With {fHMM} you can detect and characterize financial market regimes in financial time series by applying hidden Markov Models (HMMs). The functionality and the model is documented in detail here. Below, you can find a first application to the German stock index DAX.
You can install the released version of {fHMM} from CRAN with:
install.packages("fHMM")
And the development version from GitHub with:
# install.packages("devtools")
::install_github("loelschlaeger/fHMM") devtools
We welcome contributions! Please submit bug reports and feature requests as issues and extensions as merge requests via a branch forked from “master”.
We fit a 3-state HMM with state-dependent t-distributions to the DAX log-returns from 2000 to 2022. The states can be interpreted as proxies for bearish (green below) and bullish markets (red) and an “in-between” market state (yellow).
The package has a build-in function to download financial data from Yahoo Finance:
<- download_data(symbol = "^GDAXI", file = NULL, verbose = FALSE) dax
We first need to define the model:
<- list(
controls states = 3,
sdds = "t",
data = list(file = dax,
date_column = "Date",
data_column = "Close",
logreturns = TRUE,
from = "2000-01-01",
to = "2022-12-31")
)<- set_controls(controls) controls
The function prepare_data()
then prepares the data for
estimation:
<- prepare_data(controls) data
The summary()
method gives an overview:
summary(data)
#> Summary of fHMM empirical data
#> * number of observations: 5882
#> * data source: data.frame
#> * date column: Date
#> * log returns: TRUE
We fit the model and subsequently decode the hidden states and compute (pseudo-) residuals:
<- fit_model(data)
model <- decode_states(model)
model <- compute_residuals(model) model
The summary()
method gives an overview of the model
fit:
summary(model)
#> Summary of fHMM model
#>
#> simulated hierarchy LL AIC BIC
#> 1 FALSE FALSE 17649.52 -35269.03 -35168.84
#>
#> State-dependent distributions:
#> t()
#>
#> Estimates:
#> lb estimate ub
#> Gamma_2.1 1.286e-02 2.007e-02 3.113e-02
#> Gamma_3.1 1.208e-06 1.198e-06 1.180e-06
#> Gamma_1.2 1.557e-02 2.489e-02 3.959e-02
#> Gamma_3.2 1.036e-02 1.877e-02 3.378e-02
#> Gamma_1.3 4.119e-07 4.080e-07 4.019e-07
#> Gamma_2.3 2.935e-03 5.275e-03 9.422e-03
#> mu_1 9.655e-04 1.271e-03 1.576e-03
#> mu_2 -8.483e-04 -3.102e-04 2.278e-04
#> mu_3 -3.813e-03 -1.760e-03 2.932e-04
#> sigma_1 5.417e-03 5.853e-03 6.324e-03
#> sigma_2 1.278e-02 1.330e-02 1.384e-02
#> sigma_3 2.348e-02 2.579e-02 2.832e-02
#> df_1 3.957e+00 5.198e+00 6.828e+00
#> df_2 3.870e+08 3.870e+08 3.870e+08
#> df_3 5.549e+00 1.078e+01 2.095e+01
#>
#> States:
#> decoded
#> 1 2 3
#> 2278 2900 704
#>
#> Residuals:
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> -3.519694 -0.658831 0.009613 -0.002206 0.669598 3.905726
Having estimated the model, we can visualize the state-dependent distributions and the decoded time series:
<- fHMM_events(
events list(dates = c("2001-09-11", "2008-09-15", "2020-01-27"),
labels = c("9/11 terrorist attack", "Bankruptcy Lehman Brothers", "First COVID-19 case Germany"))
)plot(model, plot_type = c("sdds","ts"), events = events)
The (pseudo-) residuals help to evaluate the model fit:
plot(model, plot_type = "pr")