Package 'gelnet'

October 13, 2022

Version 1.2.1

Date 2015-10-16
License GPL (>= 3)
Title Generalized Elastic Nets
Description Implements several extensions of the elastic net regularization scheme. These extensions include individual feature penalties for the L1 term, feature-feature penalties for the L2 term, as well as translation coefficients for the latter.
Author Artem Sokolov
Maintainer Artem Sokolov <artem. sokolov@gmail.com>
Depends R (>= 3.1.0)
Suggests knitr, rmarkdown
VignetteBuilder knitr
RoxygenNote 5.0.1
NeedsCompilation yes
Repository CRAN
Date/Publication 2016-04-05 08:14:29

R topics documented:

adj2lapl 2
adj2nlapl 2
gelnet 3
gelnet.cv 5
gelnet.ker 6
gelnet.lin.obj 8
gelnet.logreg.obj 9
gelnet.oneclass.obj 10
L1.ceiling 11
Index 12

Description

Generates a graph Laplacian from the graph adjacency matrix.

Usage

adj2lapl(A)

Arguments

A n-by-n adjacency matrix for a graph with n nodes

Details

A graph Laplacian is defined as: $l_{i, j}=\operatorname{deg}\left(v_{i}\right)$, if $i=j ; l_{i, j}=-1$, if $i \neq j$ and v_{i} is adjacent to v_{j}; and $l_{i, j}=0$, otherwise

Value

The n-by-n Laplacian matrix of the graph

See Also

adj2nlapl

```
adj2nlapl Generate a normalized graph Laplacian
```


Description

Generates a normalized graph Laplacian from the graph adjacency matrix.

Usage

adj2nlapl(A)

Arguments

A n-by-n adjacency matrix for a graph with n nodes

Details

A normalized graph Laplacian is defined as: $l_{i, j}=1$, if $i=j ; l_{i, j}=-1 / \sqrt{\operatorname{deg}\left(v_{i}\right) \operatorname{deg}\left(v_{j}\right)}$, if $i \neq j$ and v_{i} is adjacent to v_{j}; and $l_{i, j}=0$, otherwise

Value

The n-by-n Laplacian matrix of the graph

See Also	
adj2nlapl	
gelnet	GELnet for linear regression, binary classification and one-class prob- lems.

Description

Infers the problem type and learns the appropriate GELnet model via coordinate descent.

Usage

gelnet $(X, y, 11,12, n F e a t s=N U L L, a=r e p(1, n), d=r e p(1, p)$, $P=\operatorname{diag}(p), m=r e p(0, p), \max . i t e r=100, e p s=1 e-05$, w.init = rep(0, p), b.init = NULL, fix.bias = FALSE, silent = FALSE, balanced $=$ FALSE, nonneg $=$ FALSE)

Arguments

X
y

11
12
nFeats
a $\quad \mathrm{n}$-by-1 vector of sample weights (regression only)
d p-by-1 vector of feature weights
$P \quad p-b y-p$ feature association penalty matrix
$m \quad$ p-by-1 vector of translation coefficients
max.iter maximum number of iterations
eps convergence precision
w.init
b.init
fix.bias
silent set to TRUE to suppress run-time output to stdout (default: FALSE)
balanced boolean specifying whether the balanced model is being trained (binary classification only) (default: FALSE)
nonneg set to TRUE to enforce non-negativity constraints on the weights (default: FALSE)

Details

The method determines the problem type from the labels argument y. If y is a numeric vector, then a regression model is trained by optimizing the following objective function:

$$
\frac{1}{2 n} \sum_{i} a_{i}\left(y_{i}-\left(w^{T} x_{i}+b\right)\right)^{2}+R(w)
$$

If y is a factor with two levels, then the function returns a binary classification model, obtained by optimizing the following objective function:

$$
-\frac{1}{n} \sum_{i} y_{i} s_{i}-\log \left(1+\exp \left(s_{i}\right)\right)+R(w)
$$

where

$$
s_{i}=w^{T} x_{i}+b
$$

Finally, if no labels are provided ($\mathrm{y}==$ NULL), then a one-class model is constructed using the following objective function:

$$
-\frac{1}{n} \sum_{i} s_{i}-\log \left(1+\exp \left(s_{i}\right)\right)+R(w)
$$

where

$$
s_{i}=w^{T} x_{i}
$$

In all cases, the regularizer is defined by

$$
R(w)=\lambda_{1} \sum_{j} d_{j}\left|w_{j}\right|+\frac{\lambda_{2}}{2}(w-m)^{T} P(w-m)
$$

The training itself is performed through cyclical coordinate descent, and the optimization is terminated after the desired tolerance is achieved or after a maximum number of iterations.

Value

A list with two elements:
w p-by-1 vector of p model weights
b scalar, bias term for the linear model (omitted for one-class models)

See Also

gelnet.lin.obj, gelnet.logreg.obj, gelnet.oneclass.obj

Description

Performs k-fold cross-validation to select the best pair of the L1- and L2-norm penalty values.

Usage

```
gelnet.cv(X, y, nL1, nL2, nFolds = 5, a = rep(1, n), d = rep(1, p),
        P = diag(p), m = rep(0, p), max.iter = 100, eps = 1e-05,
        w.init = rep(0, p), b.init = 0, fix.bias = FALSE, silent = FALSE,
        balanced = FALSE)
```


Arguments

X
y
nL1 number of values to consider for the L1-norm penalty
nL 2 number of values to consider for the L2-norm penalty
$\mathrm{nFolds} \quad$ number of cross-validation folds (default:5)
a $\quad \mathrm{n}$-by-1 vector of sample weights (regression only)
d p-by-1 vector of feature weights
P p-by-p feature association penalty matrix
$m \quad$ p-by-1 vector of translation coefficients
max.iter maximum number of iterations
eps convergence precision
w.init initial parameter estimate for the weights
b.init initial parameter estimate for the bias term
fix.bias set to TRUE to prevent the bias term from being updated (regression only) (default: FALSE)
silent set to TRUE to suppress run-time output to stdout (default: FALSE)
balanced boolean specifying whether the balanced model is being trained (binary classification only) (default: FALSE)

Details

Cross-validation is performed on a grid of parameter values. The user specifies the number of values to consider for both the L1- and the L2-norm penalties. The L1 grid values are equally spaced on [0, L1s], where L1s is the smallest meaningful value of the L1-norm penalty (i.e., where all the model weights are just barely zero). The L2 grid values are on a logarithmic scale centered on 1.

Value

A list with the following elements:
11 the best value of the L1-norm penalty
12 the best value of the L2-norm penalty
\mathbf{w} p-by-1 vector of p model weights associated with the best $(11,12)$ pair.
b scalar, bias term for the linear model associated with the best $(11,12)$ pair. (omitted for one-class models)
perf performance value associated with the best model. (Likelihood of data for one-class, AUC for binary classification, and -RMSE for regression)

```
See Also
    gelnet
    gelnet.ker Kernel models for linear regression, binary classification and one-
        class problems.
```


Description

Infers the problem type and learns the appropriate kernel model.

Usage

gelnet.ker (K, y, lambda, a, max.iter = 100, eps = 1e-05, v.init = rep(0, nrow(K)), b.init = 0, fix.bias = FALSE, silent = FALSE, balanced = FALSE)

Arguments

K
y
lambda
a
max.iter maximum number of iterations (binary classification and one-class problems only)
eps convergence precision (binary classification and one-class problems only)
v.init initial parameter estimate for the kernel weights (binary classification and oneclass problems only)
b.init initial parameter estimate for the bias term (binary classification only)
fix.bias set to TRUE to prevent the bias term from being updated (regression only) (default: FALSE)

silent	set to TRUE to suppress run-time output to stdout (default: FALSE)
balanced	boolean specifying whether the balanced model is being trained (binary classi- fication only) (default: FALSE)

Details

The entries in the kernel matrix K can be interpreted as dot products in some feature space ϕ. The corresponding weight vector can be retrieved via $w=\sum_{i} v_{i} \phi\left(x_{i}\right)$. However, new samples can be classified without explicit access to the underlying feature space:

$$
w^{T} \phi(x)+b=\sum_{i} v_{i} \phi^{T}\left(x_{i}\right) \phi(x)+b=\sum_{i} v_{i} K\left(x_{i}, x\right)+b
$$

The method determines the problem type from the labels argument y. If y is a numeric vector, then a ridge regression model is trained by optimizing the following objective function:

$$
\frac{1}{2 n} \sum_{i} a_{i}\left(z_{i}-\left(w^{T} x_{i}+b\right)\right)^{2}+w^{T} w
$$

If y is a factor with two levels, then the function returns a binary classification model, obtained by optimizing the following objective function:

$$
-\frac{1}{n} \sum_{i} y_{i} s_{i}-\log \left(1+\exp \left(s_{i}\right)\right)+w^{T} w
$$

where

$$
s_{i}=w^{T} x_{i}+b
$$

Finally, if no labels are provided ($\mathrm{y}==\mathrm{NULL}$), then a one-class model is constructed using the following objective function:

$$
-\frac{1}{n} \sum_{i} s_{i}-\log \left(1+\exp \left(s_{i}\right)\right)+w^{T} w
$$

where

$$
s_{i}=w^{T} x_{i}
$$

In all cases, $w=\sum_{i} v_{i} \phi\left(x_{i}\right)$ and the method solves for v_{i}.

Value

A list with two elements:
v n-by-1 vector of kernel weights
b scalar, bias term for the linear model (omitted for one-class models)

See Also

gelnet

```
gelnet.lin.obj Linear regression objective function value
```


Description

Evaluates the linear regression objective function value for a given model. See details.

Usage

gelnet.lin.obj(w, b, X, z, l1, l2, $a=\operatorname{rep}(1, \operatorname{nrow}(X)), d=\operatorname{rep}(1, \operatorname{ncol}(X))$, $P=\operatorname{diag}(\operatorname{ncol}(X)), m=\operatorname{rep}(0, \operatorname{ncol}(X)))$

Arguments

w p-by-1 vector of model weights
b the model bias term
$\mathrm{X} \quad \mathrm{n}$-by-p matrix of n samples in p dimensions
z n-by-1 response vector
11 L1-norm penalty scaling factor λ_{1}
12 L2-norm penalty scaling factor λ_{2}
a n-by- 1 vector of sample weights
d p-by-1 vector of feature weights
P p-by-p feature-feature penalty matrix
$m \quad$ p-by-1 vector of translation coefficients

Details

Computes the objective function value according to

$$
\frac{1}{2 n} \sum_{i} a_{i}\left(z_{i}-\left(w^{T} x_{i}+b\right)\right)^{2}+R(w)
$$

where

$$
R(w)=\lambda_{1} \sum_{j} d_{j}\left|w_{j}\right|+\frac{\lambda_{2}}{2}(w-m)^{T} P(w-m)
$$

Value

The objective function value.

See Also

gelnet

Description

Evaluates the logistic regression objective function value for a given model. See details. Computes the objective function value according to

$$
-\frac{1}{n} \sum_{i} y_{i} s_{i}-\log \left(1+\exp \left(s_{i}\right)\right)+R(w)
$$

where

$$
\begin{gathered}
s_{i}=w^{T} x_{i}+b \\
R(w)=\lambda_{1} \sum_{j} d_{j}\left|w_{j}\right|+\frac{\lambda_{2}}{2}(w-m)^{T} P(w-m)
\end{gathered}
$$

When balanced is TRUE, the loss average over the entire data is replaced with averaging over each class separately. The total loss is then computes as the mean over those per-class estimates.

Usage

gelnet.logreg.obj(w, b, X, y, l1, l2, d = rep(1, ncol(X)), P = diag(ncol(X)), m = rep(0, $\operatorname{ncol}(X))$, balanced $=$ FALSE)

Arguments

w p-by-1 vector of model weights
b the model bias term
$X \quad n$-by-p matrix of n samples in p dimensions
$y \quad n$-by-1 binary response vector sampled from 0,1
11 L1-norm penalty scaling factor λ_{1}
12 L2-norm penalty scaling factor λ_{2}
d p-by-1 vector of feature weights
P p-by-p feature-feature penalty matrix
$m \quad$ p-by-1 vector of translation coefficients
balanced boolean specifying whether the balanced model is being evaluated

Value

The objective function value.

See Also

gelnet
gelnet.oneclass.obj One-class regression objective function value

Description

Evaluates the one-class objective function value for a given model See details.

Usage

gelnet.oneclass.obj(w, X, l1, $12, d=\operatorname{rep}(1, \operatorname{ncol}(X)), P=\operatorname{diag}(n c o l(X))$, $\mathrm{m}=\operatorname{rep}(0, \operatorname{ncol}(X)))$

Arguments

w
X
11
12
d
P p-by-p feature-feature penalty matrix
$m \quad p-b y-1$ vector of translation coefficients

Details

Computes the objective function value according to

$$
-\frac{1}{n} \sum_{i} s_{i}-\log \left(1+\exp \left(s_{i}\right)\right)+R(w)
$$

where

$$
\begin{gathered}
s_{i}=w^{T} x_{i} \\
R(w)=\lambda_{1} \sum_{j} d_{j}\left|w_{j}\right|+\frac{\lambda_{2}}{2}(w-m)^{T} P(w-m)
\end{gathered}
$$

Value

The objective function value.

See Also

gelnet

L1.ceiling The largest meaningful value of the L1 parameter

Description

Computes the smallest value of the LASSO coefficient L1 that leads to an all-zero weight vector for a given linear regression problem.

Usage

```
L1.ceiling(X, y, a = rep(1, nrow(X)), d = rep(1, ncol(X)),
    P = diag(ncol(X)), m = rep(0, ncol(X)), l2 = 1, balanced = FALSE)
```


Arguments

$X \quad n$-by-p matrix of n samples in p dimensions
y n-by-1 vector of response values. Must be numeric vector for regression, factor with 2 levels for binary classification, or NULL for a one-class task.
a $\quad \mathrm{n}$-by-1 vector of sample weights (regression only)
d p-by-1 vector of feature weights
$P \quad$ p-by-p feature association penalty matrix
$m \quad$ p-by-1 vector of translation coefficients
12 coefficient for the L2-norm penalty
balanced boolean specifying whether the balanced model is being trained (binary classification only) (default: FALSE)

Details

The cyclic coordinate descent updates the model weight w_{k} using a soft threshold operator $S\left(\cdot, \lambda_{1} d_{k}\right)$ that clips the value of the weight to zero, whenever the absolute value of the first argument falls below $\lambda_{1} d_{k}$. From here, it is straightforward to compute the smallest value of λ_{1}, such that all weights are clipped to zero.

Value

The largest meaningful value of the L1 parameter (i.e., the smallest value that yields a model with all zero weights)

Index

```
adj2lapl,2
adj2nlapl, 2, 2, 3
gelnet, 3, 6-10
gelnet.cv, 5
gelnet.ker, 6
gelnet.lin.obj, 4, 8
gelnet.logreg.obj, 4, 9
gelnet.oneclass.obj, 4,10
L1.ceiling,11
```

