frailtyMMpen: Efficient Algorithm for High-Dimensional Frailty Model

The penalized and non-penalized Minorize-Maximization (MM) method for frailty models to fit the clustered data, multi-event data and recurrent data. Least absolute shrinkage and selection operator (LASSO), minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalized functions are implemented. All the methods are computationally efficient. These general methods are proposed based on the following papers, Huang, Xu and Zhou (2022) <doi:10.3390/math10040538>, Huang, Xu and Zhou (2023) <doi:10.1177/09622802221133554>.

Version: 1.0.0
Depends: R (≥ 3.5.0), survival, numDeriv, mgcv
Imports: Rcpp (≥ 1.0.8), graphics, stats
LinkingTo: Rcpp, RcppGSL
Published: 2023-03-24
Author: Xifen Huang [aut], Yunpeng Zhou [aut, cre], Jinfeng Xu [ctb]
Maintainer: Yunpeng Zhou <u3514104 at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Materials: README NEWS
CRAN checks: frailtyMMpen results


Reference manual: frailtyMMpen.pdf


Package source: frailtyMMpen_1.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): frailtyMMpen_1.0.0.tgz, r-oldrel (arm64): frailtyMMpen_1.0.0.tgz, r-release (x86_64): frailtyMMpen_1.0.0.tgz, r-oldrel (x86_64): frailtyMMpen_1.0.0.tgz


Please use the canonical form to link to this page.