Package 'descriptio'

March 7, 2024
Type PackageTitle Descriptive Statistical AnalysisVersion 1.3
Imports MASS, ggplot2, rlang
Suggests rmarkdown, knitr, rmdformats, ggpattern, paletteer, GGally
Description Description of statistical associations between two variables: measures of lo-cal and global association between variables (phi, Cramér V, correlations, eta-squared, Good-man and Kruskal tau, permutation tests, etc.), multiple graphical representations of the associa-tions between two variables (using 'ggplot2') and weighted statistics.
License GPL (>=2)
Encoding UTF-8
URL https://github.com/nicolas-robette/descriptio,https://nicolas-robette.github.io/descriptio/
BugReports https://github.com/nicolas-robette/descriptio/issues
LazyData true
RoxygenNote 7.2.1
NeedsCompilation no
Author Nicolas Robette [aut, cre]
Maintainer Nicolas Robette nicolas.robette@uvsq.fr
Repository CRAN
Date/Publication 2024-03-07 11:00:02 UTC
R topics documented:
assoc.catcont 2
assoc.catcont.by 4
assoc.twocat 5
assoc.twocat.by 7
assoc.twocont 10
assoc.twocont.by 11
assoc.xx 12
assoc.yx 13
catdesc 15
condesc 17
darma 18
ggassoc_assocplot 20
ggassoc_bertin 21
ggassoc_boxplot 23
ggassoc_chiasmogram 24
ggassoc_crosstab 26
ggassoc_marimekko 27
ggassoc_phiplot 29
ggassoc_scatter 31
Movies 32
or.table 32
pem.table 33
phi.table 35
profiles 36
stat_twocat 37
weighted.cor 38
weighted.cor2 39
weighted.cov 40
weighted.cov2 41
weighted.mad 42
weighted.quantile 43
weighted.sd 44
weighted.table 45
Index 46
assoc.catcont Measures the association between a categorical variable and a con- tinuous variable

Description

Measures the association between a categorical variable and a continuous variable

Usage

```
assoc.catcont(x, y, weights = NULL,
    na.rm.cat \(=\) FALSE, na.value.cat = "NA", na.rm.cont = FALSE,
    nperm = NULL, distrib = "asympt", digits = 3)
```


Arguments

$x \quad$ the categorical variable (must be a factor)
$y \quad$ the continuous variable (must be a numeric vector)
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
na.rm.cat logical, indicating whether NA values in the categorical variable (i.e. x) should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the categorical variable (see na.value.cat argument).
na.value.cat character. Name of the level for NA category. Default is "NA". Only used if na.rm.cat $=$ FALSE .
na.rm.cont logical, indicating whether NA values in the continuous variable (i.e. y) should be silently removed before the computation proceeds. Default is FALSE.
nperm numeric. Number of permutations for the permutation test of independence. If NULL (default), no permutation test is performed.
distrib the null distribution of permutation test of independence can be approximated by its asymptotic distribution ("asympt", default) or via Monte Carlo resampling ("approx".
digits integer. The number of digits (default is 3).

Value

A list with the following elements :

```
summary summary statistics (mean, median, etc.) of the continuous variable for each level
    of the categorical variable
    eta.squared eta-squared between the two variables
    permutation.pvalue
                p-value from a permutation (i.e. non-parametric) test of independence
    cor point biserial correlation between the two variables, for each level of the cate-
        gorical variable
    cor.perm.pval permutation p-value of the correlation between the two variables, for each level
        of the categorical variable
    test.values test-values as proposed by Lebart et al (1984)
    test.values.pval
        p-values corresponding to the test-values
```


Author(s)

Nicolas Robette

References

Rakotomalala R., 'Comprendre la taille d'effet (effect size)', [http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf]
Lebart L., Morineau A. and Warwick K., 1984, *Multivariate Descriptive Statistical Analysis*, John Wiley and sons, New-York.

See Also

assoc.twocat, assoc.twocont, assoc.yx, condesc, catdesc, darma

Examples

```
data(Movies)
```

with(Movies, assoc.catcont(Country, Budget, nperm = 10))
assoc.catcont.by Measures the groupwise association between a categorical variable and a continuous variable

Description

Measures the association between a categorical variable and a continuous variable, for each category of a group variable

Usage

$$
\begin{aligned}
& \text { assoc.catcont.by }(x, y \text {, by, weights }=\text { NULL, } \\
& \text { na.rm.cat }=\text { FALSE, na.value.cat }=\text { "NA", na.rm.cont = FALSE, } \\
& \text { nperm }=\text { NULL, distrib }=\text { "asympt", digits }=3)
\end{aligned}
$$

Arguments

x
$y \quad$ numeric vector : the continuous variable
by factor: the group variable
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
na.rm.cat logical, indicating whether NA values in the categorical variable (i.e. x) should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the categorical variable (see na.value.cat argument).
na.value.cat character. Name of the level for NA category. Default is "NA". Only used if na.rm.cat $=$ FALSE .
na.rm. cont logical, indicating whether NA values in the continuous variable (i.e. y) should be silently removed before the computation proceeds. Default is FALSE.
nperm numeric. Number of permutations for the permutation test of independence. If NULL (default), no permutation test is performed.
distrib the null distribution of permutation test of independence can be approximated by its asymptotic distribution ("asympt", default) or via Monte Carlo resampling ("approx".
digits integer. The number of digits (default is 3).

Value

A list of items, one for each category of the group variable. Each item is a list with the following elements :
summary summary statistics (mean, median, etc.) of the continuous variable for each level of the categorical variable
eta.squared eta-squared between the two variables
permutation.pvalue p-value from a permutation (i.e. non-parametric) test of independence
cor point biserial correlation between the two variables, for each level of the categorical variable
cor.perm.pval permutation p-value of the correlation between the two variables, for each level of the categorical variable
test.values test-values as proposed by Lebart et al (1984)
test.values.pval
p-values corresponding to the test-values

Author(s)

Nicolas Robette

References

Rakotomalala R., 'Comprendre la taille d'effet (effect size)', [http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf]
Lebart L., Morineau A. and Warwick K., 1984, *Multivariate Descriptive Statistical Analysis*, John Wiley and sons, New-York.

See Also

assoc.catcont, assoc.twocat, assoc.twocont, assoc.yx, condesc, catdesc, darma

Examples

data(Movies)
with(Movies, assoc.catcont.by(Country, Budget, ArtHouse, nperm = 10))

assoc.twocat	Cross-tabulation and measures of association between two categorical variables

Description

Cross-tabulation and measures of association between two categorical variables

Usage

assoc.twocat(x, y, weights = NULL, na.rm = FALSE, na.value = "NA", nperm $=$ NULL, distrib = "asympt")

Arguments

x
y the second categorical variable (must be a factor)
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.value character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.
nperm numeric. Number of permutations for the permutation test of independence. If NULL (default), no permutation test is performed.
distrib the null distribution of permutation test of independence can be approximated by its asymptotic distribution (asympt, default) or via Monte Carlo resampling (approx).

Value

A list of lists with the following elements :
tables list:
freq cross-tabulation frequencies
prop percentages
rprop row percentages
cprop column percentages
expected expected values
global list:
chi.squared chi-squared value
cramer.v Cramer's V between the two variables
permutation.pvalue p -value from a permutation (i.e. non-parametric) test of independence
global.pem global PEM
GK.tau.xy Goodman and Kruskal tau (forward association, i.e. x is the predictor and y is the response)
GK.tau.yx Goodman and Kruskal tau (backward association, i.e. y is the predictor and x is the respons)
local list:
std.residuals the table of standardized (i.e.Pearson) residuals.
adj.residuals the table of adjusted standardized residuals.
adj.res.pval the table of p-values of adjusted standardized residuals.
odds.ratios the table of odds ratios.
local.pem the table of local PEM
phi the table of the phi coefficients for each pair of levels
phi.perm.pval the table of permutation p-values for each pair of levels
gather : a data frame gathering informations, with one row per cell of the cross-tabulation.

Note

The adjusted standardized residuals are strictly equivalent to test-values for nominal variables as proposed by Lebart et al (1984).

Author(s)

Nicolas Robette

References

Agresti, A. (2007). An Introduction to Categorical Data Analysis, 2nd ed. New York: John Wiley \& Sons.

Rakotomalala R., Comprendre la taille d'effet (effect size), http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf
Lebart L., Morineau A. and Warwick K., 1984, *Multivariate Descriptive Statistical Analysis*, John Wiley and sons, New-York.

See Also

assoc. catcont, assoc. twocont, assoc.yx, condesc, catdesc, darma

Examples

```
data(Movies)
assoc.twocat(Movies$Country, Movies$ArtHouse, nperm=100)
```

assoc.twocat.by \quad| Groupwise cross-tabulation and measures of association between two |
| :--- |
| categorical variables | categorical variables

Description

Cross-tabulation and measures of association between two categorical variables, for each category of a group variable

Usage

assoc.twocat.by(x, y, by, weights = NULL, na.rm = FALSE, na.value = "NA", nperm $=$ NULL, distrib = "asympt")

Arguments

$x \quad$ factor : the first categorical variable
y factor: the second categorical variable
by factor: the group variable
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to $1)$ are used.
na.rm
logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.value character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.
nperm numeric. Number of permutations for the permutation test of independence. If NULL (default), no permutation test is performed.
distrib the null distribution of permutation test of independence can be approximated by its asymptotic distribution (asympt, default) or via Monte Carlo resampling (approx).

Value

A list of items, one for each category of the group variable. Each item is a list of lists with the following elements :
tables list:
freq cross-tabulation frequencies
prop percentages
rprop row percentages
cprop column percentages
expected expected values
global list:
chi.squared chi-squared value
cramer.v Cramer's V between the two variables
permutation.pvalue
p -value from a permutation (i.e. non-parametric) test of independence
global.pem global PEM
GK.tau.xy Goodman and Kruskal tau (forward association, i.e. x is the predictor and y is the response)

GK.tau.yx Goodman and Kruskal tau (backward association, i.e. y is the predictor and x is the respons)
local list :
std.residuals the table of standardized (i.e.Pearson) residuals.
adj.residuals the table of adjusted standardized residuals.
adj.res.pval the table of p -values of adjusted standardized residuals.
odds.ratios the table of odds ratios.
local.pem the table of local PEM
phi the table of the phi coefficients for each pair of levels
phi.perm.pval the table of permutation p-values for each pair of levels
gather : a data frame gathering informations, with one row per cell of the cross-tabulation.

Note

The adjusted standardized residuals are strictly equivalent to test-values for nominal variables as proposed by Lebart et al (1984).

Author(s)

Nicolas Robette

References

Agresti, A. (2007). An Introduction to Categorical Data Analysis, 2nd ed. New York: John Wiley \& Sons.

Rakotomalala R., Comprendre la taille d’effet (effect size), http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf
Lebart L., Morineau A. and Warwick K., 1984, *Multivariate Descriptive Statistical Analysis*, John Wiley and sons, New-York.

See Also

assoc.twocat, assoc.catcont, assoc.twocont, assoc.yx, condesc, catdesc, darma

Examples

```
data(Movies)
assoc.twocat.by(Movies$Country, Movies$ArtHouse, Movies$Festival, nperm=100)
```


Description

Measures the association between two continuous variables with Pearson, Spearman and Kendall correlations.

Usage

assoc.twocont (x, y, weights $=$ NULL, na.rm $=$ FALSE, nperm $=$ NULL, distrib $=$ "asympt")

Arguments

$\left.\left.\begin{array}{ll}\mathrm{x} & \text { a continuous variable (must be a numeric vector) } \\ \mathrm{y} & \text { a continuous variable (must be a numeric vector) }\end{array}\right] \begin{array}{l}\text { numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to } \\ \text { na.rm are used. }\end{array} \quad \begin{array}{l}\text { logical, indicating whether NA values should be silently removed before the } \\ \text { computation proceeds. Default is FALSE. }\end{array}\right]$

Value

A data frame with Pearson, Spearman and Kendall correlations. The correlation value is in the first row and a p-value from a permutation (so non parametric) test of independence is in the second row.

Author(s)

Nicolas Robette

See Also

assoc.twocat, assoc.catcont, assoc.yx, condesc, catdesc, darma

Examples

```
## Hollander & Wolfe (1973), p. 187f.
## Assessment of tuna quality. We compare the Hunter L measure of
## lightness to the averages of consumer panel scores (recoded as
## integer values from 1 to 6 and averaged over 80 such values) in
## 9 lots of canned tuna.
```

```
x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y<- c( 2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
assoc.twocont(x,y,nperm=100)
```

assoc. twocont.by Measures the groupwise association between two continuous variables

Description

Measures the association between two continuous variables with Pearson, Spearman and Kendall correlations, for each category of a group variable.

Usage

assoc.twocont.by(x, y, by, weights = NULL, na.rm = FALSE, nperm $=$ NULL, distrib = "asympt")

Arguments

x
$y \quad$ numeric vector : a continuous variable
by factor : the group variable
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. Default is FALSE.
nperm numeric. Number of permutations for the permutation test of independence. If NULL (default), no permutation test is performed.
distrib the null distribution of permutation test of independence can be approximated by its asymptotic distribution ("asympt", default) or via Monte Carlo resampling ("approx".

Value

A list of items, one for each category of the groupe variable. Each item is a data frame with Pearson, Spearman and Kendall correlations. The correlation value is in the first row and a p-value from a permutation (so non parametric) test of independence is in the second row.

Author(s)

Nicolas Robette

See Also

assoc.twocont, assoc.twocat, assoc.catcont, assoc.yx, condesc, catdesc, darma

Examples

```
## Hollander & Wolfe (1973), p. 187f.
## Assessment of tuna quality. We compare the Hunter L measure of
## lightness to the averages of consumer panel scores (recoded as
## integer values from 1 to 6 and averaged over 80 such values) in
## 9 lots of canned tuna.
x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y<-c( 2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)
group <- factor(c("A", "B", "C", "C", "B", "A", "A", "C", "B"))
assoc.twocont.by(x,y,group,nperm=100)
```

assoc.xx Bivariate association measures between pairs of variables.

Description

Computes bivariate association measures between every pairs of variables from a data frame.

Usage

```
assoc.xx(x, weights = NULL, correlation = "kendall",
na.rm.cat = FALSE, na.value.cat = "NA", na.rm.cont = FALSE,
nperm = NULL, distrib = "asympt", dec = c(3,3))
```


Arguments

X
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
correlation character. The type of measure of correlation measure to use between two continuous variables : "pearson", "spearman" or "kendall" (default).
na.rm.cat logical, indicating whether NA values in the categorical variables should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the categorical variables (see na.value.cat argument).
na.value.cat character. Name of the level for NA category. Default is "NA". Only used if na.rm.cat $=$ FALSE .
na.rm.cont logical, indicating whether NA values in the continuous variables should be silently removed before the computation proceeds. Default is FALSE.
nperm numeric. Number of permutations for the permutation test of independence. If NULL (default), no permutation test is performed.
distrib the null distribution of permutation test of independence can be approximated by its asymptotic distribution ("asympt", default) or via Monte Carlo resampling ("approx").
dec
vector of 2 integers for number of decimals. The first value if for association measures, the second for permutation p-values. Default is $\mathrm{c}(3,3)$.

Details

The function computes an association measure : Pearson's, Spearman's or Kendall's correlation for pairs of numeric variables, Cramer's V for pairs of factors and eta-squared for pairs numeric-factor. It can also compute the p -value of a permutation test of association for each pair of variables.

Value

A table with the following elements:
measure $:$ name of the association measure
association $:$ value of the association measure
permutation.pvalue
: p-value from the permutation test

Author(s)

Nicolas Robette

See Also

darma, assoc.twocat, assoc.twocont, assoc. catcont, condesc, catdesc, assoc.yx

Examples

```
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
assoc.xx(iris2, nperm = 10)
```

assoc.yx Bivariate association measures between a response and predictor variables.

Description

Computes bivariate association measures between a response and predictor variables (and, optionnaly, between every pairs of predictor variables.)

Usage

```
assoc.yx(y, x, weights = NULL, xx = TRUE, correlation = "kendall",
na.rm.cat = FALSE, na.value.cat = "NA", na.rm.cont = FALSE,
nperm = NULL, distrib = "asympt", dec = c(3,3))
```


Arguments

y the response variable
$x \quad$ the predictor variables
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
$x x \quad$ whether the association measures should be computed for couples of predictor variables (default) or not. With a lot of predictors, consider setting xx to FALSE (for reasons of computation time).
correlation character. The type of measure of correlation measure to use between two continuous variables : "pearson", "spearman" or "kendall" (default).
na.rm.cat logical, indicating whether NA values in the categorical variables should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the categorical variables (see na.value.cat argument).
na.value.cat character. Name of the level for NA category. Default is "NA". Only used if na.rm.cat $=$ FALSE .
na.rm.cont logical, indicating whether NA values in the continuous variables should be silently removed before the computation proceeds. Default is FALSE.
nperm numeric. Number of permutations for the permutation test of independence. If NULL (default), no permutation test is performed.
distrib the null distribution of permutation test of independence can be approximated by its asymptotic distribution ("asympt", default) or via Monte Carlo resampling ("approx").
dec vector of 2 integers for number of decimals. The first value if for association measures, the second for permutation p-values. Default is $\mathrm{c}(3,3)$.

Details

The function computes an association measure : Pearson's, Spearman's or Kendall's correlation for pairs of numeric variables, Cramer's V for pairs of factors and eta-squared for pairs numeric-factor. It can also compute the p -value of a permutation test of association for each pair of variables.

Value

A list of the following items :
YX : a table with the association measures between the response and predictor variables
XX : a table with the association measures between every pairs of predictor variables
In each table :
measure $:$ name of the association measure
association $:$ value of the association measure
permutation.pvalue
: p -value from the permutation test

Author(s)

Nicolas Robette

See Also

darma, assoc.twocat, assoc.twocont, assoc.catcont, condesc, catdesc

Examples

```
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
assoc.yx(iris2$Species,iris2[,1:4],nperm=10)
```


catdesc
 Measures the association between a categorical variable and some continuous and/or categorical variables

Description

Measures the association between a categorical variable and some continuous and/or categorical variables

Usage

catdesc(y, x, weights = NULL,
na.rm.cat $=$ FALSE, na.value.cat = "NA", na.rm.cont = FALSE,
measure = "phi", limit $=$ NULL, correlation = "kendall", robust = TRUE,
nperm = NULL, distrib = "asympt", digits = 2)

Arguments

$y \quad$ the categorical variable to describe (must be a factor)
$x \quad a$ data frame with continuous and/or categorical variables
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to $1)$ are used.
na.rm.cat logical, indicating whether NA values in the categorical variables should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the categorical variables (see na.value.cat argument).
na.value.cat character. Name of the level for NA category. Default is "NA". Only used if na.rm.cat $=$ FALSE.
na.rm.cont logical, indicating whether NA values in the continuous variables should be silently removed before the computation proceeds. Default is FALSE.

```
measure character. The measure of local association between categories of categori-
                cal variables. Can be "phi" for phi coefficient (default), "or" for odds ratios,
                "std.residuals" for standardized (i.e. Pearson) residuals, "adj.residuals" for ad-
                justed standardized residuals or "pem" for local percentages of maximum devi-
                ation from independence.
limit for the relationship between y and a categorical variable, only associations higher
        or equal to limit will be displayed. If NULL (default), they are all displayed.
correlation character. The type of measure of correlation measure to use between two con-
    tinuous variables: "pearson", "spearman" or "kendall" (default).
robust logical. If TRUE (default), median and mad are used instead of mean and stan-
        dard deviation.
nperm numeric. Number of permutations for the permutation test of independence. If
        NULL (default), no permutation test is performed.
distrib the null distribution of permutation test of independence can be approximated by
        its asymptotic distribution ("asympt", default) or via Monte Carlo resampling
        ("approx").
digits numeric. Number of digits for mean, median, standard deviation and mad. De-
        fault is 2.
```


Value

A list of the following items :

```
variables associations between y and the variables in x
bylevel a list with one element for each level of y
```

Each element in bylevel has the following items :
categories a data frame with categorical variables from x and local associations continuous.var a data frame with continuous variables from x and associations measured by correlation coefficients

Note

If nperm is not NULL, permutation tests of independence are computed and the p-values from these tests are provided.

Author(s)

Nicolas Robette

References

Rakotomalala R., 'Comprendre la taille d'effet (effect size)', [http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf]

See Also

catdes, condesc, assoc.yx, darma

Examples

```
data(Movies)
catdesc(Movies$ArtHouse, Movies[,c("Budget","Genre","Country")])
```

condesc Measures the association between a continuous variable and some continuous and/or categorical variables

Description

Measures the association between a continuous variable and some continuous and/or categorical variables

Usage

```
condesc(y, x, weights = NULL,
na.rm.cat \(=\) FALSE, na.value.cat \(=\) "NA", na.rm.cont \(=\) FALSE,
limit = NULL, correlation = "kendall", robust \(=\) TRUE,
nperm = NULL, distrib = "asympt", digits = 2)
```


Arguments

y	the continuous variable to describe
x	a data frame with continuous and/or categorical variables
weights	numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
na.rm.cat	logical, indicating whether NA values in the categorical variables should be silently removed before the computation proceeds. If FALSE (default), an addi- tional level is added to the categorical variables (see na.value.cat argument). character. Name of the level for NA category. Default is "NA". Only used if
na.value.cat	
na.rm. cont	nagical, indicating whether NA values in the continuous variables should be silently removed before the computation proceeds. Default is FALSE. for the relationship between y and a category of a categorical variable, only asso- ciations (point-biserial correlations) higher or equal to limit will be displayed.
limit	If NULL (default), they are all displayed. character. The type of correlation measure to use between two continuous vari- ables: "pearson", "spearman" or "kendall" (default).
correlation	logical. If TRUE (default), meadian and mad are used instead of mean and standard deviation.
robust	numeric. Number of permutations for the permutation test of independence. If nULL (default), no permutation test is performed.

distrib	the null distribution of permutation test of independence can be approximated by
its asymptotic distribution ("asympt", default) or via Monte Carlo resampling	
("approx").	

Value

A list of the following items :
variables associations between y and the variables in x
categories a data frame with categorical variables from x and associations measured by point biserial correlation.

Note

If nperm is not NULL, permutation tests of independence are computed and the p-values from these tests are provided.

Author(s)

Nicolas Robette

References

Rakotomalala R., 'Comprendre la taille d'effet (effect size)', [http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf]

See Also

condes, catdesc, assoc.yx, darma

Examples

```
data(Movies)
condesc(Movies$BoxOffice, Movies[,c("Budget","Genre","Country")])
```

darma Describes Associations as in a Regression Model Analysis.

Description

Computes bivariate association measures between a response and predictor variables, producing a summary looking like a regression analysis.

Usage

darma(y, x , weights $=$ NULL, target $=1$,
na.rm.cat $=$ FALSE, na.value.cat $=$ "NA", na.rm.cont $=$ FALSE, correlation = "kendall", nperm $=$ NULL, distrib $=$ "asympt", dec $=c(1,3,3))$

Arguments

$y \quad$ the response variable
$x \quad$ the predictor variables
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to $1)$ are used.
target rank or name of the category of interest when y is categorical
na.rm.cat logical, indicating whether NA values in the categorical variables should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the categorical variables (see na.value.cat argument).
na.value.cat character. Name of the level for NA category. Default is "NA". Only used if na.rm.cat $=$ FALSE .
na.rm.cont logical, indicating whether NA values in the continuous variables should be silently removed before the computation proceeds. Default is FALSE.
correlation character. The type of measure of correlation measure to use between two continuous variables : "pearson", "spearman" or "kendall" (default).
nperm numeric. Number of permutations for the permutation test of independence. If NULL (default), no permutation test is performed.
distrib the null distribution of permutation test of independence can be approximated by its asymptotic distribution ("asympt", default) or via Monte Carlo resampling ("approx").
dec vector of 3 integers for number of decimals. The first value if for percents or medians, the second for association measures, the third for permutation p -values. Default is $c(1,3,3)$.

Details

The function computes association measures (phi, correlation coefficient, Kendall's correlation) between the variable of interest and the other variables. It can also compute the p -values permutation tests.

Value

A data frame

Author(s)

Nicolas Robette

See Also

assoc.yx, assoc.twocat, assoc.twocont, assoc.catcont, condesc, catdesc

Examples

```
data(iris)
iris2 = iris
iris2$Species = factor(iris$Species == "versicolor")
darma(iris2$Species, iris2[,1:4], target=2, nperm=100)
```

```
ggassoc_assocplot Association plot
```


Description

For a cross-tabulation, plots measures of local association with bars of varying height and width, using ggplot2.

Usage

ggassoc_assocplot(data, mapping, measure = "std.residuals", limits = NULL, sort = "none", na.rm $=$ FALSE, na.value $=$ "NA", colors $=$ NULL, direction $=1$, legend = "right")

Arguments

data dataset to use for plot
mapping aesthetics being used. x and y are required, weight can also be specified.
measure character. The measure of association used to fill the rectangles. Can be "phi" for phi coefficient, "or" for odds ratios, "std.residuals" (default) for standardized (i.e. Pearson) residuals, "adj.residuals" for adjusted standardized residuals or "pem" for local percentages of maximum deviation from independence.
limits a numeric vector of length two providing limits of the scale. If NULL (default), the limits are automatically adjusted to the data.
sort character. If "both", rows and columns are sorted according to the first factor of a correspondence analysis of the contingency table. If "x", only rows are sorted. If " y ", only columns are sorted. If "none" (default), no sorting is done.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.value character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.
colors vector of colors that will be interpolated to produce a color gradient. If NULL (default), the "Temps" palette from rcartocolors package is used.
direction Sets the order of colours in the scale. If 1, the default, colours are as output by RColorBrewer::brewer.pal(). If -1 , the order of colours is reversed.
legend the position of legend ("none", "left", "right", "bottom", "top"). If "none", no legend is displayed.

Details

The measure of local association measures how much each combination of categories of x and y is over/under-represented.
The bars vary in width according to the square root of the expected frequency. They vary in height and color shading according to the measure of association. If the measure chosen is "std.residuals" (Pearson's residuals), as in the original association plot from Cohen and Friendly, the area of the bars is proportional to the difference in observed and expected frequencies.

This function can be used as a high-level plot with ggduo and ggpairs functions of the GGally package.

Value

a ggplot object

Author(s)

Nicolas Robette

References

Cohen, A. (1980), On the graphical display of the significant components in a two-way contingency table. Communications in Statistics—Theory and Methods, 9, 1025-1041. doi:10.1080/03610928008827940.
Friendly, M. (1992), Graphical methods for categorical data. SAS User Group International Conference Proceedings, 17, 190-200. http://datavis.ca/papers/sugi/sugi17.pdf

See Also

assoc.twocat, phi.table, catdesc, assoc.yx, darma, ggassoc_crosstab, ggpairs

Examples

```
data(Movies)
ggassoc_assocplot(data=Movies, mapping=ggplot2::aes(Country, Genre))
```

ggassoc_bertin Bar plot of a crosstabulation inspired by Bertin

Description

For a cross-tabulation, plots bars for the conditional percentages of variable y according to variable x , using ggplot2. The general display is inspired by Bertin's plots.

Usage

ggassoc_bertin(data, mapping, prop.width = FALSE, sort = "none", add.gray = FALSE, add.rprop = FALSE, na.rm $=$ FALSE, na.value $=$ "NA")

Arguments

\(\left.$$
\begin{array}{ll}\text { data } & \text { dataset to use for plot } \\
\text { mapping } & \begin{array}{l}\text { aesthetics being used. x and y are required, weight can also be specified. } \\
\text { logical. If TRUE, the width of the bars is proportional to the margin percentages } \\
\text { of variable } x .\end{array}
$$

prop. width

character. If "both", rows and columns are sorted according to the first factor

of a correspondence analysis of the contingency table. If "x", only variable x is

sorted. If "y", only variable y is sorted. If "none" (default), no sorting is done.\end{array}\right\}\)| logical. If FALSE (default), only white and black are used to fill the bars. If |
| :--- |
| add.gray |
| TRUE, gray is used additionally to fill the part of the bars corresponding to |
| margin percentages of variable y. |

Details

The height of the bars is proportional to the conditional frequency of variable y. The bars are filled in black if the conditional frequency is higher than the marginal frequency; otherwise it's filled in white.

This graphical representation is inspired by the principles of Jacques Bertin and the online AMADO tool (https://paris-timemachine.huma-num.fr/amado/main.html).
Note : It does not allow faceting.

Value

a ggplot object

Author(s)

Nicolas Robette

References

J. Bertin: La graphique et le traitement graphique de l'information. Flammarion: Paris 1977.

See Also

```
assoc.twocat, phi.table, catdesc, ggassoc_crosstab,ggassoc_assocplot,ggassoc_phiplot,
```

ggassoc_chiasmogram

Examples

```
data(Movies)
ggassoc_bertin(Movies, ggplot2::aes(x = Country, y = Genre))
ggassoc_bertin(Movies, ggplot2::aes(x = Country, y = Genre),
    sort = "both", prop.width = TRUE, add.gray = 3, add.rprop = TRUE)
```

ggassoc_boxplot Boxplots with violins

Description

Displays of boxplot and combines it with a violin plot, using ggplot2.

Usage

```
ggassoc_boxplot(data, mapping,
na.rm.cat = FALSE, na.value.cat = "NA", na.rm.cont = FALSE,
axes.labs = TRUE, ticks.labs = TRUE, text.size = 3,
sort = FALSE, box = TRUE, notch = FALSE, violin = TRUE)
```


Arguments

data dataset to use for plot
mapping aesthetic being used. It must specify x and y .
na.rm.cat logical, indicating whether NA values in the categorical variable (i.e. x) should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the categorical variable (see na.value.cat argument).
na.value.cat character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.
na.rm.cont logical, indicating whether NA values in the continuous variable (i.e. y) should be silently removed before the computation proceeds. Default is FALSE.
axes.labs Whether to display the labels of the axes, i.e. the names of x and y. Default is TRUE.
ticks.labs Whether to display the labels of the categories of x and y. Default is TRUE.
text.size Size of the association measure. If NULL, the text is not added to the plot.
sort logical. If TRUE, the levels of the categorical variable are reordered according to the conditional medians, so that boxplots are sorted. Default is FALSE.
box Whether to draw boxplots. Default is TRUE.
notch If FALSE (default) make a standard box plot. If TRUE, make a notched box plot. Notches are used to compare groups; if the notches of two boxes do not overlap, this suggests that the medians are significantly different.
violin Whether to draw a violin plot. Default is TRUE.

Details

Eta-squared measure of global association between x and y is displayed in upper-left corner of the plot.
This function can be used as a high-level plot with ggduo and ggpairs functions of the GGally package.

Value

a ggplot object

Author(s)

Nicolas Robette

See Also

```
assoc.catcont, condesc, assoc.yx, darma, ggpairs
```


Examples

```
data(Movies)
ggassoc_boxplot(Movies, mapping = ggplot2::aes(x = Critics, y = ArtHouse))
```

ggassoc_chiasmogram Plots counts and associations of a crosstabulation

Description

For a cross-tabulation, plots the number of observations by using rectangles with proportional areas, and the phi measures of association between the categories with a diverging gradient of colour, using ggplot2.

Usage

ggassoc_chiasmogram(data, mapping, measure = "phi",
limits = NULL, sort = "none",
na.rm = FALSE, na.value = "NA",
colors = NULL, direction = 1)

Arguments

data	dataset to use for plot
mapping	aesthetics being used. x and y are required, weight can also be specified.
measure	character. The measure of association used for filling the rectangles. Can be "phi" for phi coefficient (default), "or" for odds ratios, "residuals" for Pearson residuals, "std.residuals" for standardized Pearson residuals or "pem" for local percentages of maximum deviation from independence.

limits a numeric vector of length two providing limits of the scale. If NULL (default), the limits are automatically adjusted to the data.
sort character. If "both", rows and columns are sorted according to the first factor of a correspondence analysis of the contingency table. If "x", only rows are sorted. If " y ", only columns are sorted. If "none" (default), no sorting is done.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.value character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.
colors vector of colors that will be interpolated to produce a color gradient. If NULL (default), the "Temps" palette from rcartocolors package is used.
direction Sets the order of colours in the scale. If 1, the default, colours are as output by RColorBrewer::brewer.pal(). If -1 , the order of colours is reversed.

Details

The height of the rectangles is proportional to the marginal frequency of the row variable ; their width is proportional to the marginal frequency of the column variable. So the area of the rectangles is proportional to the expected frequency.
The rectangles are filled according to a measure of local association, which measures how much each combination of categories of x and y is over/under-represented.
This function can be used as a high-level plot with ggduo and ggpairs functions of the GGally package.
Note : It does not allow faceting.

Value

a ggplot object

Author(s)

Nicolas Robette

References

Bozon Michel, Héran François. La découverte du conjoint. II. Les scènes de rencontre dans l'espace social. Population, 43(1), 1988, pp. 121-150.

See Also

assoc.twocat, phi.table, catdesc, assoc.yx, darma, ggassoc_phiplot, ggpairs

Examples

```
data(Movies)
ggassoc_chiasmogram(data=Movies, mapping=ggplot2::aes(Genre, Country))
```


Description

For a cross-tabulation, plots the observed (or expected) frequencies by using rectangles with proportional areas, and the measures of local association between the categories with a diverging gradient of colour, using ggplot2.

Usage

```
ggassoc_crosstab(data, mapping, size = "freq", max.size = 20,
measure = "phi", limits = NULL, sort = "none",
    na.rm = FALSE, na.value = "NA",
    colors = NULL, direction = 1, legend = "right")
```


Arguments

data	dataset to use for plot
mapping	aesthetics being used. x and y are required, weight can also be specified. character. If "freq" (default), areas are proportional to observed frequencies. If "expected", they are proportional to expected frequencies.
size	numeric value, specifying the maximum size of the squares. Default is 20. character. The measure of association used for filling the rectangles. Can be "phi" for phi coefficient (default), "or" for odds ratios, "std.residuals" for stan- dardized residuals, "adj.residuals" for adjusted standardized residuals or "pem" for local percentages of maximum deviation from independence.
measure	a numeric vector of length two providing limits of the scale. If NULL (default), the limits are automatically adjusted to the data. character. If "both", rows and columns are sorted according to the first factor of a correspondence analysis of the contingency table. If "x", only rows are sorted. If "y", only columns are sorted. If "none" (default), no sorting is done.
sort	logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.rm	character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.
colors	vector of colors that will be interpolated to produce a color gradient. If NULL (default), the "Temps" palette from rcartocolors package is used.
direction	Sets the order of colours in the scale. If 1, the default, colours are as output by RColorBrewer::brewer.pal(). If -1, the order of colours is reversed.
legend	the position of legend ("none", "left", "right", "bottom", "top"). If "none", no legend is displayed.

Details

The measure of local association measures how much each combination of categories of x and y is over/under-represented.

The areas of the rectangles are proportional to observed or expected frequencies. Their color shading varies according to the measure of association.

This function can be used as a high-level plot with ggduo and ggpairs functions of the GGally package.

Value

a ggplot object

Author(s)

Nicolas Robette

See Also

assoc.twocat, phi.table, catdesc, assoc.yx, darma, ggassoc_phiplot, ggpairs

Examples

data(Movies)
ggassoc_crosstab(data=Movies, mapping=ggplot2::aes(Genre, Country))

```
ggassoc_marimekko Marimekko plot
```


Description

For a cross-tabulation, plots a marimekko chart (also called mosaic plot), using ggplot2.

Usage

```
ggassoc_marimekko(data, mapping, type = "classic",
measure = "phi", limits = NULL,
na.rm = FALSE, na.value = "NA",
palette = NULL, colors = NULL, direction = 1,
linecolor = "gray60", linewidth = 0.1,
sort = "none", legend = "right")
```

Arguments	
data	
mapping	dataset to use for plot
type	aesthetics being used. x and y are required, weight can also be specified. character. If "classic" (default), a simple marimekko chart is plotted, with no use of local associations. If type is "shades", tiles are shaded according to the local associations between categories. If type is "patterns", tiles are filled with patterns, and the density of patterns is proportional to the absolute level of local association between categories. character. The measure of association used for filling (if type is "shades) or pat- terning (if type is "patterns") the tiles. Can be "phi" for phi coefficient, "or" for odds ratios, "std.residuals" (default) for standardized (i.e. Pearson) residuals,
measure	"adj.residuals" for adjusted standardized residuals or "pem" for local percent- ages of maximum deviation from independence. a numeric vector of length two providing limits of the scale. If NULL (default),
na.rm	the limits are automatically adjusted to the data. Only used for type "shades". logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the
variables (see na.value argument).	
character. Name of the level for NA category. Default is "NA". Only used if	

Details

The measure of local association measures how much each combination of categories of x and y is over/under-represented.
This function can be used as a high-level plot with ggduo and ggpairs functions of the GGally package.
Note : It does not allow faceting.

Value

a ggplot object

Author(s)

Nicolas Robette

References

Hartigan, J.A., and Kleiner, B. (1984), "A mosaic of television ratings". The American Statistician, 38, 32-35.
Friendly, M. (1994), "Mosaic displays for multi-way contingency tables". Journal of the American Statistical Association, 89, 190-200.

See Also

assoc.twocat, phi.table, catdesc, assoc.yx, darma, ggassoc_crosstab, ggpairs

Examples

```
data(Movies)
ggassoc_marimekko(data=Movies, mapping=ggplot2::aes(Genre, Country))
ggassoc_marimekko(data=Movies, mapping=ggplot2::aes(Genre, Country), type = "patterns")
ggassoc_marimekko(data=Movies, mapping=ggplot2::aes(Genre, Country), type = "shades")
```

ggassoc_phiplot Bar plot of measures of local association of a crosstabulation

Description

For a cross-tabulation, plots the measures of local association with bars of varying height, using ggplot2.

Usage

```
ggassoc_phiplot(data, mapping, measure = "phi",
    limit = NULL, sort = "none",
    na.rm = FALSE, na.value = "NA")
```


Arguments

data dataset to use for plot
mapping aesthetics being used. x and y are required, weight can also be specified.
measure character. The measure of association used for filling the rectangles. Can be "phi" for phi coefficient (default), "or" for odds ratios, "std.residuals" for standardized residuals, "adj.residuals" for adjusted standardized residuals or "pem" for local percentages of maximum deviation from independence.

limit	numeric value, specifying the upper limit of the scale for the height of the bars, i.e. for the measures of association (the lower limit is set to 0 -limit). It corresponds to the maximum absolute value of association one wants to represent in the plot. If NULL (default), the limit is automatically adjusted to the data.
sort	character. If "both", rows and columns are sorted according to the first factor of a correspondence analysis of the contingency table. If "x", only rows are sorted. If " y ", only columns are sorted. If "none" (default), no sorting is done.
na.rm	logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.value	character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.

Details

The measure of association measures how much each combination of categories of x and y is over/under-represented. The bars vary in width according to the number of observations in the categories of the column variable. They vary in height according to the measure of association. Bars are black if the association is positive and white if it is negative.
The genuine version of this plot (see Cibois, 2004) uses the measure of association called "pem", i.e. the local percentages of maximum deviation from independence.

This function can be used as a high-level plot with ggduo and ggpairs functions of the GGally package.

Value

a ggplot object

Author(s)

Nicolas Robette

References

Cibois Philippe, 2004, Les écarts à l'indépendance. Techniques simples pour analyser des données d'enquêtes, Collection "Méthodes quantitatives pour les sciences sociales"

See Also

assoc.twocat, phi.table, catdesc, assoc.yx, darma, ggassoc_crosstab, ggpairs

Examples

```
data(Movies)
ggassoc_phiplot(data=Movies, mapping=ggplot2::aes(Country, Genre))
```


ggassoc_scatter Scatter plot with a smoothing line

Description

Displays of scatter plot and adds a smoothing line, using ggplot2.

Usage

ggassoc_scatter(data, mapping, na.rm = FALSE, axes.labs = TRUE, ticks.labs = TRUE, text.size = 3)

Arguments

data dataset to use for plot
mapping aesthetic being used. It must specify x and y .
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. Default is FALSE.
axes.labs Whether to display the labels of the axes, i.e. the names of x and y. Default is TRUE.
ticks.labs Whether to display the labels of the categories of x and y. Default is TRUE.
text.size Size of the association measure. If NULL, the text is not added to the plot.

Details

Kendall's tau rank correlation between x and y is displayed in upper-left corner of the plot.
Smoothing is performed with gam.
This function can be used as a high-level plot with ggduo and ggpairs functions of the GGally package.

Value

a ggplot object

Author(s)

Nicolas Robette

See Also

assoc.twocont, condesc, assoc.yx, darma, ggpairs

Examples

```
data(Movies)
ggassoc_scatter(Movies, mapping = ggplot2::aes(x = Budget, y = Critics))
```

Movies Movies (data)

Description

The data concerns a sample of 1000 Movies which were on screens in France and come of their characteristics.

Usage

data(Movies)

Format

A data frame with 1000 observations and the following 7 variables:
Budget numeric vector of movie budgets
Genre is a factor with 9 levels
Country is a factor with 4 level. Country of origin of the movie.
ArtHouse is a factor with levels No, Yes. Whether the movie had the "Art House" label.
Festival is a factor with levels No, Yes. Whether the movie was selected in Cannes, Berlin or Venise film festivals.

Critics numeric vector of average ratings from intellectual criticism.
BoxOffice numeric vector of number of admissions.

Examples

```
data(Movies)
str(Movies)
```

```
or.table
```

Computes the odds ratios for every cells of a contingency table

Description

Computes the odds ratio for every cells of the cross-tabulation between two categorical variables

Usage

or.table(x, y, weights = NULL, na.rm = FALSE, na.value = "NA", digits = 3)

Arguments

x
y the second categorical variable
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.value character. Name of the level for NA category. Default is "NA". Only used if na.rm $=$ FALSE.
digits integer. The number of digits (default is 3). If NULL, the results are not rounded.

Value

A table with the odds ratios

Author(s)

Nicolas Robette

See Also

assoc.twocat,assoc. catcont, condesc, catdesc

Examples

data(Movies)
or.table(Movies\$Country, Movies\$ArtHouse)

```
pem.table
Computes the local and global Percentages of Maximum Deviation from Independence (pem)
```


Description

Computes the local and global Percentages of Maximum Deviation from Independence (pem) of a contingency table.

Usage

pem.table (x, y, weights $=$ NULL, sort $=$ FALSE, na.rm = FALSE, na.value = "NA", digits = 1)

Arguments

x
$y \quad$ the second categorical variable
weights an optional numeric vector of weights (by default, a vector of 1 for uniform weights)
sort logical. Whether rows and columns are sorted according to a correspondence analysis or not (default is FALSE).
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.value character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.
digits integer. The number of digits (default is 1). If NULL, the results are not rounded.

Details

The Percentage of Maximum Deviation from Independence (pem) is an association measure for contingency tables and also provides attraction (resp. repulsion) measures in each cell of the crosstabulation (see Cibois, 1993). It is an alternative to khi2, Cramer's V coefficient, etc.

Value

Returns a list:
peml Table with local percentages of maximum deviation from independence
pemg \quad Numeric value, i.e. the global percentage of maximum deviation from independence

Author(s)

Nicolas Robette

References

Cibois P., 1993, Le pem, pourcentage de l'ecart maximum : un indice de liaison entre modalites d'un tableau de contingence, Bulletin de methodologie sociologique, n40, p.43-63. https:// cibois.pagesperso-orange.fr/bms93.pdf

See Also

table, chisq.test, phi.table, assocstats

Examples

```
data(Movies)
pem.table(Movies$Country, Movies$ArtHouse)
```

```
phi.table
```

Computes the phi coefficient for every cells of a contingency table

Description

Computes the phi coefficient for every cells of the cross-tabulation between two categorical variables

Usage

phi.table(x, y, weights = NULL, na.rm = FALSE, na.value = "NA", digits = 3)

Arguments

$x \quad$ the first categorical variable
y the second categorical variable
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.value character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.
digits integer. The number of digits (default is 3). If NULL, the results are not rounded.

Value

A table with the phi coefficients

Author(s)

Nicolas Robette

References

Rakotomalala R., 'Comprendre la taille d'effet (effect size)', http://eric.univ-lyon2.fr/~ricco/cours/slides/effect_size.pdf

See Also

assoc.twocat,assoc.catcont, condesc, catdesc

Examples

```
data(Movies)
phi.table(Movies$Country, Movies$ArtHouse)
```


Description

Computes profiles (frequencies or percentages) for subgroups of observations defined by the levels of a categorical variable.

Usage

profiles (X, y, weights $=$ NULL, stat $=$ "cprop", mar = TRUE, digits = 1)

Arguments

X
y factor. The categorical variable which defines subgroups of observations whose profiles will be computed.
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
stat character. Whether to compute frequencies ("freq"), percentages ("prop"), row percentages ("rprop") or column percentages ("cprop", default).
mar logical, indicating whether to compute margins. Default is TRUE.
digits numeric. Number of digits. Default is 1.

Value

A data frame with profiles in columns

Author(s)

Nicolas Robette

See Also

catdesc, assoc.yx, darma, assoc.twocat, assoc.twocat.by

Examples

```
data(Movies)
profiles(Movies[,c(2,4,5)], Movies$Country)
```


stat_twocat Cross-tabulation statistics for ggplot2

Description

Computes statistics of a cross-tabulation using assoc. twocat function.

Usage

```
stat_twocat(mapping = NULL,
    data = NULL,
    geom = "point",
    position = "identity",
    show.legend = NA,
    inherit.aes = TRUE)
```


Arguments

mapping	Set of aesthetic mappings created by aes(). If specified and inherit. aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.
The data to be displayed in this layer. There are three options: If NULL, the de-	
fault, the data is inherited from the plot data as specified in the call to ggplot ().	
A data. frame, or other object, will override the plot data. All objects will	
be fortified to produce a data frame. See fortify() for which variables will	
be created. A function will be called with a single argument, the plot data.	
The return value must be a data. frame, and will be used as the layer data. A	
function can be created from a formula (e.g. ~ head(.x, 10)).	
Override the default connection with ggplot2: : geom_point ().	

Value

A ggplot2 plot with the added statistic.

Author(s)

Nicolas Robette

```
weighted.cor Weighted correlation
```


Description

Computes the weighted correlation between two distributions. This can be Pearson, Spearman or Kendall correlation.

Usage

weighted.cor(x, y, weights = NULL, method = "pearson", na.rm = FALSE)

Arguments

x numeric vector
y numeric vector
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to $1)$ are used.
method a character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman".
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. Default is FALSE.

Value

a length-one numeric vector

Author(s)

Nicolas Robette

See Also

weighted.sd, weighted.cor2

Examples

```
data(Movies)
weighted.cor(Movies$Critics, Movies$BoxOffice, weights = rep(c(.8,1.2), 500))
weighted.cor(Movies$Critics, Movies$BoxOffice, weights = rep(c(.8,1.2), 500), method = "spearman")
```

```
weighted.cor2 Weighted correlations
```


Description

Computes a matrix of weighted correlations between the columns of x and the columns of y. This can be Pearson, Spearman or Kendall correlation.

Usage

weighted.cor2(x, y = NULL, weights = NULL, method = "pearson", na.rm = FALSE)

Arguments

x
y an optional data frame of numeric vectors. Default is NULL, which means that correlations between the columns of x are computed.
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to $1)$ are used.
method a character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman".
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. Default is FALSE.

Value

a matrix of correlations

Author(s)

Nicolas Robette

See Also

weighted.cor

Examples

```
data(Movies)
weighted.cor2(Movies[,c("Budget", "Critics", "BoxOffice")], weights = rep(c(.8,1.2), 500))
```


Description

Computes the weighted covariance between two distributions.

Usage

weighted. $\operatorname{cov}(\mathrm{x}, \mathrm{y}$, weights $=$ NULL, na.rm = FALSE)

Arguments

x
y numeric vector
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to $1)$ are used.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. Default is FALSE.

Value

a length-one numeric vector

Author(s)

Nicolas Robette

See Also

weighted.sd, weighted.cor, weighted.cov2

Examples

```
data(Movies)
weighted.cov(Movies$Critics, Movies$BoxOffice, weights = rep(c(.8,1.2), 500))
```

```
weighted.cov2 Weighted covariances
```


Description

Computes a matrix of weighted covariances between the columns of x and the columns of y.

Usage

weighted. $\operatorname{cov} 2(\mathrm{x}, \mathrm{y}=\mathrm{NULL}$, weights $=$ NULL, na.rm $=$ FALSE $)$

Arguments

x
y
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. Default is FALSE.

Value

a matrix of covariances

Author(s)

Nicolas Robette

See Also

weighted.cov

Examples

```
data(Movies)
weighted.cov2(Movies[,c("Budget", "Critics", "BoxOffice")], weights = rep(c(.8,1.2), 500))
```

weighted.mad Weighted median absolute deviation to median

Description

Computes the weighted median absolute deviation to median (aka MAD) of a distribution.

Usage

weighted.mad(x, weights $=$ NULL, na.rm = FALSE)

Arguments

x
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. Default is FALSE.

Value

a length-one numeric vector

Author(s)

Nicolas Robette

See Also

weighted.quantile

Examples

```
data(Movies)
weighted.mad(Movies$Critics, weights = rep(c(.8,1.2), 500))
```

```
weighted.quantile Weighted quantiles
```


Description

Computes the weighted quantiles of a distribution.

Usage

weighted.quantile(x, weights $=$ NULL, probs $=\operatorname{seq}(0,1,0.25)$, na. $\mathrm{rm}=$ FALSE, names $=$ FALSE)

Arguments

x numeric vector whose sample quantiles are wanted
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
probs numeric vector of probabilities with values in $[0,1]$
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. Default is FALSE.
names logical. if TRUE, the result has a names attribute. Default is FALSE.

Value

A numeric vector of the same length as probs argument.

Note

This function is taken from https://stackoverflow.com/questions/2748725/is-there-a-weighted-medianfunction

See Also

weighted.mad

Examples

data(Movies)
weighted.quantile(Movies\$Critics, weights $=\operatorname{rep}(c(.8,1.2), 500)$, names $=$ TRUE)

weighted.sd Weighted standard deviation

Description

Computes the weighted standard deviation of a distribution.

Usage

weighted.sd(x, weights = NULL, na.rm = FALSE)

Arguments

x
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to $1)$ are used.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. Default is FALSE.

Value

a length-one numeric vector

Author(s)

Nicolas Robette

See Also

weighted.cor

Examples

```
data(Movies)
weighted.sd(Movies$Critics, weights = rep(c(.8,1.2), 500))
```

```
weighted.table Computes a (possibly weighted) contingency table
```


Description

Computes a contingency table from one or two vectors, with the possibility of specifying weights.

Usage

weighted.table($x, y=$ NULL, weights $=$ NULL, stat $=$ "freq", mar = FALSE, na.rm = FALSE, na.value = "NA", digits = 1)

Arguments

$x \quad$ an object which can be interpreted as factor
y an optional object which can be interpreted as factor
weights numeric vector of weights. If NULL (default), uniform weights (i.e. all equal to 1) are used.
stat character. Whether to compute a contingency table ("freq", default), percentages ("prop"), row percentages ("rprop") or column percentages ("cprop").
mar logical, indicating whether to compute margins. Default is FALSE.
na.rm logical, indicating whether NA values should be silently removed before the computation proceeds. If FALSE (default), an additional level is added to the variables (see na.value argument).
na.value character. Name of the level for NA category. Default is "NA". Only used if na.rm = FALSE.
digits integer indicating the number of decimal places (default is 1)

Value

Returns a contingency table.

Author(s)

Nicolas Robette

See Also

table, assoc.twocat

Examples

```
data(Movies)
weighted.table(Movies$Country, Movies$ArtHouse)
```


Index

```
* aplot
    ggassoc_assocplot, 20
    ggassoc_bertin, 21
    ggassoc_boxplot,23
    ggassoc_chiasmogram, 24
    ggassoc_crosstab, 26
    ggassoc_marimekko,27
    ggassoc_phiplot,29
    ggassoc_scatter,31
* datasets
        Movies, 32
* misc
    assoc.catcont,2
    assoc.catcont.by,4
    assoc.twocat,5
    assoc.twocat.by,7
    assoc.twocont,10
    assoc.twocont.by,11
    catdesc, 15
    condesc, 17
    or.table, 32
    pem.table, 33
    phi.table, 35
    profiles, 36
    weighted.cor,38
    weighted.cor2, 39
    weighted.cov, 40
    weighted.cov2,41
    weighted.mad,42
    weighted.quantile,43
    weighted.sd,44
    weighted.table,45
* multivariate
    assoc.catcont,2
    assoc.catcont.by,4
    assoc.twocat,5
    assoc.twocat.by,7
    assoc.twocont,10
    assoc.twocont.by,11
```

catdesc, 15
condesc, 17
ggassoc_assocplot, 20
ggassoc_bertin, 21
ggassoc_boxplot, 23
ggassoc_chiasmogram, 24
ggassoc_crosstab, 26
ggassoc_marimekko, 27
ggassoc_phiplot, 29
ggassoc_scatter, 31
or.table, 32
pem. table, 33
phi.table, 35
profiles, 36
weighted.cor, 38
weighted.cor2, 39
weighted.cov, 40
weighted.cov2, 41
weighted.mad, 42
weighted.quantile, 43
weighted.sd, 44
weighted.table, 45
aes(), 37
assoc.catcont, 2, 5, 7, 9-11, 13, 15, 19, 24, 33, 35
assoc.catcont.by, 4
assoc. twocat, 4, 5, 5, 9-11, 13, 15, 19, 21, $22,25,27,29,30,33,35,36,45$
assoc.twocat.by, 7, 36
assoc.twocont, 4, 5, 7, 9, 10, 11, 13, 15, 19, 31
assoc.twocont.by, 11
assoc.xx, 12
assoc.yx, 4, 5, 7, 9-11, 13, 13, 16, 18, 19, 21, 24, 25, 27, 29-31, 36
assocstats, 34
borders(), 37

```
catdes,16
catdesc, 4, 5, 7, 9-11, 13, 15, 15, 18, 19, 21,
    22, 25, 27, 29, 30, 33, 35, 36
chisq.test, 34
condes,18
condesc, 4, 5, 7, 9-11, 13, 15, 16,17,19, 24,
    31,33,35
darma, 4, 5, 7, 9-11, 13, 15, 16, 18, 18, 21, 24,
    25, 27, 29-31,36
fortify(), 37
ggassoc_assocplot, 20, 22
ggassoc_bertin,21
ggassoc_boxplot,23
ggassoc_chiasmogram, 22, 24
ggassoc_crosstab, 21, 22, 26, 29, 30
ggassoc_marimekko, 27
ggassoc_phiplot, 22, 25, 27, 29
ggassoc_scatter, 31
ggpairs, 21, 24, 25, 27, 29-31
ggplot(),37
ggplot2::geom_point(),37
layer(),37
Movies,32
or.table, 32
pem.table, 33
phi.table, 21, 22, 25, 27, 29, 30, 34, 35
profiles,36
stat_twocat, 37
StatTwocat (stat_twocat), 37
table, 34,45
weighted.cor, 38, 39, 40,44
weighted.cor2, 38, 39
weighted.cov, 40,41
weighted.cov2,40,41
weighted.mad, 42,43
weighted.quantile, 42, 43
weighted.sd, 38, 40,44
weighted.table, 45
```

