lgl", "mds", and "sugiyama" (default is set to "kk"). For a complete description of different layouts and their underlying algorithms please refer to the function layout
node.color	A character string indicating the colormap option to use. Five options are available: "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D", the default option) and "cividis" (or "E").
node.size.min	The size of nodes with the lowest value of the centrality measure (default is set to 3).
node.size.max	The size of nodes with the highest value of the centrality measure (default is set to 15).
dist.power	The power to be used to visualize more distinction between nodes with high and low centrality measure values. The higher the power, the smaller the nodes with lower values of the centrality measure will become. Default is set to 1, meaning the relative sizes of nodes are reflective of their actual centrality measure values.
node.shape	The shape of nodes. Current available shapes include "circle", "square", "diamond", "triangle", and "inverted triangle" (default is set to "circle"). You can also set different shapes to different groups of nodes by providing a character vector of shapes of nodes with the same length and order of network vertices. This is useful when plotting a network that include different type of node (for example, up- and down-regulated features).
stroke.size	The size of stroke (border) around the nodes (default is set to 1.5).
stroke.color	The color of stroke (border) around the nodes (default is set to "identical" mean- ing that the stroke color of a node will be identical to its corresponding node color). You can also set different colors to different groups of nodes by pro- viding a character vector of colors of nodes with the same length and order of network vertices. This is useful when plotting a network that include different type of node (for example, up- and down-regulated features).
stroke.alpha	The transparency of the stroke (border) around the nodes which should be a number between 0 and 1 (default is set to 0.6).
show.labels	Logical scalar, whether to show node labels or not (default is set to TRUE).

label.cex	The amount by which node labels should be scaled relative to the node sizes (default is set to 0.4).
label.color	The color of node labels (default is set to "black").
directed	Logical scalar, whether to draw the network as directed or not (default is set to FALSE).
arrow.width	The width of arrows in the case the network is directed (default is set to 25).
arrow.length	The length of arrows in inch in the case the network is directed (default is set to 0.07).
edge.width	The constant width of edges if the network is unweighted (default is set to 0.5).
weighted	Logical scalar, whether the network is a weighted network or not (default is set to FALSE).
edge.width.min	The width of edges with the lowest weight (default is set to 0.2). This parameter is ignored for unweighted networks.
edge.width.max	The width of edges with the highest weight (default is set to 1). This parameter is ignored for unweighted networks.
edge.color	The color of edges (default is set to "grey75").
edge.linetype	The line type of edges. Current available linetypes include "twodash", "longdash", "dotdash", "dotted", "dashed", and "solid" (default is set to "solid").
legend.position	l
	The position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector). The default is set to "right".
legend.directio	n
	layout of items in legends ("horizontal" or "vertical"). The default is set to "ver- tical".
legend.title	The legend title in the string format (default is set to "Centrality measure").
boxed.legend	Logical scalar, whether to draw a box around the legend or not (default is set to TRUE).
<pre>show.plot.title</pre>	
	Logical scalar, whether to show the plot title or not (default is set to TRUE).
plot.title	The plot title in the string format (default is set to "Centrality Measure-based Network").
title.position	The position of title ("left", "center", or "right"). The default is set to "center".
show.bottom.bor	der
	Logical scalar, whether to draw the bottom border line (default is set to TRUE).
show.left.borde	
	Logical scalar, whether to draw the left border line (default is set to TRUE).
seed	A single value, interpreted as an integer to be used for random number genera- tion for preparing the network layout (default is set to 1234).

Value

A plot with the class ggplot.

See Also

ivi

Other visualization functions: exir.vis()

Examples

End(Not run)

clusterRank

ClusterRank (CR)

Description

This function calculates the ClusterRank of input vertices and works with both directed and undirected networks. This function and all of its descriptions have been adapted from the centiserve package with some minor modifications. ClusterRank is a local ranking algorithm which takes into account not only the number of neighbors and the neighbors' influences, but also the clustering coefficient.

Usage

```
clusterRank(
  graph,
  vids = V(graph),
  directed = FALSE,
  loops = TRUE,
  ncores = "default",
  verbose = FALSE
)
```

)

Arguments

graph	The input graph as igraph object
vids	Vertex sequence, the vertices for which the centrality values are returned. De- fault is all vertices.
directed	Logical scalar, whether to directed graph is analyzed. This argument is ignored for undirected graphs.
loops	Logical; whether the loop edges are also counted.

8

ncores	Integer; the number of cores to be used for parallel processing. If ncores == "default" (default), the number of cores to be used will be the max(number of
	available cores) - 1. We recommend leaving neores argument as is (neores = "default").
verbose	Logical; whether the accomplishment of different stages of the algorithm should be printed (default is FALSE).

Value

A numeric vector contaning the ClusterRank centrality scores for the selected vertices.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), collective.influence(), h_index(), lh_index(), neighborhood.connectivity(), sirir()

Examples

```
## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
cr <- clusterRank(graph = My_graph, vids = GraphVertices,
directed = FALSE, loops = TRUE, ncores = 1)
```

End(Not run)

coexpression.adjacency

Adjacency matrix

Description

The adjacency matrix of a co-expression network of lncRNAs and mRNAs in lung adenocarcinoma that was generated using igraph functions

Usage

coexpression.adjacency

Format

A data frame with 794 rows and 794 variables:

IncRNA IncRNA symbol

IncRNA IncRNA symbol ...

Source

https://pubmed.ncbi.nlm.nih.gov/31211495/

coexpression.data Co-expression dataset

Description

A co-expression dataset of lncRNAs and mRNAs in lung adenocarcinoma

Usage

coexpression.data

Format

A data frame with 2410 rows and 2 variables:

IncRNA IncRNA symbol

Coexpressed.Gene Co-expressed gene symbol ...

Source

https://pubmed.ncbi.nlm.nih.gov/31211495/

collective.influence Collective Influence (CI)

Description

This function calculates the collective influence of input vertices and works with both directed and undirected networks. This function and its descriptions are obtained from https://github.com/ronammar/collective_influence with minor modifications. Collective Influence as described by Morone & Makse (2015). In simple terms, it is the product of the reduced degree (degree - 1) of a node and the total (sum of) reduced degrees of all nodes at a distance d from the node.

Usage

```
collective.influence(
  graph,
  vertices = V(graph),
  mode = "all",
  d = 3,
  verbose = FALSE
)
```

Arguments

graph	A graph (network) of the igraph class.
vertices	A vector of desired vertices, which could be obtained by the V function.
mode	The mode of collective influence depending on the directedness of the graph. If the graph is undirected, the mode "all" should be specified. Otherwise, for the calculation of collective influence based on incoming connections select "in" and for the outgoing connections select "out". Also, if all of the connections are desired, specify the "all" mode. Default mode is set to "all".
d	The distance, expressed in number of steps from a given node (default=3). Dis- tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604), optimal results can be reached at d=3,4, but this depends on the size/"radius" of the network. NOTE: the distance d is not inclusive. This means that nodes at a distance of 3 from our node-of-interest do not include nodes at distances 1 and 2. Only 3.
verbose	Logical; whether the accomplishment of different stages of the algorithm should be printed (default is FALSE).

Value

A vector of collective influence for each vertex of the graph corresponding to the order of vertices output by V(graph).

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), h_index(), lh_index(), neighborhood.connectivity(), sirir()

Examples

```
## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
ci <- collective.influence(graph = My_graph, vertices = GraphVertices, mode = "all", d=3)
## End(Not run)
```

comp_manipulate Computational manipulation of cells

Description

This function works based on the SIRIR (SIR-based Influence Ranking) model and could be applied on the output of the ExIR model or any other independent association network. For feature (gene/protein/etc.) knockout the SIRIR model is used to remove the feature from the network and assess its impact on the flow of information (signaling) within the network. On the other hand, in case of up-regulation a node similar to the desired node is added to the network with exactly the same connections (edges) as of the original node. Next, the SIRIR model is used to evaluate the difference in the flow of information/signaling after adding (up-regulating) the desired feature/node compared with the original network. In case you are applying this function on the output of ExIR model, you may note that as the gene/protein knockout would impact on the integrity of the underinvestigation network as well as the networks of other overlapping biological processes/pathways, it is recommended to select those features that simultaneously have the highest (most significant) ExIR-based rank and lowest knockout rank. In contrast, as the up-regulation would not affect the integrity of the network, you may select the features with highest (most significant) ExIR-based and up-regulation-based ranks. A shiny app has also been developed for Running the ExIR model, visualization of its results as well as computational simulation of knockout and/or up-regulation of its top candidate outputs, which is accessible using the 'influential::runShinyApp("ExIR")' command. You can also access the shiny app online at https://influential.erc.monash.edu/.

Usage

```
comp_manipulate(
  exir_output = NULL,
  graph = NULL,
  ko_vertices = igraph::V(graph),
  upregulate_vertices = igraph::V(graph),
  beta = 0.5,
  gamma = 1,
  no.sim = 100,
  node_verbose = FALSE,
  loop_verbose = TRUE,
  ncores = "default",
  seed = 1234
)
```

Arguments

exir_output	The output of the ExIR model (optional).	
graph	A graph (network) of the igraph class (not required if the exir_output is inputted).	
ko_vertices	A vector of desired vertices/features to knockout. Default is set to $V(graph)$ meaning to assess the knockout of all vertices/features.	
upregulate_vertices		
	A vector of desired vertices/features to up-regulate. Default is set to $V(graph)$ meaning to assess the up-regulation of all vertices/features.	
beta	Non-negative scalar corresponding to the SIRIR model. The rate of infection of an individual that is susceptible and has a single infected neighbor. The infec-	

	tion rate of a susceptible individual with n infected neighbors is n times beta. Formally this is the rate parameter of an exponential distribution.
gamma	Positive scalar corresponding to the SIRIR model. The rate of recovery of an infected individual. Formally, this is the rate parameter of an exponential distribution.
no.sim	Integer scalar corresponding to the SIRIR model. The number of simulation runs to perform SIR model on for the original network as well perturbed networks generated by leave-one-out technique. You may choose a different no.sim based on the available memory on your system.
node_verbose	Logical; whether the process of Parallel Socket Cluster creation should be printed (default is FALSE).
loop_verbose	Logical; whether the accomplishment of the evaluation of network nodes in each loop should be printed (default is TRUE).
ncores	Integer; the number of cores to be used for parallel processing. If ncores == "default" (default), the number of cores to be used will be the max(number of available cores) - 1. We recommend leaving ncores argument as is (ncores = "default").
seed	A single value, interpreted as an integer to be used for random number genera- tion.

Value

Depending on the input data, a list including one to three data frames of knockout/up-regulation rankings.

See Also

exir, sirir, and sir for a complete description on SIR model

Other integrative ranking functions: exir(), hubness.score(), ivi.from.indices(), ivi(), spreading.score()

Examples

```
## Not run:
set.seed(1234)
My_graph <- igraph::sample_gnp(n=50, p=0.05)
GraphVertices <- V(My_graph)
Computational_manipulation <- comp_manipulate(graph = My_graph, beta = 0.5,
gamma = 1, no.sim = 10, seed = 1234)
```

cond.prob.analysis Conditional probability of deviation from means

Description

This function calculates the conditional probability of deviation of two centrality measures (or any two other continuous variables) from their corresponding means in opposite directions.

Usage

cond.prob.analysis(data, nodes.colname, Desired.colname, Condition.colname)

Arguments

data	A data frame containing the values of two continuous variables and the name of observations (nodes).	
nodes.colname	The character format (quoted) name of the column containing the name of observations (nodes).	
Desired.colname		
	The character format (quoted) name of the column containing the values of the desired variable.	
Condition.colname		
	The character format (quoted) name of the column containing the values of the condition variable.	

Value

A list of two objects including the conditional probability of deviation of two centrality measures (or any two other continuous variables) from their corresponding means in opposite directions based on both the entire network and the split-half random sample of network nodes.

See Also

Other centrality association assessment functions: double.cent.assess.noRegression(), double.cent.assess()

Examples

diff_data.assembly Assembling the differential/regression data

Description

This function assembles a dataframe required for running the ExIR model. You may provide as many differential/regression data as you wish. Also, the datasets should be filtered beforehand according to your desired thresholds and, consequently, should only include the significant data. Each dataset provided should be a dataframe with one or two columns. The first column should always include differential/regression values and the second one (if provided) the significance values. Please also note that the significance (adjusted P-value) column is mandatory for differential datasets.

Usage

diff_data.assembly(...)

Arguments

. . .

Desired datasets/dataframes.

Value

A dataframe including the collective list of features in rows and all of the differential/regression data and their statistical significance in columns with the same order provided by the user.

See Also

exir

Examples

double.cent.assess

Assessment of innate features and associations of two network centrality measures (dependent and independent)

Description

This function assesses innate features and the association of two centrality measures (or any two other continuous variables) from the aspect of distribution mode, dependence, linearity, monotonicity, partial-moments based correlation, and conditional probability of deviating from corresponding means in opposite direction. This function assumes one variable as dependent and the other as independent for regression analyses. The non-linear nature of the association of two centrality measures is evaluated based on generalized additive models (GAM). The monotonicity of the association is evaluated based on comparing the squared coefficient of Spearman correlation and R-squared of rank regression analysis. Also, the correlation between two variables is assessed via non-linear nonparametric statistics (NNS). For the conditional probability assessment, the independent variable is considered as the condition variable.

Usage

```
double.cent.assess(
   data,
   nodes.colname,
   dependent.colname,
   independent.colname,
   plot = FALSE
)
```

Arguments

data	A data frame containing the values of two continuous variables and the name of observations (nodes).	
nodes.colname	The character format (quoted) name of the column containing the name of observations (nodes).	
dependent.colname		
	The character format (quoted) name of the column containing the values of the dependent variable.	
independent.colname		
	The character format (quoted) name of the column containing the values of the independent variable.	
plot	logical; FALSE (default) Plots quadrant means of NNS correlation analysis.	

Value

A list of 11 objects including:

- Summary of the basic statistics of two centrality measures (or any two other continuous variables).

- The results of normality assessment of two variable (p-value > 0.05 imply that the variable is normally distributed).

- Description of the normality assessment of the dependent variable.
- Description of the normality assessment of the independent variable.
- Results of the generalized additive modeling (GAM) of the data.

- The association type based on simultaneous consideration of normality assessment, GAM Computation with smoothness estimation, Spearman correlation, and ranked regression analysis of splines.

- The Hoeffding's D Statistic of dependence (ranging from -0.5 to 1).

- Description of the dependence significance.

- Correlation between variables based on the NNS method.

- The last two objects are the conditional probability of deviation of two centrality measures from their corresponding means in opposite directions based on both the entire network and the split-half random sample of network nodes.

See Also

ad.test for Anderson-Darling test for normality, gam for Generalized additive models with integrated smoothness estimation, 1m for Fitting Linear Models, hoeffd for Matrix of Hoeffding's D Statistics, and NNS.dep for NNS Dependence

Other centrality association assessment functions: cond.prob.analysis(), double.cent.assess.noRegression()

Examples

End(Not run)

double.cent.assess.noRegression

Assessment of innate features and associations of two network centrality measures

Description

This function assesses innate features and the association of two centrality measures (or any two other continuous variables) from the aspect of distribution mode, dependence, linearity, partialmoments based correlation, and conditional probability of deviating from corresponding means in opposite direction (centrality2 is used as the condition variable). This function doesn't consider which variable is dependent and which one is independent and no regression analysis is done. Also, the correlation between two variables is assessed via non-linear non-parametric statistics (NNS). For the conditional probability assessment, the centrality2 variable is considered as the condition variable.

Usage

```
double.cent.assess.noRegression(
   data,
   nodes.colname,
   centrality1.colname,
   centrality2.colname
)
```

Arguments

data	A data frame containing the values of two continuous variables and the name of observations (nodes).
nodes.colname	The character format (quoted) name of the column containing the name of ob- servations (nodes).
centrality1.co	lname
	The character format (quoted) name of the column containing the values of the Centrality_1 variable.
centrality2.co	lname
	The character format (quoted) name of the column containing the values of the
	Centrality_2 variable.

Value

A list of nine objects including:

- Summary of the basic statistics of two centrality measures (or any two other continuous variables).

- The results of normality assessment of two variable (p-value > 0.05 imply that the variable is normally distributed).

- Description of the normality assessment of the centrality1 (first variable).
- Description of the normality assessment of the centrality2 (second variable).
- The Hoeffding's D Statistic of dependence (ranging from -0.5 to 1).
- Description of the dependence significance.
- Correlation between variables based on the NNS method.

- The last two objects are the conditional probability of deviation of two centrality measures from their corresponding means in opposite directions based on both the entire network and the split-half random sample of network nodes.

See Also

ad.test for Anderson-Darling test for normality, hoeffd for Matrix of Hoeffding's D Statistics, and NNS.dep for NNS Dependence

Other centrality association assessment functions: cond.prob.analysis(), double.cent.assess()

18

exir

Examples

End(Not run)

exir

Experimental data-based Integrated Ranking

Description

This function runs the Experimental data-based Integrated Ranking (ExIR) model for the classification and ranking of top candidate features. The input data could come from any type of experiment such as transcriptomics and proteomics. A shiny app has also been developed for Running the ExIR model, visualization of its results as well as computational simulation of knockout and/or upregulation of its top candidate outputs, which is accessible using the 'influential::runShinyApp("ExIR")' command. You can also access the shiny app online at https://influential.erc.monash.edu/.

Usage

```
exir(
 Desired_list = NULL,
 Diff_data,
 Diff_value,
 Regr_value = NULL,
  Sig_value,
 Exptl_data,
 Condition_colname,
 Normalize = FALSE,
 cor_thresh_method = "mr",
  r = 0.5,
 mr = 20,
 max.connections = 50000,
  alpha = 0.05,
  num_trees = 10000,
 mtry = NULL,
 num_permutations = 100,
  inf_const = 10^{10},
  ncores = "default",
  seed = 1234,
  verbose = TRUE
)
```

20

Desired_list	(Optional) A character vector of your desired features. This vector could be, for instance, a list of features obtained from cluster analysis, time-course analysis, or a list of dysregulated features with a specific sign.
Diff_data	A dataframe of all significant differential/regression data and their statistical significance values (p-value/adjusted p-value). Note that the differential data should be in the log fold-change (log2FC) format. You may have selected a proportion of the differential data as the significant ones according to your desired thresholds. A function, named diff_data.assembly, has also been provided for the convenient assembling of the Diff_data dataframe.
Diff_value	An integer vector containing the column number(s) of the differential data in the Diff_data dataframe. The differential data could result from any type of differential data analysis. One example could be the fold changes (FCs) obtained from differential expression analyses. The user may provide as many differential data as he/she wish.
Regr_value	(Optional) An integer vector containing the column number(s) of the regression data in the Diff_data dataframe. The regression data could result from any type of regression data analysis or other analyses such as time-course data analyses that are based on regression models.
Sig_value	An integer vector containing the column number(s) of the significance values (p-value/adjusted p-value) of both differential and regression data (if provided). Providing significance values for the regression data is optional.
Exptl_data	A dataframe containing all of the experimental data including a column for spec- ifying the conditions. The features/variables of the dataframe should be as the columns and the samples should come in the rows. The condition column should be of the character class. For example, if the study includes several replicates of cancer and normal samples, the condition column should include "cancer" and "normal" as the conditions of different samples. Also, the prior normalization of the experimental data is highly recommended. Otherwise, the user may set the Normalize argument to TRUE for a simple log2 transformation of the data. The experimental data could come from a variety sources such as transcriptomics and proteomics assays.
Condition_colname	
	A string or character vector specifying the name of the column "condition" of the Exptl_data dataframe.
Normalize	Logical; whether the experimental data should be normalized or not (default is FALSE). If TRUE, the experimental data will be log2 transformed.

cor_thresh_method

A character string indicating the method for filtering the correlation results, either "mr" (default; Mutual Rank) or "cor.coefficient".

- r The threshold of Spearman correlation coefficient for the selection of correlated features (default is 0.5).
- mr An integer determining the threshold of mutual rank for the selection of correlated features (default is 20). Note that higher mr values considerably increase the computation time.

max.connections	
	The maximum number of connections to be included in the association network. Higher max.connections might increase the computation time, cost, and accuracy of the results (default is 50,000).
alpha	The threshold of the statistical significance (p-value) used throughout the entire model (default is 0.05)
num_trees	Number of trees to be used for the random forests classification (supervised machine learning). Default is set to 10000.
mtry	Number of features to possibly split at in each node. Default is the (rounded down) square root of the number of variables. Alternatively, a single argument function returning an integer, given the number of independent variables.
num_permutation	IS
	Number of permutations to be used for computation of the statistical significance (p-values) of the importance scores resulted from random forests classification (default is 100).
inf_const	The constant value to be multiplied by the maximum absolute value of differ- ential (logFC) values for the substitution with infinite differential values. This results in noticeably high biomarker values for features with infinite differential values compared with other features. Having said that, the user can still use the biomarker rank to compare all of the features. This parameter is ignored if no infinite value is present within Diff_data. However, this is used in the case of sc-seq experiments where some genes are uniquely expressed in a specific cell-type and consequently get infinite differential values. Note that the sign of differential value is preserved (default is 10^10).
ncores	Integer; the number of cores to be used for parallel processing. If ncores == "default" (default), the number of cores to be used will be the max(number of available cores) - 1. We recommend leaving ncores argument as is (ncores = "default").
seed	The seed to be used for all of the random processes throughout the model (default is 1234).
verbose	Logical; whether the accomplishment of different stages of the model should be printed (default is TRUE).

Value

A list of one graph and one to four tables including:

- Driver table: Top candidate drivers

- DE-mediator table: Top candidate differentially expressed/abundant mediators
- nonDE-mediator table: Top candidate non-differentially expressed/abundant mediators
- Biomarker table: Top candidate biomarkers

The number of returned tables depends on the input data and specified arguments.

See Also

exir.vis, diff_data.assembly, pcor, prcomp, ranger, importance_pvalues

Other integrative ranking functions: comp_manipulate(), hubness.score(), ivi.from.indices(), ivi(), spreading.score()

Examples

```
## Not run:
MyDesired_list <- Desiredlist
MyDiff_data <- Diffdata
Diff_value <- c(1,3,5)
Regr_value <- 7
Sig_value <- c(2,4,6,8)
MyExptl_data <- Exptldata
Condition_colname <- "condition"
My.exir <- exir(Desired_list = MyDesired_list,
Diff_data = MyDiff_data, Diff_value = Diff_value,
Regr_value = Regr_value, Sig_value = Sig_value,
Exptl_data = MyExptl_data, Condition_colname = Condition_colname)
```

End(Not run)

exir.vis

Visualization of ExIR results

Description

This function has been developed for the visualization of ExIR results. Some of the documentations of the arguments of this function have been adapted from ggplot2 package. A shiny app has also been developed for Running the ExIR model, visualization of its results as well as computational simulation of knockout and/or up-regulation of its top candidate outputs, which is accessible using the 'influential::runShinyApp("ExIR")' command. You can also access the shiny app online at https://influential.erc.monash.edu/.

Usage

```
exir.vis(
 exir.results,
 synonyms.table = NULL,
 n = 10,
 driver.type = "combined",
 biomarker.type = "combined",
 show.drivers = TRUE,
 show.drivers = TRUE,
 show.biomarkers = TRUE,
 show.de.mediators = TRUE,
 show.nonDE.mediators = TRUE,
 basis = "Rank",
 label.position = "top",
 nrow = 1,
 dot.size.min = 2,
```

exir.vis

```
dot.size.max = 5,
type.color = "viridis",
stroke.size = 1.5,
stroke.alpha = 1,
dot.color.low = "blue",
dot.color.high = "red",
legend.position = "bottom",
legend.direction = "vertical",
legends.layout = "horizontal",
boxed.legend = TRUE,
show.plot.title = TRUE,
plot.title = "auto",
title.position = "left",
plot.title.size = 12,
show.plot.subtitle = TRUE,
plot.subtitle = "auto",
subtitle.position = "left",
y.axis.title = "Feature",
show.y.axis.grid = TRUE
```

Arguments

)

exir.results	An object of class "ExIR_Result" which is the output of the function "exir".	
synonyms.table	(Optional) A data frame or matrix with two columns including a column for the used feature names in the input data of the "exir" model and the other column their synonyms. Note, the original feature names should always come as the first column and the synonyms as the second one. For example, if the original feature names used for running the "exir" model are Ensembl gene symbols, you can use their HGNC synonyms in the second column to be used for the visualization of the ExIR results	
n	An integer specifying the number of top candidates to be selected from each category of ExIR results (default is set to 10).	
driver.type	A string specifying the type of drivers to be used for the selection of top N candidates. The possible types include "combined" (meaning both driver types), "accelerator" and "decelerator" (default is set to "combined").	
biomarker.type	A string specifying the type of biomarkers to be used for the selection of top N candidates. Possible types include "combined" (meaning both biomarker types), "up-regulated" and "down-regulated" (default is set to "combined").	
show.drivers	Logical scalar, whether to show Drivers or not (default is set to TRUE).	
show.biomarkers		
	Logical scalar, whether to show Biomarkers or not (default is set to TRUE).	
show.de.mediators		
	Logical scalar, whether to show DE-mediators or not (default is set to TRUE).	
show.nonDE.mediators		

hacic	A string specifying the basis for the selection of ten N condidates from each set
Dasis	egory of the results. Possible options include "Rank" and "Adjusted p-value" (default is set to "Rank").
label.position	By default, the labels are displayed on the top of the plot. Using label.position it is possible to place the labels on either of the four sides by setting label.position $= c("top", "bottom", "left", "right")$.
nrow	Number of rows of the plot (default is set to 1).
dot.size.min	The size of dots with the lowest statistical significance (default is set to 2).
dot.size.max	The size of dots with the highest statistical significance (default is set to 5).
type.color	A character string or function indicating the color palette to be used for the visu- alization of different types of candidates. You may choose one of the Viridis palettes including "magma" (or "A"), "inferno" (or "B"), "plasma" (or "C"), "viridis" (or "D", the default option) and "cividis" (or "E"), use a function speci- fying your desired palette, or manually specify the vector of colors for different types.
stroke.size	The size of stroke (border) around the dots (default is set to 1.5).
stroke.alpha	The transparency of the stroke (border) around the dots which should be a number between 0 and 1 (default is set to 1).
dot.color.low	The color to be used for the visualization of dots (features) with the lowest Z-score values (default is set to "blue").
dot.color.high	The color to be used for the visualization of dots (features) with the highest Z-score values (default is set to "red").
legend.positior	1
	The position of legends ("none", "left", "right", "bottom", "top", or two-element numeric vector). The default is set to "bottom".
legend.directio	on
	Layout of items in legends ("horizontal" or "vertical"). The default is set to "vertical".
legends.layout	Layout of different legends of the plot ("horizontal" or "vertical"). The default is set to "horizontal".
boxed.legend	Logical scalar, whether to draw a box around the legend or not (default is set to TRUE).
<pre>show.plot.title</pre>	
	Logical scalar, whether to show the plot title or not (default is set to TRUE).
plot.title	The plot title in the string format (default is set to "auto" which automatically generates a title for the plot).
title.position	The position of title ("left", "center", or "right"). The default is set to "left".
<pre>plot.title.size</pre>	
	The font size of the plot title (default is set to 12).
show.plot.subti	
_	Logical scalar, whether to show the plot subtitle or not (default is set to TRUE).
plot.subtitle	The plot subtitle in the string format (default is set to "auto" which automatically generates a subtitle for the plot).

fcor

```
subtitle.position

The position of subtitle ("left", "center", or "right"). The default is set to "left".

y.axis.title The title of the y axis (features title). Default is set to "Features".

show.y.axis.grid

Logical scalar, whether to draw y axis grid lines (default is set to TRUE).
```

Value

A plot with the class ggplot.

See Also

exir

Other visualization functions: cent_network.vis()

Examples

```
## Not run:
MyResults <- exir.results
ExIR.plot <- exir.vis(exir.results = MyResults, n = 5)</pre>
```

End(Not run)

fcor

Fast correlation and mutual rank analysis

Description

This function calculates Pearson/Spearman correlations between all pairs of features in a matrix/dataframe much faster than the base R cor function. It is also possible to simultaneously calculate mutual rank (MR) of correlations as well as their p-values and adjusted p-values. Additionally, this function can automatically combine and flatten the result matrices. Selecting correlated features using an MR-based threshold rather than based on their correlation coefficients or an arbitrary p-value is more efficient and accurate in inferring functional associations in systems, for example in gene regulatory networks.

Usage

```
fcor(
   data,
   use = "everything",
   method = "spearman",
   mutualRank = TRUE,
   mutualRank_mode = "unsigned",
   pvalue = FALSE,
   adjust = "BH",
   flat = TRUE
)
```

Arguments

data	a numeric dataframe/matrix (features on columns and samples on rows).
use	The NA handler, as in R's cov() and cor() functions. Options are "everything", "all.obs", and "complete.obs".
method	a character string indicating which correlation coefficient is to be computed. One of "pearson" or "spearman" (default).
mutualRank	logical, whether to calculate mutual ranks of correlations or not.
<pre>mutualRank_mode</pre>	
	a character string indicating whether to rank based on "signed" or "unsigned" (default) correlation values. In the "unsigned" mode, only the level of a correlation value is important and not its sign (the function ranks the absolutes of correlations). Options are "unsigned", and "signed".
pvalue	logical, whether to calculate p-values of correlations or not.
adjust	p-value correction method (when pvalue = TRUE), a character string including any of "BH" (default), "bonferroni", "holm", "hochberg", "hommel", or "none".
flat	logical, whether to combine and flatten the result matrices or not.

Value

Depending on the input data, a dataframe or list including cor (correlation coefficients), mr (mutual ranks of correlation coefficients), p (p-values of correlation coefficients), and p.adj (adjusted p-values).

See Also

pcor, p.adjust, and graph_from_data_frame

Examples

```
## Not run:
set.seed(1234)
data <- datasets::attitude
cor <- fcor(data = data)</pre>
```

End(Not run)

hubness.score Hubness score

Description

This function calculates the Hubness score of the desired nodes from a graph. Hubness score reflects the power of each node in its surrounding environment and is one of the major components of the IVI.

hubness.score

Usage

```
hubness.score(
  graph,
  vertices = V(graph),
  directed = FALSE,
  mode = "all",
  loops = TRUE,
  scale = "range",
  verbose = FALSE
)
```

Arguments

graph	A graph (network) of the igraph class.
vertices	A vector of desired vertices, which could be obtained by the V function.
directed	Logical scalar, whether to directed graph is analyzed. This argument is ignored for undirected graphs.
mode	The mode of Hubness score depending on the directedness of the graph. If the graph is undirected, the mode "all" should be specified. Otherwise, for the calculation of Hubness score based on incoming connections select "in" and for the outgoing connections select "out". Also, if all of the connections are desired, specify the "all" mode. Default mode is set to "all".
loops	Logical; whether the loop edges are also counted.
scale	Character string; the method used for scaling/normalizing the results. Options include 'range' (normalization within a 1-100 range), 'z-scale' (standardization using the z-score), and 'none' (no data scaling). The default selection is 'range'. Opting for the 'range' method is suitable when exploring a single network, allowing you to observe the complete spectrum and distribution of node influences. In this case, there is no intention to establish a specific threshold for the outcomes. However, it is possible to identify and present the top hub nodes based on their rankings. Conversely, the 'z-scale' option proves advantageous if the aim is to compare node influences across multiple networks or if there is a desire to establish a threshold (usually z-score > 1.645) for generating a list of the most hub nodes without manual intervention.
verbose	Logical; whether the accomplishment of different stages of the algorithm should be printed (default is FALSE).

Value

A numeric vector with the Hubness scores.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), ivi.from.indices(), ivi(), spreading.score()

Examples

End(Not run)

h_index

H-index

Description

This function calculates the H-index of input vertices and works with both directed and undirected networks.

Usage

```
h_index(graph, vertices = V(graph), mode = "all", verbose = FALSE)
```

Arguments

graph	A graph (network) of the igraph class.
vertices	A vector of desired vertices, which could be obtained by the V function.
mode	The mode of H-index depending on the directedness of the graph. If the graph is undirected, the mode "all" should be specified. Otherwise, for the calculation of H-index based on incoming connections select "in" and for the outgoing connections select "out". Also, if all of the connections are desired, specify the "all" mode. Default mode is set to "all".
verbose	Logical; whether the accomplishment of different stages of the algorithm should be printed (default is FALSE).

Value

A vector including the H-index of each vertex inputted.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), collective.influence(), lh_index(), neighborhood.connectivity(), sirir()

28

ivi

Examples

```
## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
h.index <- h_index(graph = My_graph, vertices = GraphVertices, mode = "all")
## End(Not run)
```

ivi

Integrated Value of Influence (IVI)

Description

This function calculates the IVI of the desired nodes from a graph. #' A shiny app has also been developed for the calculation of IVI as well as IVI-based network visualization, which is accessible using the 'influential::runShinyApp("IVI")' command. You can also access the shiny app online at https://influential.erc.monash.edu/.

Usage

```
ivi(
  graph,
  vertices = V(graph),
  weights = NULL,
  directed = FALSE,
  mode = "all",
  loops = TRUE,
  d = 3,
  scale = "range",
  ncores = "default",
  verbose = FALSE
)
```

Arguments

graph	A graph (network) of the igraph class.
vertices	A vector of desired vertices, which could be obtained by the V function.
weights	Optional positive weight vector for calculating weighted betweenness centrality of nodes as a requirement for calculation of IVI. If the graph has a weight edge attribute, then this is used by default. Weights are used to calculate weighted shortest paths, so they are interpreted as distances.
directed	Logical scalar, whether to directed graph is analyzed. This argument is ignored for undirected graphs.

mode	The mode of IVI depending on the directedness of the graph. If the graph is undirected, the mode "all" should be specified. Otherwise, for the calculation of IVI based on incoming connections select "in" and for the outgoing connections select "out". Also, if all of the connections are desired, specify the "all" mode. Default mode is set to "all".
loops	Logical; whether the loop edges are also counted.
d	The distance, expressed in number of steps from a given node (default=3). Distance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604), optimal results can be reached at d=3,4, but this depends on the size/"radius" of the network. NOTE: the distance d is not inclusive. This means that nodes at a distance of 3 from our node-of-interest do not include nodes at distances 1 and 2. Only 3.
scale	Character string; the method used for scaling/normalizing the results. Options include 'range' (normalization within a 1-100 range), 'z-scale' (standardization using the z-score), and 'none' (no data scaling). The default selection is 'range'. Opting for the 'range' method is suitable when exploring a single network, allowing you to observe the complete spectrum and distribution of node influences. In this case, there is no intention to establish a specific threshold for the outcomes. However, it is possible to identify and present the top influential nodes based on their rankings. Conversely, the 'z-scale' option proves advantageous if the aim is to compare node influences across multiple networks or if there is a desire to establish a threshold (usually z-score > 1.645) for generating a list of the most influential nodes without manual intervention.
ncores	Integer; the number of cores to be used for parallel processing. If ncores == "default" (default), the number of cores to be used will be the max(number of available cores) - 1. We recommend leaving ncores argument as is (ncores = "default").
verbose	Logical; whether the accomplishment of different stages of the algorithm should be printed (default is FALSE).

Value

A numeric vector with the IVI values based on the provided centrality measures.

See Also

```
cent_network.vis
```

Other integrative ranking functions: comp_manipulate(), exir(), hubness.score(), ivi.from.indices(), spreading.score()

Examples

ivi.from.indices

```
loops = TRUE, d = 3, scale = "range")
```

End(Not run)

ivi.from.indices Integrated Value of Influence (IVI)

Description

This function calculates the IVI of the desired nodes from previously calculated centrality measures. This function is not dependent to other packages and the required centrality measures, namely degree centrality, ClusterRank, betweenness centrality, Collective Influence, local H-index, and neighborhood connectivity could have been calculated by any means beforehand. A shiny app has also been developed for the calculation of IVI as well as IVI-based network visualization, which is accessible using the 'influential::runShinyApp("IVI")' command. You can also access the shiny app online at https://influential.erc.monash.edu/.

Usage

```
ivi.from.indices(
   DC,
   CR,
   LH_index,
   NC,
   BC,
   CI,
   scale = "range",
   verbose = FALSE
)
```

Arguments

DC	A vector containing the values of degree centrality of the desired vertices.
CR	A vector containing the values of ClusterRank of the desired vertices.
LH_index	A vector containing the values of local H-index of the desired vertices.
NC	A vector containing the values of neighborhood connectivity of the desired vertices.
BC	A vector containing the values of betweenness centrality of the desired vertices.
CI	A vector containing the values of Collective Influence of the desired vertices.
scale	Character string; the method used for scaling/normalizing the results. Options include 'range' (normalization within a 1-100 range), 'z-scale' (standardization using the z-score), and 'none' (no data scaling). The default selection is 'range'. Opting for the 'range' method is suitable when exploring a single network, allowing you to observe the complete spectrum and distribution of node influences. In this case, there is no intention to establish a specific threshold for

	the outcomes. However, it is possible to identify and present the top influential nodes based on their rankings. Conversely, the 'z-scale' option proves advan- tageous if the aim is to compare node influences across multiple networks or if there is a desire to establish a threshold (usually z-score > 1.645) for generating a list of the most influential nodes without manual intervention.
verbose	Logical; whether the accomplishment of different stages of the algorithm should be printed (default is FALSE).

Value

A numeric vector with the IVI values based on the provided centrality measures.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), hubness.score(), ivi(), spreading.score()

Examples

```
## Not run:
MyData <- centrality.measures
My.vertices.IVI <- ivi.from.indices(DC = centrality.measures$DC,
CR = centrality.measures$CR,
NC = centrality.measures$NC,
LH_index = centrality.measures$LH_index,
BC = centrality.measures$BC,
CI = centrality.measures$CI)
```

End(Not run)

lh_index

local H-index (LH-index)

Description

This function calculates the local H-index of input vertices and works with both directed and undirected networks.

Usage

```
lh_index(
  graph,
  vertices = V(graph),
  mode = "all",
  ncores = "default",
  verbose = FALSE
)
```

Arguments

graph	A graph (network) of the igraph class.
vertices	A vector of desired vertices, which could be obtained by the V function.
mode	The mode of local H-index depending on the directedness of the graph. If the graph is undirected, the mode "all" should be specified. Otherwise, for the calculation of local H-index based on incoming connections select "in" and for the outgoing connections select "out". Also, if all of the connections are desired, specify the "all" mode. Default mode is set to "all".
ncores	Integer; the number of cores to be used for parallel processing. If ncores == "default" (default), the number of cores to be used will be the max(number of available cores) - 1. We recommend leaving ncores argument as is (ncores = "default").
verbose	Logical; whether the accomplishment of different stages of the algorithm should be printed (default is FALSE).

Value

A vector including the local H-index of each vertex inputted.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), collective.influence(), h_index(), neighborhood.connectivity(), sirir()

Examples

```
## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
lh.index <- lh_index(graph = My_graph, vertices = GraphVertices, mode = "all", ncores = 1)</pre>
```

End(Not run)

neighborhood.connectivity

Neighborhood connectivity

Description

This function calculates the neighborhood connectivity of input vertices and works with both directed and undirected networks.

Usage

```
neighborhood.connectivity(
  graph,
  vertices = V(graph),
  mode = "all",
  verbose = FALSE
)
```

Arguments

graph	A graph (network) of the igraph class.
vertices	A vector of desired vertices, which could be obtained by the V function.
mode	The mode of neighborhood connectivity depending on the directedness of the graph. If the graph is undirected, the mode "all" should be specified. Otherwise, for the calculation of neighborhood connectivity based on incoming connections select "in" and for the outgoing connections select "out". Also, if all of the connections are desired, specify the "all" mode. Default mode is set to "all".
verbose	Logical; whether the accomplishment of different stages of the algorithm should be printed (default is FALSE).

Value

A vector including the neighborhood connectivity score of each vertex inputted.

See Also

ivi, cent_network.vis

Other centrality functions: betweenness(), clusterRank(), collective.influence(), h_index(), lh_index(), sirir()

Examples

End(Not run)

34

runShinyApp

Description

Run shiny apps included in the influential R package. Also, a web-based Influential Software Package with a convenient user-interface (UI) has been developed for the comfort of all users including those without a coding background.

Usage

runShinyApp(shinyApp)

Arguments

shinyApp	The name of the shiny app you want to run. You can get the exact name of the
	available shiny apps via the following command. list.files(system.file("ShinyApps",
	<i>package</i> = " <i>influential</i> ")). Please also note this function is case-sensitive.

Value

A shiny app.

Examples

```
## Not run:
runShinyApp(shinyApp = "IVI")
```

End(Not run)

sif2igraph SIF to igraph

Description

This function imports and converts a SIF file from your local hard drive, cloud space, or internet into a graph with an igraph class, which can then be used for the identification of most influential nodes via the ivi function, for instance.

Usage

```
sif2igraph(Path, directed = FALSE)
```

Arguments

Path	A string or character vector indicating the path to the desired SIF file. The SIF file could be on your local hard drive, cloud space, or on the internet.
directed	Logical scalar, whether or not to create a directed graph.

Value

An igraph graph object.

Examples

```
## Not run:
MyGraph <- sif2igraph(Path = "/Users/User1/Desktop/mygraph.sif", directed=FALSE)
## End(Not run)
```

sirir

SIR-based Influence Ranking

Description

This function is achieved by the integration susceptible-infected-recovered (SIR) model with the leave-one-out cross validation technique and ranks network nodes based on their true universal influence. One of the applications of this function is the assessment of performance of a novel algorithm in identification of network influential nodes by considering the SIRIR ranks as the ground truth (gold standard).

Usage

```
sirir(
  graph,
  vertices = V(graph),
  beta = 0.5,
  gamma = 1,
  no.sim = 100,
  ncores = "default",
  seed = 1234,
  loop_verbose = TRUE,
  node_verbose = FALSE
)
```

Arguments

graph	A graph (network) of the igraph class.
vertices	A vector of desired vertices, which could be obtained by the V function.

beta	Non-negative scalar. The rate of infection of an individual that is susceptible and has a single infected neighbor. The infection rate of a susceptible individual with n infected neighbors is n times beta. Formally this is the rate parameter of an exponential distribution.
gamma	Positive scalar. The rate of recovery of an infected individual. Formally, this is the rate parameter of an exponential distribution.
no.sim	Integer scalar, the number of simulation runs to perform SIR model on the origi- nal network as well as perturbed networks generated by leave-one-out technique. You may choose a different no.sim based on the available memory on your sys- tem.
ncores	Integer; the number of cores to be used for parallel processing. If ncores == "default" (default), the number of cores to be used will be the max(number of available cores) - 1. We recommend leaving ncores argument as is (ncores = "default").
seed	A single value, interpreted as an integer to be used for random number generation.
loop_verbose	Logical; whether the accomplishment of the evaluation of network nodes in each loop should be printed (default is TRUE).
node_verbose	Logical; whether the process of Parallel Socket Cluster creation should be printed (default is FALSE).

Value

A two-column dataframe; a column containing the difference values of the original and perturbed networks and a column containing node influence rankings

See Also

cent_network.vis, and sir for a complete description on SIR model

Other centrality functions: betweenness(), clusterRank(), collective.influence(), h_index(), lh_index(), neighborhood.connectivity()

Examples

spreading.score Spreading score

Description

This function calculates the Spreading score of the desired nodes from a graph. Spreading score reflects the spreading potential of each node within a network and is one of the major components of the IVI.

Usage

```
spreading.score(
  graph,
  vertices = V(graph),
  weights = NULL,
  directed = FALSE,
  mode = "all",
  loops = TRUE,
  d = 3,
  scale = "range",
  verbose = FALSE
)
```

Arguments

graph	A graph (network) of the igraph class.
vertices	A vector of desired vertices, which could be obtained by the V function.
weights	Optional positive weight vector for calculating weighted betweenness centrality of nodes as a requirement for calculation of spreading score. If the graph has a weight edge attribute, then this is used by default. Weights are used to calculate weighted shortest paths, so they are interpreted as distances.
directed	Logical scalar, whether to directed graph is analyzed. This argument is ignored for undirected graphs.
mode	The mode of Spreading score depending on the directedness of the graph. If the graph is undirected, the mode "all" should be specified. Otherwise, for the calculation of Spreading score based on incoming connections select "in" and for the outgoing connections select "out". Also, if all of the connections are desired, specify the "all" mode. Default mode is set to "all".
loops	Logical; whether the loop edges are also counted.
d	The distance, expressed in number of steps from a given node (default=3). Dis- tance must be > 0. According to Morone & Makse (https://doi.org/10.1038/nature14604), optimal results can be reached at d=3,4, but this depends on the size/"radius" of the network. NOTE: the distance d is not inclusive. This means that nodes at a distance of 3 from our node-of-interest do not include nodes at distances 1 and 2. Only 3.

spreading.score

scale	Character string; the method used for scaling/normalizing the results. Options
	include 'range' (normalization within a 1-100 range), 'z-scale' (standardization
	using the z-score), and 'none' (no data scaling). The default selection is 'range'.
	Opting for the 'range' method is suitable when exploring a single network, al-
	lowing you to observe the complete spectrum and distribution of node influ-
	ences. In this case, there is no intention to establish a specific threshold for the
	outcomes. However, it is possible to identify and present the top spreading nodes
	based on their rankings. Conversely, the 'z-scale' option proves advantageous if
	the aim is to compare node influences across multiple networks or if there is a
	desire to establish a threshold (usually z-score > 1.645) for generating a list of the most spreading nodes without manual intervention.
verbose	Logical; whether the accomplishment of different stages of the algorithm should be printed (default is FALSE).

Value

A numeric vector with Spreading scores.

See Also

cent_network.vis

Other integrative ranking functions: comp_manipulate(), exir(), hubness.score(), ivi.from.indices(), ivi()

Examples

```
## Not run:
MyData <- coexpression.data
My_graph <- graph_from_data_frame(MyData)
GraphVertices <- V(My_graph)
Spreading.score <- spreading.score(graph = My_graph, vertices = GraphVertices,
weights = NULL, directed = FALSE, mode = "all",
loops = TRUE, d = 3, scale = "range")
```

Index

* IVI ivi, 29 * SIF.to.igraph sif2igraph, 35 * association assessment cond.prob.analysis, 14 double.cent.assess, 16 double.cent.assess.noRegression, 17 * betweenness_centrality betweenness, 3 * cent network.vis cent_network.vis, 5 * centrality association assessment functions cond.prob.analysis, 14 double.cent.assess, 16 double.cent.assess.noRegression, 17 * centrality functions betweenness, 3 clusterRank, 8 collective.influence, 10 h_index, 28 1h_index, 32 neighborhood.connectivity, 33 sirir, 36 * clusterRank clusterRank, 8 * collective.influence collective.influence, 10 * comp_manipulate comp_manipulate, 11 * conditional_probability cond.prob.analysis, 14 * datasets centrality.measures, 4 coexpression.adjacency, 9 coexpression.data, 10 * dependence_assessment

double.cent.assess, 16 double.cent.assess.noRegression, 17 * diff_data.assembly diff_data.assembly, 15 * exir.vis exir.vis, 22 * exir exir, 19 * fcor fcor, 25 * h index h_index, 28 * hubness.score hubness.score, 26 * integrated_value_of_influence ivi, 29 * integrative ranking functions comp_manipulate, 11 exir, 19 hubness.score, 26 ivi, 29 ivi.from.indices, 31 spreading.score, 38 * ivi.from.indices ivi.from.indices, 31 * lh index lh_index, 32 * neighborhood_connectivity neighborhood.connectivity, 33 * network_reconstruction functions sif2igraph, 35 * runShinyApp runShinyApp, 35 * sirir sirir, 36 * spreading.score spreading.score, 38 *** visualization functions**

cent_network.vis, 5 exir.vis, 22 ad.test, 17, 18 BC (betweenness), 3 betweenness, 3, 3, 9, 11, 28, 33, 34, 37 cent_network.vis, 3, 5, 9, 11, 25, 27, 28, 30, 32-34, 37, 39 centrality.measures, 4 CI (collective.influence), 10 clusterRank, 3, 8, 11, 28, 33, 34, 37 coexpression.adjacency, 9 coexpression.data, 10 collective.influence, 3, 9, 10, 28, 33, 34, 37 comp_manipulate, 11, 22, 27, 30, 32, 39 cond.prob.analysis, 14, 17, 18 CPA (cond.prob.analysis), 14 CR (clusterRank), 8 DCA (double.cent.assess), 16 DCANR (double.cent.assess.noRegression), 17 DDA (diff_data.assembly), 15 diff_data.assembly, 15, 20, 21 double.cent.assess, 14, 16, 18 double.cent.assess.noRegression, 14, 17, 17 ExIR (exir), 19 exir, 13, 15, 19, 25, 27, 30, 32, 39 exir.vis, 8, 21, 22 fcor, 25gam, 17 graph_from_data_frame, 26 h.index (h_index), 28 h_index, 3, 9, 11, 28, 33, 34, 37 hoeffd, 17, 18 hubness.score, 13, 22, 26, 30, 32, 39 importance_pvalues, 21 IVI (ivi), 29 ivi, 3, 6, 8, 9, 11, 13, 22, 27, 28, 29, 32-34, 39 IVI.FI(ivi.from.indices), 31

ivi.from.indices, 13, 22, 27, 30, 31, 39 layout_, 6 lh.index(lh_index), 32 lh_index, 3, 9, 11, 28, 32, 34, 37 lm, 17 NC (neighborhood.connectivity), 33 neighborhood.connectivity, 3, 9, 11, 28, 33, 33, 37 NNS.dep, 17, 18 p.adjust, 26 pcor, 21, 26 prcomp, 21 ranger, 21 runShinyApp, 35 sif2igraph, 35 sir, *13*, *37* SIRIR (sirir), 36 sirir, 3, 9, 11, 13, 28, 33, 34, 36 spreading.score, 13, 22, 27, 30, 32, 38