Package 'fractalRegression'

August 19, 2023

Type Package

Title Performs Fractal Analysis and Fractal Regression

Version 1.2

Date 2023-08-19

Description

Various functions for performing fractal and multifractal analysis including performing fractal regression. Please refer to Peng and colleagues (1994) <doi:10.1103/physreve.49.1685>, Kantelhardt and colleagues (2002)<doi:10.1016/S0378-4371(02)01383-3>, and Likens and colleagues (2019) <doi:10.1016/j.physa.2019.121580>.

License GPL (>= 3)

Depends R (>= 3.5.0)

Suggests knitr, markdown, rmarkdown, ggplot2, crqa, MFDFA, fracdiff, tseries, fields, gridExtra, qpdf

Encoding UTF-8

Imports Rcpp (>= 1.0.0), colorRamps

LazyData true

LinkingTo Rcpp, RcppArmadillo, RcppEigen

RoxygenNote 7.2.3

NeedsCompilation yes

Author Aaron Likens [aut, cre] (<https://orcid.org/0000-0002-6535-5772>), Travis Wiltshire [aut] (<https://orcid.org/0000-0001-7630-2695>)

Maintainer Aaron Likens <alikens@unomaha.edu>

Repository CRAN

Date/Publication 2023-08-19 20:52:33 UTC

R topics documented:

dcca							•				•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	2	2
dcca.plot .					•		•			•	•		•	•	•		•	•	•		•	•	•	•	•		•	•	•	4	ŀ
detrend_co	OV									•			•	•	•				•			•	•	•	•	•	•		•	5	5

dcca

24

dfa	5
dfa.plot	8
dlcca	8
fgn_sim	9
fractaldata	9
iaafft	10
lm_c	10
logscale	11
mBm_mGn	11
mc_ARFIMA	12
mfdfa	14
mfdfa.plot	16
mfdfa_cj	17
mlra	18
mra	19
mra.plot	21
poly_residuals	22
seq_int	22
seq_int_range	23

Index

dcca

Detrended Cross-Correlation Analysis

Description

Fast function for computing detrended cross-correlation analysis (DCCA) on long time series, which is a bivariate extension of detrended fluctuation analysis (DFA).

Usage

dcca(x, y, order, scales)

х	A real valued vector (i.e., time series data) to be analyzed.
у	A real valued vector (i.e., time series data) to be analyzed.
order	is an integer indicating the polynomial order used for detrending the local win- dows (e.g, $1 = $ linear, $2 = $ quadratic, etc.). There is not a pre-determined limit on the order of the polynomial order but the user should avoid using a large poly- nomial on small windows. This can result in overfitting and non-meaningful estimates.
scales	An integer vector of scales over which to compute correlation. Unlike univari- ate DFA, MRA does not require that scales be in log units. Scale intervals can be sequential, for example, when the analysis is exploratory and no a priori hypotheses have been made about the scale of correlation. A small subset of

targeted scales may also be investigated where scale-specific research questions exist. We have found that windows smaller than say 8 observations create stability problems due to overfitting. This is espcially when the order of the fitting polynomial is large.

Details

Details of the algorithm are specified in Podobnik and Stanley (2008) and in Zebende (2011). In general, the output of the algorithm are estimates of ρ DCCA, which range from -1 to 1 and can generally be interpreted as follows:

- $\rho DCCA = -1.0 >$ perfect anti-cross-correlation
- $\rho DCCA = 0.0 >$ no cross-correlation
- $\rho DCCA = 1.0 >$ perfect cross-correlation

Value

The object returned from the function is a list including the following:

- scales indicates the values of the scales used for estimates ρ DCCA
- rho includes the scale-wise estimates of ρ DCCA

References

Podobnik, B., & Stanley, H. E. (2008). Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Physical review letters, 100(8), 084102.

Zebende, G. F. (2011). DCCA cross-correlation coefficient: Quantifying level of cross-correlation. Physica A: Statistical Mechanics and its Applications, 390(4), 614-618. //

Examples

```
# Here is a simple example for running DCCA using a white noise and pink noise time series.
# For more detailed examples, see the vignette.
```

noise <- rnorm(5000)</pre>

```
pink.noise <- fgn_sim(n = 5000, H = 0.9)
scales <- logscale(scale_min = 10, scale_max = 1250, scale_ratio = 1.1)
dcca.out <- dcca(noise, pink.noise, order = 1, scales = scales)</pre>
```

dcca.plot

Description

A plotting method for constructing scalewise correlation plot

Usage

```
dcca.plot(
   rhos,
   order = 1,
   ci = FALSE,
   iterations = NULL,
   return.ci = FALSE,
   loess.rho = FALSE,
   loess.ci = FALSE
)
```

rhos	an object containing results from detrended cross correlation analysis. The object should be returned from the dcca function of this package.
order	integer representing the detrending order used in the dcca calculation. Default is 1.
ci	a logical indicating whether confidence intervals should be computed using the iaafft function from this package. NOTE: with long time series (» than $N = 1,000$), this can greatly reduce processing speed. Confidence intervals can be used for conventional significance testing of scale-wise correlation coefficients.
iterations	integer that specifies the the number of surrogate time series to be generated for the purpose of confidence intervals. Default = 19. Larger number of surrogates will slow computational speed but produce better confidence interval estimates.
return.ci	logical indicating whether the confidence intervals should be returned
loess.rho	logical indicating whether a loess fit should be used for displaying multiscale regression coefficient trajectories
loess.ci	logical indicating whether a loess fit should be used to smooth confidence intervals

 $detrend_cov$

Description

Detrended Covariance Functional that returns the detrended covariance between two vectors

Usage

detrend_cov(x, y, m)

Arguments

х	a real valued column vector
У	is a real valued column vector
m	is the detrending order

	~
h	+ 2
u	ı a

Detrended Fluctuation Analysis

Description

Fast function for computing detrended fluctuation analysis (DFA), a widely used method for estimating long-range temporal correlations in time series data. DFA is also a form of mono-fractal analysis that indicates the degree of self-similarity across temporal scales.

Usage

dfa(x, order, verbose, scales, scale_ratio = 2)

х	A real valued vector (i.e., time series data) to be analyzed.
order	An integer indicating the polynomial order used for detrending the local win- dows (e.g, $1 = linear$, $2 = quadratic$, etc.). There is not a pre-determined limit on the order of the polynomial order but the user should avoid using a large poly- nomial on small windows. This can result in overfitting and non-meaningful estimates.
verbose	If the value of verbose = 1, then a list object is returned that includes: log_scales the log of all included scales, log_rms the log root mean square error (RMS) per scale, and alpha the overall α estimate. If the value of verbose = 0, then a list containing only 'alpha' will be returned.

dfa

scales	An integer valued vector indicating the scales one wishes to resolve in the analysis. Best practice is to use scales which are evenly spaced in the log-arithmic domain e.g., scales = $2^{(4:(N/4))}$, where N is the length of the time series. Other, logarithmic bases may also be used to give finer resolution of scales while maintaining ~= spacing in the log domain e.g., scales = unique(floor(1.1^(30:(N/4)))). Note that fractional bases may produce duplicate values after the necessary floor function.
scale_ratio	A scaling factor by which successive window sizes were created. The default is 2 but should be addressed according to how scales were generated for example using logscale(16, 100, 1.1), where 1.1 is the scale ratio.

Details

Details of the algorithm are specified in detail in Peng et al. (1994) and visualized nicely in Kelty-Stephen et al. (2016). The output of the algorithm is an α (alpha) estimate which is a generalization of the Hurst Exponent. Conventional interpretation of α is:

- $\alpha < 0.5 = \text{anti-correlated}$
- $\alpha = 0.5 =$ uncorrelated, white noise
- $\alpha > 0.5 =$ temporally correlated
- $\alpha = 1 = 1/f$ -noise, pink noise
- $\alpha > 1 =$ non-stationary and unbounded
- $\alpha = 1.5 =$ fractional brownian motion

We recommend a few points of consideration here in using this function. One is to be sure to verify there are not cross-over points in the logScale- logFluctuation plots (Peng et al., 1995; Perakakis et al., 2009). Cross- over points (or a visible change in the slope as a function of of scale) indicate that a mono-fractal characterization does not sufficiently characterize the data. If cross-over points are evident, we recommend proceeding to using the mfdfa() to estimate the multi-fractal fluctuation dynamics across scales.

While it is common to use only linear detrending with DFA, it is important to inspect the trends in the data to determine if it would be more appropriate to use a higher order polynomial for detrending, and/or compare the DFA output for different polynomial orders (see Kantelhardt et al., 2001).

General recommendations for choosing the min and max scale are an sc_min = 10 and sc_max = (N/4), where N is the number of observations. See Eke et al. (2002) and Gulich and Zunino (2014) for additional considerations.

Value

The object returned can take the following forms:

- If the value of verbose = 1, then a list object is returned that includes: log_scales the log of all included scales, log_rms the log root mean square error (RMS) per scale, and alpha the overall α estimate.
- If the value of verbose = 0, then a list containing only 'alpha' the estimated scaling exponent α will be returned.

References

Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). Fractal characterization of complexity in temporal physiological signals. Physiological measurement, 23(1), R1-R38.

Gulich, D., & Zunino, L. (2014). A criterion for the determination of optimal scaling ranges in DFA and MF-DFA. Physica A: Statistical Mechanics and its Applications, 397, 17-30.

Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H., Havlin, S., & Bunde, A. (2001). Detecting long-range correlations with detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 295(3-4), 441-454.

Kelty-Stephen, D. G., Stirling, L. A., & Lipsitz, L. A. (2016). Multifractal temporal correlations in circle-tracing behaviors are associated with the executive function of rule-switching assessed by the Trail Making Test. Psychological assessment, 28(2), 171-180.

Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, and Goldberger AL (1994), Mosaic organization of DNA nucleotides, Physical Review E, 49, 1685-1689.

Peng C-K, Havlin S, Stanley HE, and Goldberger AL (1995), Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series, Chaos, 5, 82-87.

Perakakis, P., Taylor, M., Martinez-Nieto, E., Revithi, I., & Vila, J. (2009). Breathing frequency bias in fractal analysis of heart rate variability. Biological psychology, 82(1), 82-88.

Examples

```
noise <- rnorm(5000)</pre>
scales <- c(16,32,64,128,256,512,1024)</pre>
dfa.noise.out <- dfa(
   x = noise,
   order = 1,
   verbose = 1,
    scales = scales,
    scale_ratio = 2)
pink.noise <- fgn_sim(n = 5000, H = 0.9)</pre>
dfa.pink.out <- dfa(
   x = pink.noise,
   order = 1,
   verbose = 1,
    scales = scales,
    scale_ratio = 2)
anticorr.noise <- fgn_sim(n = 5000, H = 0.25)
dfa.anticorr.out <- dfa(
    x = anticorr.noise,
    order = 1,
    verbose = 1,
    scales = scales,
    scale_ratio = 2)
```

dfa

dfa.plot

Description

Plot method for monofractal detrended fluctuation analysis

Usage

dfa.plot(x)

Arguments

X	is an object returned from the dfa function of this package. Plot parameters are chosen automatically,
dlcca	Multiscale Lagged Regression Anlaysis Fast function for computing MLRA on long time series

Description

Multiscale Lagged Regression Anlaysis Fast function for computing MLRA on long time series

Usage

dlcca(x, y, order, scales, lags, direction)

Arguments

х	is a real valued vector of time series data
У	is a real valued vector of time series data
order	is an integer indicating the polynomial order used for detrending the local windows
scales	integer vector of scales over which to compute correlation. Performance is best when scales are evenly spaced in log units. Choosing a logarithm base between 1 and 2 may also improve performance of regression.
lags	integer indicating the maximum number of lags to include
direction	string indicating a positive ('p') or negative ('n') lag

Value

The object returned from the dlcca() function is a list containing rho coefficients for each lag at each of the scales.

fgn_sim

Description

Simulate fractional Gaussian Noise.

Usage

 $fgn_sim(n = 1000, H = 0.7)$

Arguments

n	integer indicating length of desired series
Н	Hurst exponent ranges between 0 and 1

Value

A numeric vector of length n.

fractaldata	A whitenoise, monofractal,	, and multifractal timeseries
	11 ////////////////////////////////////	

Description

These data include three simulated data to be used for understanding the differences between the various univariate methods in the dataset to compare whitenoise, monofractal, and multifractal data.

Usage

data(fractaldata)

Format

An object of class data. frame with 8000 rows and 4 columns.

Source

https://www.ntnu.edu/inb/geri/software

References

Ihlen, E. A. F. (2012). Introduction to Multifractal Detrended Fluctuation Analysis in Matlab. Frontiers in Physiology, 3. https://doi.org/10.3389/fphys.2012.00141

iaafft

Description

Iterated Amplitude Adjusted Fourier Transform

Usage

iaafft(signal, N = 1)

Arguments

signal	is a real valued time serires
N	is the number of desired surrogates. Default is 1

lm_c	Simplef bivariate regression written in c++	
------	---	--

Description

Simplef bivariate regression written in c++

Usage

lm_c(xs, yr)

XS	a real valued column vector
yr	is a real valued column vector

logscale

logscale

Description

Create logarithmically spaced scales

Usage

logscale(scale_min, scale_max, scale_ratio)

Arguments

scale_min	an integer indicating the minimum scale to be resovled	
<pre>scale_max</pre>	an integer indicating the maximum scale to be resolved	
scale_ratio	a double indicating the ratio by which scale successive scales. scale_ratio = 2 would create a scales increasing by a power of 2.	For example,

Value

A vector of of logarithmically spaced scales.

Examples

```
scales <- logscale(scale_min = 16, scale_max = 1024, scale_ratio = 2)</pre>
```

mBm_mGn

Multifractional Brownian motion and multifractional Gaussian noise

Description

Simulate multifractional Brownian motion and multifractional Gaussian noise.

Usage

mBm_mGn(N, Ht)

umenus	
Ν	The length of sample time series to simulate.
Ht	The N by 1 vector of the time evolving H(t).

Details

This is an algorithm that simulates discrete time multifractional Brownian motion and multifractional Gaussian noise, which can useful for testing various functions within the 'fractalRegression' package. H(t) should take on any values between 0 and 1. It is meant to capture time varying fractal properties. The example code given below shows a slow evolving Hurst exponent involving a sinusoidal change.

Value

The object returned from the function includes:

- mBm: multifractional Brownian motion
- mGn: multifractional Gaussian noise

Examples

t <- 1:1024
Ht <- 0.5+0.5*(sin(0.0025*pi*t))
sim <- mBm_mGn(1024,Ht)</pre>

mc_ARFIMA

Mixed-correlated ARFIMA processes

Description

Simulate various types of correlated noise processes.

Usage

```
mc_ARFIMA(
  process,
 n,
  rho,
  d1 = NULL,
  d2 = NULL,
  d3 = NULL,
  d4 = NULL,
  alpha = NULL,
  beta = NULL,
  delta = NULL.
  gamma = NULL,
  theta = NULL,
  theta1 = NULL,
  theta2 = NULL
)
```

12

mc_ARFIMA

Arguments

process	specifies the type of correlated noise process to simulate and includes 'Noise_rho', 'ARFIMA_rho', 'ARFIMA_AR', 'AR_rho', 'Mixed_ARFIMA_ARFIMA', 'Mixed_ARFIMA_AR', and 'Mixed_ARFIMA_noise'.
n	is a numeric value specifying the length of the time-series.
rho	specifies the strength of the correlation with values -1 - 1.
d1	is a numeric fractional difference parameter for x specifying long term memory.
d2	is a numeric fractional difference parameter for x specifying long term memory.
d3	is a numeric fractional difference parameter for y specifying long term memory.
d4	is a numeric fractional difference parameter for y specifying long term memory.
alpha	see Kristoufek (2013) for details.
beta	see Kristoufek (2013) for details.
delta	see Kristoufek (2013) for details.
gamma	see Kristoufek (2013) for details.
theta	see Kristoufek (2013) for details.
theta1	see Kristoufek (2013) for details.
theta2	see Kristoufek (2013) for details.

Details

This function includes multiple options simulating various types of correlated noise processes including mixed-correlated ARFIMA processes with power-law cross-correlations, These functions were originally written by Ladislav Kristoufek and posted on his website. They go with the paper presented in Kristoufek (2013). The 'process' argument specifies the type of noise to be generated.

- 'Noise_rho' Generates two correlated noise series and requires arguments: n, rho.
- 'ARFIMA_rho' Generates two ARFIMA processes with correlated innovations and requires arguments: n, d1, d2, rho.
- 'ARFIMA_AR' Generates ARFIMA and AR(1) processes with correlated innovations and requires arguments: n, d1, theta, rho.
- 'AR_rho' Generates two AR(1) processes with correlated innovations and requires arguments: n, theta1, theta2, rho.
- 'Mixed_ARFIMA_ARFIMA' Generates MC-ARFIMA process with long-range correlation and long-range cross-correlation (Kristoufec, 2013 Model 1) and requires arguments: alpha, beta, gamma, delta, n, d1, d2, d3, d4, rho.
- 'Mixed_ARFIMA_AR' Generates MC-ARFIMA process with long-range correlation and short-range cross-correlation (Kristoufec, 2013 Model 2) and requires arguments: alpha, beta, gamma, delta, n, d1, d2, theta, rho.
- 'Mixed_ARFIMA_noise' Generates MC-ARFIMA process with long-range correlation and simple correlation (Kristoufec, 2013 Model 3) and requires arguments: alpha, beta, gamma, delta, n, d1, d2, rho.

Value

The object returned is a matrix of length n with a time series (x,y) in column 1 and 2.

References

Kristoufek, L. (2013). Mixed-correlated ARFIMA processes for power-law cross-correlations. Physica A: Statistical Mechanics and its Applications, 392(24), 6484-6493.

Examples

```
set.seed(987345757)
sim1 <- mc_ARFIMA(process='Mixed_ARFIMA_ARFIMA', alpha = 0.2,
beta = 1, gamma = 1, delta = 0.2, n = 10000, d1 = 0.4, d2 = 0.3,
d3 = 0.3, d4=0.4, rho=0.9)
plot(sim1[,1],type='l', ylab= "Signal Amplitude", xlab='Time',
main = "MC-ARFIMA with LRC and LRCC")
lines(sim1[,2], col='blue')</pre>
```

mfdfa

```
Multifractal Detrended Fluctuation Analysis
```

Description

Fast function for computing multifractal detrended fluctuation analysis (MF-DFA), a widely used method for estimating the family of long-range temporal correlations or scaling exponents in time series data. MF-DFA is also a form of multifractal analysis that indicates the degree of interaction across temporal scales.

Usage

mfdfa(x, q, order, scales, scale_ratio)

х	A real valued vector (i.e., time series data) to be analyzed.
q	A real valued vector indicating the statistical moments (q) to use in the analysis. q must span negative and positive values e.g., -3:3, otherwise and error may be produced.
order	is an integer indicating the polynomial order used for detrending the local win- dows (e.g, $1 = $ linear, $2 = $ quadratic, etc.). There is not pre-determined limit on the order of the polynomial order but the user should avoid using a large poly- nomial on small windows. This can result in overfitting and non-meaningful estimates.

scales	An integer valued vector indicating the scales one wishes to resolve in the analysis. Best practice is to use scales which are evenly spaced in the log-arithmic domain e.g., $scales = 2^{(4:(N/4))}$, where N is the length of the time series. Other logarithmic bases may also be used to give finer resolu-
	tion of scales while maintaining \sim = spacing in the log domain e.g, scales = unique(floor(1.1^(30:(N/4)))). Note that fractional bases may produce duplicate values after the necessary floor function.
scale_ratio	A scaling factor by which successive window sizes were created. The default is 2 but should be addressed according to how scales were generated for example using logscale(16, 100, 1.1), where 1.1 is the scale ratio.

Details

Details of the algorithm are specified in detail in Kantelhardt et al. (2001; 2002) and visualized nicely in Kelty-Stephen et al. (2016).

Selecting the range of values for q is important. Note that MF-DFA estimates for q = 2 are equivalent to DFA. Larger values of q (q > 2) emphasize larger residuals and smaller values of q (q < 2) emphasis smaller residuals (Kelty-Stephen et al., 2016). For most biomedical signals such as physiological and kinematic, a q range of -5 to 5 is common (Ihlen, 2010). However, in some cases, such as when time series are short (< 3000), it can be appropriate to limit the range of q to positive only. Kelty-Stephen et al. (2016) recommend a positive q range of 0.5 to 10 with an increment of 0.5.

While it is common to use only linear detrending with DFA and MF-DFA, it is important to inspect the trends in the data to determine if it would be more appropriate to use a higher order polynomial for detrending, and/or compare the DFA and MF-DFA output for different polynomial orders (see Ihlen, 2012; Kantelhardt et al., 2001).

General recommendations for choosing the min and max scale are a scale_min = 10 and scale_max = (N/4), where N is the number of observations. See Eke et al. (2002), Gulich and Zunino (2014), Ihlen (2012), and for additional considerations and information on choosing the correct parameters.

Value

The output of the algorithm is a list that includes:

- log_scale The log scales used for the analysis
- log_fq The log of the fluctuation functions for each scale and q
- Hq The q-order Hurst exponent (generalized Hurst exponent)
- · Tau The q-order mass exponent
- q The q-order statistical moments
- h The q-order singularity exponent
- Dh The dimension of the q-order singularity exponent

References

Ihlen, E. A. F. (2012). Introduction to Multifractal Detrended Fluctuation Analysis in Matlab. Frontiers in Physiology, 3. https://doi.org/10.3389/fphys.2012.00141

Kantelhardt, J. W., Koscielny-Bunde, E., Rego, H. H., Havlin, S., & Bunde, A. (2001). Detecting long-range correlations with detrended fluctuation analysis. Physica A: Statistical Mechanics and its Applications, 295(3-4), 441-454.

Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A., & Stanley, H. E. (2002). Multifractal detrended fluctuation analysis of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 316(1-4), 87-114.

Kelty-Stephen, D. G., Palatinus, K., Saltzman, E., & Dixon, J. A. (2013). A Tutorial on Multifractality, Cascades, and Interactivity for Empirical Time Series in Ecological Science. Ecological Psychology, 25(1), 1-62. https://doi.org/10.1080/10407413.2013.753804

Kelty-Stephen, D. G., Stirling, L. A., & Lipsitz, L. A. (2016). Multifractal temporal correlations in circle-tracing behaviors are associated with the executive function of rule-switching assessed by the Trail Making Test. Psychological Assessment, 28(2), 171-180. https://doi.org/10.1037/pas0000177

Examples

```
noise <- rnorm(5000)
scales <- c(16,32,64,128,256,512,1024)
mf.dfa.white.out <- mfdfa(
    x = noise, q = c(-5:5),
    order = 1,
    scales = scales,
    scale_ratio = 2)
pink.noise <- fgn_sim(n = 5000, H = 0.9)
mf.dfa.pink.out <- mfdfa(
    x = pink.noise,
    q = c(-5:5),
    order = 1,
    scales = scales,
    scale_ratio = 2)</pre>
```

mfdfa.plot

Multifractal Spectrum Plot

Description

Method for plotting various forms of the multifractal spectrum

mfdfa_cj

Usage

mfdfa.plot(mf, do.surrogate, nsurrogates = 19, return.ci = FALSE)

Arguments

mf	an object containing elements related to the mutlifractal spectrum derived from Multifractal Detrended Fluctuation Analysis
do.surrogate	logical indicating whether surrogation should be performed on the time series
nsurrogates	integer indicating the number of surrogates to be constructed. Default is 19 for 95 surrogates ore more precise but increase computational time.
return.ci	logical indicating if confidence intervals derived from surrogate analysis should be returned.

Author(s)

Aaron D. Likens (2022)

References

Kantelhardt et al. (2002). Multifractal detrended fluctuation analys of nonstationary time series. Physica A: Statistical Mechanics and its Applications, 87

mfdfa_cj

Multifractal Analysis Chhabra-Jensen Method

Description

Fast function for computing multifractal analysis using a lesser-known method for estimating the family of long-range temporal correlations or scaling exponents in time series data. This is also a form of multifractal analysis that indicates the degree of interaction across temporal scales.

Usage

```
mfdfa_cj(Timeseries, qValues, scales)
```

Timeseries	is a real valued time series
qValues	real valued vector of q-orders
scales	unsigned integer vector of scales to be resolved

Description

Fast function for computing multiscale lagged regression analysis (MLRA) on long time series. Combining DFA with ordinary least square regression, MLRA is a form of fractal regression that can be used to estimate asymmetric and multiscale regression coefficients between two variables at different time-scales and temporal lags.

Usage

mlra(x, y, order, scales, lags, direction)

Arguments

x	A real valued vector (i.e., time series data) to be analyzed.
У	A real valued vector (i.e., time series data) to be analyzed.
order	is an integer indicating the polynomial order used for detrending the local win- dows (e.g, $1 = $ linear, $2 = $ quadratic, etc.). There is a not pre-determined limit on the order of the polynomial order but the user should avoid using a large poly- nomial on small windows. This can result in overfitting and non-meaningful estimates.
scales	An integer vector of scales over which to compute correlation. Unlike univari- ate DFA, MRA does not require that scales be in log units. Scale intervals can be sequential, for example, when the analysis is exploratory and no a priori hypotheses have been made about the scale of correlation. A small subset of targeted scales may also be investigated where scale-specific research questions exist. We have found that windows smaller than say 8 observations create sta- bility problems due to overfitting. This is espcially when the order of the fitting polynomial is large.
lags	An integer indicating the maximum number of lags to include in the analysis.
direction	A character string indicating a positive ('p') or negative ('n') lag.

Details

Mathematical treatment of the MLRA algorithm and its performance can be found in Kristoufek (2015) and Likens et al. (2019).

Use of the direction parameter specifies whether the scale-wise β coefficients for positive or negative lags will be estimated.

Note that under conditions with linear and quadratic trends, Likens et al. (2019) found that there was a systematic positive bias in the β estimates for larger scales. Using a polynomial detrending order of 2 or greater was shown to attenuate this bias.

mlra

Value

The object returned from the mlra() function is a list containing betas the β coefficients for each lag at each of the scales.

References

Kristoufek, L. (2015). Detrended fluctuation analysis as a regression framework: Estimating dependence at different scales. Physical Review E, 91(2), 022802.

Likens, A. D., Amazeen, P. G., West, S. G., & Gibbons, C. T. (2019). Statistical properties of Multiscale Regression Analysis: Simulation and application to human postural control. Physica A: Statistical Mechanics and its Applications, 532, 121580.

Examples

Here is a simple example for running MLRA using a white noise and pink noise time series. # For more detailed examples, see the vignette.

```
noise <- rnorm(5000)
pink.noise <- fgn_sim(n = 5000, H = 0.9)
scales <- logscale(scale_min = 10, scale_max = 1250, scale_ratio = 1.1)
mlra.out <- mlra(
    x = noise,
    y = pink.noise,
    order = 1,
    scales = scales,
    lags = 100, direction = 'p')</pre>
```

mra

Multiscale Regression Analysis (MRA)

Description

Fast function for computing multiscale regression analysis (MRA) on long time series. Combining DFA with ordinary least square regression, MRA is a form of fractal regression that can be used to estimate asymmetric and multiscale regression coefficients between two variables.

Usage

mra(x, y, order, scales)

Arguments

x	A real valued vector (i.e., time series data) to be analyzed. A key difference between DCCA and MRA is that MRA produces asymmetric estiamtes. That is, x is assumed to be an independent variable and y is assumed to be a dependent variable. MRA should be used when one of the time series in question is usefully cast as the independent variable. That is, x is assumed to effect change in y. If no such causal relationship is anticipated, use DCCA instead.
У	A real valued vector (i.e., time series data) to be analyzed.
order	is an integer indicating the polynomial order used for detrending the local win- dows (e.g, $1 = $ linear, $2 = $ quadratic, etc.). There is not a pre-determined limit on the order of the polynomial order but the user should avoid using a large poly- nomial on small windows. This can result in overfitting and non-meaningful estimates.
scales	An integer vector of scales over which to compute correlation. Unlike univari- ate DFA, MRA does not require that scales be in log units. Scale intervals can be sequential, for example, when the analysis is exploratory and no a priori hypotheses have been made about the scale of correlation. A small subset of targeted scales may also be investigated where scale-specific research questions exist. We have found that windows smaller than say 8 observations create sta- bility problems due to overfitting. This is espcially when the order of the fitting polynomial is large.

Details

Mathematical treatment of the MRA algorithm and its performance can be found in Kristoufek (2015) and Likens et al. (2019).

Note that under conditions with linear and quadratic trends, Likens et al. (2019) found that there was a systematic positive bias in the β estimates for larger scales. Using a polynomial detrending order of 2 or greater was shown to attenuate this bias.

Value

The object returned from the mra() function is a list including the following:

- scales indicates the values of the scales used for estimates
- betas are the scale specific β estimates of the influence of x on y
- r2 is the scale specific r-squared value of the model fit (i.e., variance in y accounted for by x at that scale)
- t_observed is the estimated t-statistic for a given β at a given scale.

References

Kristoufek, L. (2015). Detrended fluctuation analysis as a regression framework: Estimating dependence at different scales. Physical Review E, 91(2), 022802.

Likens, A. D., Amazeen, P. G., West, S. G., & Gibbons, C. T. (2019). Statistical properties of Multiscale Regression Analysis: Simulation and application to human postural control. Physica A: Statistical Mechanics and its Applications, 532, 121580.

mra.plot

Examples

Here is a simple example for running MRA using a white noise and pink noise time series. # For more detailed examples, see the vignette.

```
noise <- rnorm(5000)
pink.noise <- fgn_sim(n = 5000, H = 0.9)
scales <- logscale(scale_min = 10, scale_max = 1250, scale_ratio = 1.1)
mra.out <- mra(x = noise, y = pink.noise, order = 1, scales = scales)</pre>
```

mra.plot

Multiscale Regression Plot

Description

A plotting method for constructing scalewise regression plot

Usage

```
mra.plot(
    betas,
    order = 1,
    ci = FALSE,
    iterations = NULL,
    return.ci = FALSE,
    loess.beta = FALSE,
    loess.ci = FALSE
)
```

betas	an object containing modeling results from multiscale regression analysis. The object should be returned from the mra function of this package.
order	integer representing the detrending order used in the mra calculation. Default is 1.
ci	a logical indicating whether confidence intervals should be computed using the iaafft function from this package. NOTE: with long time series (» than $N = 1,000$), this can greatly reduce processing speed. Confidence intervals can be used for conventional significance testing of scale-wise correlation coefficients.

iterations	integer that specifies the the number of surrogate time series to be generated for the purpose of confidence intervals. Default = 19. Larger number of surrogates will slow computational speed but produce better confidence interval estimates.
return.ci	logical indicating whether the confidence intervals should be returned
loess.beta	logical indicating whether a loess fit should be used for displaying multiscale regression coefficient trajectories
loess.ci	logical indicating whether a loess fit should be used to smooth confidence intervals

poly_residuals	Polynomial Residuals Function that fits a polynomial and returns the residuals

Description

Polynomial Residuals Function that fits a polynomial and returns the residuals

Usage

poly_residuals(yr, m)

Arguments

yr	is a real valued vector
m	is the detrending order

seq_int	Integer Sequence Function that produces a sequence of integers from
	1 to N

Description

Integer Sequence Function that produces a sequence of integers from 1 to N

Usage

```
seq_int(length)
```

Arguments

length is a positive integer that will produce a sequence from 1:length

seq_int_range

Sequence of Integer ranges Function that produces a sequece of integers that span a specific range

Description

Sequence of Integer ranges Function that produces a sequece of integers that span a specific range

Usage

seq_int_range(start, stop)

start	is a positive integer and gives the smallest value in the sequence
stop	is a positive integer and gives the largest value in a sequence

Index

* datasets fractaldata,9 dcca, 2dcca.plot,4 $detrend_cov, 5$ dfa,5 dfa.plot, 8 dlcca,8 fgn_sim,9 fractaldata,9 iaafft, <mark>10</mark> lm_c, 10 logscale, 11 $mBm_mGn, 11$ mc_ARFIMA, 12 mfdfa, 14 mfdfa.plot, 16 ${\tt mfdfa_cj,\,17}$ mlra, <mark>18</mark> mra, <mark>19</mark> mra.plot, 21 poly_residuals, 22 seq_int, 22 $seq_int_range, 23$