Package ‘dcortools’

December 10, 2022
Title Providing Fast and Flexible Functions for Distance Correlation Analysis
Description Provides methods for distance covariance and distance correlation (Szekely, et al. (2007) doi:10.1214/009053607000000505), generalized version thereof (Sejdinovic, et al. (2013) doi:10.1214/13-AOS1140) and corresponding tests (Berschneider, Bottcher (2018) arXiv:1808.07280. Distance standard deviation methods (Edelmann, et al. (2020) doi:10.1214/19-AOS1935) and distance correlation methods for survival endpoints (Edelmann, et al. (2021) doi:10.1111/biom.13470) are also included.
Version 0.1.6
Depends Rdpack, $\mathrm{R}(>=3.3 .3)$, Rcpp ($>=0.11 .0$), Rfast
Imports ggplot2, pheatmap, Hmisc, stats
RdMacros Rdpack
LinkingTo RcppArmadillo, Rcpp, RcppEigen
License GPL-3
Encoding UTF-8
RoxygenNote 7.2.2
NeedsCompilation yes
Author Dominic Edelmann [aut, cre], Jochen Fiedler [aut]
Maintainer Dominic Edelmann dominic.edelmann@dkfz-heidelberg.de
Repository CRAN
Date/Publication 2022-12-09 23:50:07 UTC

R topics documented:

dcmatrix 2
dcorgaussianbiv 6
dcsis 6
distcor 8
distcov 10
distcov.test 13
distsd . 16
extract_np . 18
hsplot . 18
ipcw.dcor . 19
ipcw.dcov . 21
ipcw.dcov.test . 23
plot.dcmatrix . 25
Index 26
dcmatrix Calculates distance covariance and distance correlation matrices

Description

Calculates distance covariance and distance correlation matrices

Usage

```
dcmatrix(
    X,
    Y = NULL,
    calc.dcov = TRUE,
    calc.dcor = TRUE,
    calc.cor = "none",
    calc.pvalue.cor = FALSE,
    return.data = TRUE,
    test = "none",
    adjustp = "none",
    b = 499,
    affine = FALSE,
    standardize = FALSE,
    bias.corr = FALSE,
    group.X = NULL,
    group.Y = NULL,
    metr.X = "euclidean",
    metr.Y = "euclidean",
    use = "all",
    algorithm = "auto",
    fc.discrete = FALSE,
    calc.dcor.pw = FALSE,
    calc.dcov.pw = FALSE,
    test.pw = "none",
    metr.pw.X = "euclidean",
    metr.pw.Y = "euclidean"
)
```


Arguments

x	A data.frame or matrix.
Y	Either NULL or a data.frame or a matrix with the same number of rows as X. If only X is provided, distance covariances/correlations are calculated between all groups in X . If X and Y are provided, distance covariances/correlations are calculated between all groups in X and all groups of Y .
calc.dcov	logical; specifies if the distance covariance matrix is calculated.
calc.dcor	logical; specifies if the distance correlation matrix is calculated.
calc.cor	If set as "pearson", "spearman" or "kendall", a corresponding correlation matrix is additionally calculated.
calc.pvalue.cor	
	logical; IF TRUE, a p-value based on the Pearson or Spearman correlation matrix is calculated (not implemented for calc.cor ="kendall") using Hmisc::rcorr.
return.data	logical; specifies if the dcmatrix object should contain the original data.
test	specifies the type of test that is performed, "permutation" performs a Monte Carlo Permutation test. "gamma" performs a test based on a gamma approximation of the test statistic under the null. "conservative" performs a conservative two-moment approximation. "bb3" performs a quite precise three-moment approximation and is recommended when computation time is not an issue.
adjustp	If setting this parameter to "holm", "hochberg", "hommel", "bonferroni", "BH", "BY" or "fdr", corresponding adjusted p-values are additionally returned for the distance covariance test.
b	specifies the number of random permutations used for the permutation test. Ignored for all other tests.
affine	logical; indicates if the affinely transformed distance covariance should be calculated or not.
standardize	specifies if data should be standardized dividing each component by its standard deviations. No effect when affine = TRUE .
bias.corr	logical; specifies if the bias corrected version of the sample distance covariance (Huo and Szekely 2016) should be calculated.
group. X	A vector, each entry specifying the group membership of the respective column in X. Each group is handled as one sample for calculating the distance covariance/correlation matrices. If NULL, every sample is handled as an individual group.
group. Y	A vector, each entry specifying the group membership of the respective column in Y. Each group is handled as one sample for calculating the distance covariance/correlation matrices. If NULL, every sample is handled as an individual group.
metr. X	Either a single metric or a list providing a metric for each group in X (see examples).
metr.Y	see metr.X.
use	"all" uses all observations, "complete.obs" excludes NAs, "pairwise.complete.obs" uses pairwise complete observations for each comparison.

algorithm	specifies the algorithm used for calculating the distance covariance. "fast" uses an $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm if the observations are one-dimensional and metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely (2016). "memsave" uses a memory saving version of the standard algorithm with com- putational complexity O(n^2) but requiring only O(n) memory. "standard" uses the classical algorithm. User-specified metrics always use the classical algorithm. "auto" chooses the best algorithm for the specific setting using a rule of thumb. "memsave" is typically very inefficient for dcmatrix and should only be applied
in exceptional cases.	

Value

S3 object of class "dcmatrix" with the following components
name X, Y description original data (if return.data $=$ TRUE).
name dcov, dcor distance covariance/correlation matrices between the groups specified in group.X/group.Y (if calc.dcov/calc.dcor = TRUE).
name corr correlation matrix between the univariate observations/columns (if cal.cor is "pearson", "spearman" or "kendall").
name pvalue matrix of p -values based on a corresponding distance covariance test based on the entries in dcov (if argument test is not "none").
name pvalue.adj
matrix of p-values adjusted for multiple comparisons using the method specified in argument adjustp.
name pvalue.cor
matrix of pvalues based on "pearson"/"spearman" correlation (if calc.cor is "pearson" or "spearman" and calc.pvalue.cor = TRUE).
name dcov.pw, dcor.pw
distance covariance/correlation matrices between the univariate observations (if calc.dcov.pw/calc.dcor.pw = TRUE.)
name pvalue.pw matrix of p-values based on a corresponding distance covariance test based on the entries in dcov.pw (if argument test is not "none").

References

Berschneider G, Bottcher B (2018). "On complex Gaussian random fields, Gaussian quadratic forms and sample distance multivariance." arXiv preprint arXiv:1808.07280.
Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." Modern Stochastics: Theory and Applications, 3, 353-383.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." Bernoulli, 20, 2305-2330.
Huang C, Huo X (2017). "A statistically and numerically efficient independence test based on random projections and distance covariance." arXiv preprint arXiv:1701.06054.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." Technometrics, 58(4), 435447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284-3305.
Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." The Annals of Statistics, 41, 2263-2291.
Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." The Annals of Statistics, 35, 2769-2794.
Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." The Annals of Applied Statistics, 3, 1236-1265.

Examples

```
X <- matrix(rnorm(1000), ncol = 10)
dcm <- dcmatrix(X, test="bb3",calc.cor = "pearson",
    calc.pvalue.cor = TRUE, adjustp = "BH")
dcm <- dcmatrix(X, test="bb3",calc.cor = "pearson",
    calc.pvalue.cor = TRUE, adjustp = "BH",
    group.X = c(rep(1, 5), rep(2, 5)),
    calc.dcor.pw = TRUE, test.pw = "bb3")
Y <- matrix(rnorm(600), ncol = 6)
Y[,6] <- rbinom(100, 4, 0.3)
dcm <- dcmatrix(X, Y, test="bb3",calc.cor = "pearson",
    calc.pvalue.cor = TRUE, adjustp = "BH")
dcm <- dcmatrix(X, Y, test="bb3",calc.cor = "pearson",
    calc.pvalue.cor = TRUE, adjustp = "BH",
    group.X = c(rep("group1", 5), rep("group2", 5)),
    group.Y = c(rep("group1", 5), "group2"),
    metr.X = "gaussauto",
    metr.Y = list("group1" = "gaussauto", "group2" = "discrete"))
```

```
dcorgaussianbiv Calculates distance correlation from Pearson correlation under as-
sumption of a bivariate normal distribution
```


Description

Calculates distance correlation from Pearson correlation under assumption of a bivariate normal distribution

Usage

dcorgaussianbiv(rho)

Arguments

rho Pearson correlation.

Value

Distance correlation assuming a bivariate normal distribution

```
dcsis Performs distance correlation sure independence screening (Li et al. 2012) with some additional options (such as calculating corresponding tests).
```


Description

Performs distance correlation sure independence screening (Li et al. 2012) with some additional options (such as calculating corresponding tests).

Usage

dcsis(
X,
Y,
k = floor(nrow(X)/log(nrow(X))),
threshold = NULL,
calc.cor = "spearman",
calc.pvalue.cor = FALSE,
return. data $=$ FALSE,
test = "none",
adjustp = "none",
b = 499,
bias.corr = FALSE,
use = "all",
algorithm = "auto"
)

Arguments

$\left.\begin{array}{ll}\mathrm{X} & \text { A dataframe or matrix. } \\ \mathrm{Y} & \text { A vector-valued response having the same length as the number of rows of X. } \\ \mathrm{k} & \begin{array}{l}\text { Number of variables that are selected (only used when threshold is not pro- } \\ \text { vided). }\end{array} \\ \text { threshold } & \begin{array}{l}\text { If provided, variables with a distance correlation larger than threshold are se- } \\ \text { lected. }\end{array} \\ \text { calc.cor } & \begin{array}{l}\text { If set as "pearson", "spearman" or "kendall", a corresponding correlation matrix } \\ \text { is additionally calculated. }\end{array} \\ \text { calc.pvalue.cor }\end{array} \quad \begin{array}{l}\text { logical; IF TRUE, a p-value based on the Pearson or Spearman correlation ma- } \\ \text { trix is calculated (not implemented for calc.cor = "kendall") using Hmisc::rcorr. }\end{array}\right]$

Value

dcmatrix object with the following two additional slots:
name selected description indices of selected variables.
name dcor. selected
distance correlation of the selected variables and the response Y.

References

Berschneider G, Bottcher B (2018). "On complex Gaussian random fields, Gaussian quadratic forms and sample distance multivariance." arXiv preprint arXiv:1808.07280. Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." Bernoulli, 20, 2305-2330.
Huang C, Huo X (2017). "A statistically and numerically efficient independence test based on random projections and distance covariance." arXiv preprint arXiv:1701.06054.
Huo X, Szekely GJ (2016). "Fast computing for distance covariance." Technometrics, 58(4), 435447.

Li R, Zhong W, Zhu L (2012). "Feature screening via distance correlation learning." Journal of the American Statistical Association, 107(499), 1129-1139.
Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." The Annals of Statistics, 35, 2769-2794.
Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." The Annals of Applied Statistics, 3, 1236-1265.

Examples

```
X <- matrix(rnorm(1e5), ncol = 1000)
Y <- sapply(1:100, function(u) sum(X[u, 1:50])) + rnorm(100)
a <- dcsis(X, Y)
```

distcor \quad| Calculates the distance correlation (Szekely et al. 2007; Szekely and |
| :--- |
| Rizzo 2009). | Rizzo 2009).

Description

Calculates the distance correlation (Szekely et al. 2007; Szekely and Rizzo 2009).

Usage

distcor
X,
Y,
affine = FALSE,
standardize = FALSE,
bias.corr = FALSE,
type. X = "sample",
type. Y = "sample",
metr. X = "euclidean",

```
        metr.Y = "euclidean",
        use = "all",
        algorithm = "auto"
)
```


Arguments

X

Y
affine
standardize logical; specifies if X and Y should be standardized dividing each component by its standard deviations. No effect when affine = TRUE.
bias.corr logical; specifies if the bias corrected version of the sample distance correlation (Huo and Szekely 2016) should be calculated.
type. X For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.
type. Y see type. X.
metr. $X \quad$ specifies the metric which should be used to compute the distance matrix for X (ignored when type. $\mathrm{X}=$ "distance").
Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples).
For "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric, parameter)", e.g. c("gaussian", 3) for a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and " 1 " for all other metrics.
See Lyons (2013); Sejdinovic et al. (2013); Bottcher et al. (2018) for details.
metr. Y see metr.X.
use specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.
algorithm specifies the algorithm used for calculating the distance correlation.
"fast" uses an $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm if the observations are one-dimensional and metr.X and metr. Y are either "euclidean" or "discrete", see also Huo and Szekely (2016).
"memsave" uses a memory saving version of the standard algorithm with computational complexity $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ but requiring only $\mathrm{O}(\mathrm{n})$ memory.
"standard" uses the classical algorithm. User-specified metrics always use the classical algorithm.
"auto" chooses the best algorithm for the specific setting using a rule of thumb.

Value

numeric; the distance correlation between samples X and Y .

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." Modern Stochastics: Theory and Applications, 3, 353-383.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." Bernoulli, 20, 2305-2330.
Huo X, Szekely GJ (2016). "Fast computing for distance covariance." Technometrics, 58(4), 435447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284-3305.
Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." The Annals of Statistics, 41, 2263-2291.
Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." The Annals of Statistics, 35, 2769-2794.
Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." The Annals of Applied Statistics, 3, 1236-1265.

Examples

```
X <- rnorm(200)
Y <- rnorm(200)
Z <- X + rnorm(200)
dim(X) <- dim(Y) <- dim(Z) <- c(20, 10)
#Demonstration that biased-corrected distance correlation is
#often more meaningful than without using bias-correction
distcor(X, Y)
distcor(X, Z)
distcor(X, Y, bias.corr = TRUE)
distcor(X, Z, bias.corr = TRUE)
#For more examples of the different options,
#see the documentation of distcov.
```

```
distcov Calculates the distance covariance (Szekely et al. 2007; Szekely and Rizzo 2009).
```


Description

Calculates the distance covariance (Szekely et al. 2007; Szekely and Rizzo 2009).

Usage

```
distcov(
    X,
    Y,
    affine = FALSE,
    standardize = FALSE,
    bias.corr = FALSE,
    type. \(X=\) "sample",
    type. \(Y=\) "sample",
    metr. \(X=\) "euclidean",
    metr. \(Y=\) "euclidean",
    use = "all",
    algorithm = "auto"
)
```


Arguments

X
contains either the first sample or its corresponding distance matrix.
In the first case, X can be provided either as a vector (if one-dimensional), a matrix or a data.frame (if two-dimensional or higher).
In the second case, the input must be a distance matrix corresponding to the sample of interest.
If X is a sample, type. X must be specified as "sample". If X is a distance matrix, type. X must be specified as "distance".
Y see X.
affine logical; specifies if the affinely invariant distance covariance (Dueck et al. 2014) should be calculated or not.
standardize logical; specifies if X and Y should be standardized dividing each component by its standard deviations. No effect when affine = TRUE.
bias.corr logical; specifies if the bias corrected version of the sample distance covariance (Huo and Szekely 2016) should be calculated.
type.X For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.
type. Y see type.X.
metr.X specifies the metric which should be used to compute the distance matrix for X (ignored when type. $\mathrm{X}=$ "distance").
Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples).
For "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric, parameter)", e.g. c("gaussian", 3) for a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and " 1 " for all other metrics.
See Lyons (2013); Sejdinovic et al. (2013); Bottcher et al. (2018) for details.
metr. Y see metr.X.

use	specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.
algorithm	specifies the algorithm used for calculating the distance covariance.
"fast" uses an $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm if the observations are one-dimensional and	
metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely	
(2016).	
"memsave" uses a memory saving version of the standard algorithm with com-	
putational complexity $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ but requiring only $\mathrm{O}(\mathrm{n})$ memory.	
"standard" uses the classical algorithm. User-specified metrics always use the	
classical algorithm.	
"auto" chooses the best algorithm for the specific setting using a rule of thumb.	

Value

numeric; the distance covariance between samples X and Y .

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." Modern Stochastics: Theory and Applications, 3, 353-383.
Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." Bernoulli, 20, 2305-2330.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." Technometrics, 58(4), 435447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284-3305.
Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." The Annals of Statistics, 41, 2263-2291.
Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." The Annals of Statistics, 35, 2769-2794.
Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." The Annals of Applied Statistics, 3, 1236-1265.

Examples

```
X <- rnorm(100)
Y <- X + 3 * rnorm(100)
distcov(X, Y) # standard distance covariance
distcov(X, Y, metr.X = "gaussauto", metr.Y = "gaussauto")
# Gaussian distance with bandwidth choice based on median heuristic
distcov(X, Y, metr.X = c("alpha", 0.5), metr.Y = c("alpha", 0.5))
# alpha distance covariance with alpha = 0.5.
```

\#Define a user-specified (slow) version of the alpha metric

```
alpha_user <- function(X, prm = 1, kernel = FALSE) {
    as.matrix(dist(X)) ^ prm
}
distcov(X, Y, metr.X = c("alpha", 0.5), metr.Y = c("alpha", 0.5))
# Gives the same result as before.
#User-specified Gaussian kernel function
gauss_kernel <- function(X, prm = 1, kernel = TRUE) {
    exp(as.matrix(dist(X)) ^ 2 / 2 / prm ^ 2)
}
distcov(X, Y, metr.X = c("gauss_kernel", 2), metr.Y = c("gauss_kernel", 2))
# calculates the distance covariance using the corresponding kernel-induced metric
distcov(X, Y, metr.X = c("gaussian", 2), metr.Y = c("gaussian", 2))
# same result
Y <- matrix(nrow = 100, ncol = 2)
X <- rnorm(300)
dim(X) <- c(100, 3)
Z <- rnorm(100)
Y <- matrix(nrow = 100, ncol = 2)
Y[, 1] <- X[, 1] + Z
Y[, 2]<- 3*Z
distcov(X, Y)
distcov(X, Y, affine = TRUE)
# affinely invariant distance covariance
distcov(X, Y, standardize = TRUE)
## distance covariance standardizing the components of }X\mathrm{ and }
```

distcov.test
Performs a distance covariance test.

Description

Performs a distance covariance test.

Usage

distcov.test(
X,
Y,

```
    method = "permutation",
    b = 499L,
    ln = 20,
    affine = FALSE,
    standardize = FALSE,
    bias.corr = FALSE,
    type.X = "sample",
    type.Y = "sample",
    metr.X = "euclidean",
    metr.Y = "euclidean",
    use = "all",
    return.data = FALSE,
    algorithm = "auto"
)
```


Arguments

X

Y
method
b

In numeric; block size parameter for wild bootstrap tests. Ignored for other tests.
affine logical; specifies if the affinely invariant distance covariance (Dueck et al. 2014) should be calculated or not.
standardize logical; specifies if X and Y should be standardized dividing each component by its standard deviations. No effect when affine = TRUE.
bias.corr logical; specifies if the bias corrected version of the sample distance covariance (Huo and Szekely 2016) should be calculated.

type. X	For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.
type. Y	see type.X.
metr. X	specifies the metric which should be used to compute the distance matrix for X (ignored when type. $\mathrm{X}=$ "distance").
	Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples).
	For "alpha", "minkowski", "gauss", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric, parameter)", c("gaussian", 3) for example uses a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and "1" for all other metrics.
metr.Y	See Lyons (2013); Sejdinovic et al. (2013); Bottcher et al. (2018) for details. see metr.X.
use	specifies how to treat missing values. "complete.obs" excludes NAs, "all" uses all observations.
return.data	logical; specifies if the test object should contain the original data.
algorithm	specifies the algorithm used for calculating the distance covariance.
	"fast" uses an $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ algorithm if the observations are one-dimensional and metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely (2016).
	"memsave" uses a memory saving version of the standard algorithm with computational complexity $\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)$ but requiring only $\mathrm{O}(\mathrm{n})$ memory.
	"standard" uses the classical algorithm. User-specified metrics always use the classical algorithm.
	"auto" chooses the best algorithm for the specific setting using a rule of thumb.

Value

distcov.test object

References

Berschneider G, Bottcher B (2018). "On complex Gaussian random fields, Gaussian quadratic forms and sample distance multivariance." arXiv preprint arXiv:1808.07280.
Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." Modern Stochastics: Theory and Applications, 3, 353-383.
Chwialkowski KP, Sejdinovic D, Gretton A (2014). "A wild bootstrap for degenerate kernel tests." In Advances in neural information processing systems, 3608-3616.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." Bernoulli, 20, 2305-2330.
Huang C, Huo X (2017). "A statistically and numerically efficient independence test based on random projections and distance covariance." arXiv preprint arXiv:1701.06054.
Huo X, Szekely GJ (2016). "Fast computing for distance covariance." Technometrics, 58(4), 435447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284-3305. Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." The Annals of Statistics, 41, 2263-2291.
Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." The Annals of Statistics, 35, 2769-2794.
Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." The Annals of Applied Statistics, 3, 1236-1265.

```
distsd
```

Calculates the distance standard deviation (Edelmann et al. 2020).

Description

Calculates the distance standard deviation (Edelmann et al. 2020).

Usage

```
    distsd(
        X,
        affine = FALSE,
        standardize = FALSE,
        bias.corr = FALSE,
        type.X = "sample",
        metr.X = "euclidean",
        use = "all",
        algorithm = "auto"
    )
```


Arguments

X
contains either the sample or its corresponding distance matrix.
In the first case, X can be provided either as a vector (if one-dimensional), a matrix or a data.frame (if two-dimensional or higher).
In the second case, the input must be a distance matrix corresponding to the sample of interest.
If X is a sample, type. X must be specified as "sample". If X is a distance matrix, type.X must be specified as "distance".
affine logical; specifies if the affinely invariant distance standard deviation (Dueck et al. 2014) should be calculated or not.
standardize logical; specifies if X and Y should be standardized dividing each component by its standard deviations. No effect when affine = TRUE.
bias.corr logical; specifies if the bias corrected version of the sample distance standard deviation (Huo and Szekely 2016) should be calculated.
type. X For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.

```
metr.X specifies the metric which should be used to compute the distance matrix for X
            (ignored when type. \(\mathrm{X}=\) "distance").
            Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaus-
            sauto", "boundsq" or user-specified metrics (see examples).
            For "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq", the corre-
                        sponding parameters are specified via "c(metric, parameter)", e.g. c("gaussian",
                        3 ) for a Gaussian metric with bandwidth parameter 3; the default parameter is 2
                        for "minkowski" and "1" for all other metrics.
                            See Lyons (2013); Sejdinovic et al. (2013); Bottcher et al. (2018) for details.
use specifies how to treat missing values. "complete.obs" excludes observations
            containing NAs, "all" uses all observations.
algorithm specifies the algorithm used for calculating the distance standard deviation.
            "fast" uses an \(\mathrm{O}(\mathrm{n} \log \mathrm{n})\) algorithm if the observations are one-dimensional and
            metr.X and metr.Y are either "euclidean" or "discrete", see also Huo and Szekely
            (2016).
            "memsave" uses a memory saving version of the standard algorithm with com-
            putational complexity \(\mathrm{O}\left(\mathrm{n}^{\wedge} 2\right)\) but requiring only \(\mathrm{O}(\mathrm{n})\) memory.
            "standard" uses the classical algorithm. User-specified metrics always use the
            classical algorithm.
"auto" chooses the best algorithm for the specific setting using a rule of thumb.
```


Value

numeric; the distance standard deviation of X .

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." Modern Stochastics: Theory and Applications, 3, 353-383.
Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." Bernoulli, 20, 2305-2330.

Edelmann D, Richards D, Vogel D (2020). "The Distance Standard Deviation." The Annals of Statistics.. Accepted for publication.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." Technometrics, 58(4), 435447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284-3305.
Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." The Annals of Statistics, 41, 2263-2291.

Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." The Annals of Statistics, 35, 2769-2794.
Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." The Annals of Applied Statistics, 3, 1236-1265.

Examples

```
X <- rnorm(100)
distsd(X) # for more examples on the options see the documentation of distcov.
```

extract_np
Extract the dimensions of X.

Description

Extract the dimensions of X.

Usage

extract_np(X, type.X)

Arguments

X
a numeric vector or a numeric matrix.
type. X
either "sample" or "distance". If type. $X=$ "sample", X must be a numeric vector or numeric matrix with the corresponding observations. If metr. $\mathrm{X}=$ "distance", X must be a distance matrix.

Value

The centralized distance matrix corresponding to X .

hsplot	Plots Pearson/Spearman/Kendall correlation against distance corre- lation (often resembling a horseshoe(hs)).

Description

Plots Pearson/Spearman/Kendall correlation against distance correlation (often resembling a horseshoe(hs)).

Usage

hsplot(dcmat, maxcomp = 1e+05, col = "blue", alpha = 1 , cortrafo = "none")

Arguments

$$
\begin{array}{ll}
\text { dcmat } & \text { A dcmatrix object. } \\
\text { maxcomp } & \begin{array}{l}
\text { Maximum number of associations, for which distance correlation is plotted } \\
\text { against correlation. If the number of associations in the dcmat object is larger, } \\
\text { only the maxcomp associations with the largest difference between distance cor- } \\
\text { relation and absolute (Pearson/Spearman/Kendall) correlation are plotted. }
\end{array} \\
\text { col } & \begin{array}{l}
\text { color of the plot. }
\end{array} \\
\text { alpha } & \begin{array}{l}
\text { alpha parameter of the plot. }
\end{array} \\
\text { cortrafo } & \begin{array}{l}
\text { Either "none" or "gaussiandcor". If "gaussiandcor", the distance correlation un- } \\
\text { der assumption of normality is calculated and plotted against the actual distance } \\
\text { correlation. }
\end{array}
\end{array}
$$

Note that this is only sensible for Pearson correlation!

Value

Plot of (possibly transformed) Pearson/Spearman/Kendall correlation against distance correlation.
ipcw.dcor Calculates an inverse-probability-of-censoring weighted (IPCW) distance correlation based on IPCW U-statistics (Datta et al. 2010).

Description

Calculates an inverse-probability-of-censoring weighted (IPCW) distance correlation based on IPCW U-statistics (Datta et al. 2010).

Usage

ipcw.dcor $($
Y,
X ,
affine $=$ FALSE,
standardize = FALSE,
timetrafo = "none",
type. X = "sample",
metr. X = "euclidean",
use = "all",
cutoff = NULL
)

Arguments

Y

X

A matrix with two columns, where the first column contains the survival times and the second column the status indicators (a survival object will work).

A vector or matrix containing the covariate information.

affine	logical; specifies if X should be transformed such that the result is invariant under affine transformations of X
standardize	logical; should X be standardized using the standard deviations of single observations?. No effect when affine $=$ TRUE.
timetrafo	specifies a transformation applied on the follow-up times. Can be "none", "log" or a user-specified function.
type. X	For "distance", X is interpreted as a distance matrix. For "sample", X is interpreted as a sample.
metr. X	specifies the metric which should be used to compute the distance matrix for X (ignored when type. $\mathrm{X}=$ "distance").
	Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto", "boundsq" or user-specified metrics (see examples).
	For "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric,parameter)", c("gaussian",3) for example uses a Gaussian metric with bandwidth parameter 3; the default parameter is 2 for "minkowski" and " 1 " for all other metrics.
use	specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.
cutoff	If provided, all survival times larger than cutoff are set to the cutoff and all corresponding status indicators are set to one. Under most circumstances, choosing a cutoff is highly recommended.

Value

An inverse-probability of censoring weighted estimate for the distance correlation between X and the survival times.

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." Modern Stochastics: Theory and Applications, 3, 353-383.
Datta S, Bandyopadhyay D, Satten GA (2010). "Inverse Probability of Censoring Weighted Ustatistics for Right-Censored Data with an Application to Testing Hypotheses." Scandinavian Journal of Statistics, 37(4), 680-700.
Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." Bernoulli, 20, 2305-2330.
Huo X, Szekely GJ (2016). "Fast computing for distance covariance." Technometrics, 58(4), 435447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284-3305.
Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." The Annals of Statistics, 41, 2263-2291.
Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." The Annals of Statistics, 35, 2769-2794.
Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." The Annals of Applied Statistics, 3, 1236-1265.

Examples

```
X <- rnorm(100)
survtime <- rgamma(100, abs(X))
cens <- rexp(100)
status <- as.numeric(survtime < cens)
time <- sapply(1:100, function(u) min(survtime[u], cens[u]))
surv <- cbind(time, status)
ipcw.dcor(surv, X)
```

ipcw.dcov
Calculates an inverse-probability-of-censoring weighted (IPCW) distance covariance based on IPCW U-statistics (Datta et al. 2010).

Description

Calculates an inverse-probability-of-censoring weighted (IPCW) distance covariance based on IPCW U-statistics (Datta et al. 2010).

Usage

```
ipcw.dcov(
    Y,
    X,
    affine = FALSE,
    standardize = FALSE,
    timetrafo = "none",
    type.X = "sample",
    metr.X = "euclidean",
    use = "all",
    cutoff = NULL
)
```


Arguments

Y

X
affine
standardize logical; should X be standardized using the standard deviations of single observations?. No effect when affine = TRUE.
timetrafo specifies a transformation applied on the follow-up times. Can be "none", "log" or a user-specified function.
type.X For "distance", X is interpreted as a distance matrix. For "sample" (or any other value), X is interpreted as a sample

```
metr.X metr.X specifies the metric which should be used for X to analyze the distance
    covariance. Options are "euclidean", "discrete", "alpha", "minkowski", "gaus-
    sian", "gaussauto" and "boundsq". For "alpha", "minkowski", "gauss", "gaus-
    sauto" and "boundsq", the corresponding parameters are specified via "c(metric,parameter)"
    (see examples); the standard parameter is 2 for "minkowski" and " 1" for all other
    metrics.
use specifies how to treat missing values. "complete.obs" excludes observations
    containing NAs, "all" uses all observations.
cutoff If provided, all survival times larger than cutoff are set to the cutoff and all cor-
        responding status indicators are set to one. Under most circumstances, choosing
        a cutoff is highly recommended.
```


Value

An inverse-probability of censoring weighted estimate for the distance covariance between X and the survival times.

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." Modern Stochastics: Theory and Applications, 3, 353-383.
Datta S, Bandyopadhyay D, Satten GA (2010). "Inverse Probability of Censoring Weighted Ustatistics for Right-Censored Data with an Application to Testing Hypotheses." Scandinavian Journal of Statistics, 37(4), 680-700.
Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." Bernoulli, 20, 2305-2330.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." Technometrics, 58(4), 435447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284-3305.
Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." The Annals of Statistics, 41, 2263-2291.
Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." The Annals of Statistics, 35, 2769-2794.
Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." The Annals of Applied Statistics, 3, 1236-1265.

Examples

```
X <- rnorm(100)
survtime <- rgamma(100, abs(X))
cens <- rexp(100)
status <- as.numeric(survtime < cens)
time <- sapply(1:100, function(u) min(survtime[u], cens[u]))
surv <- cbind(time, status)
ipcw.dcov(surv, X)
```

ipcw.dcov.test
Performs a permutation test based on the IPCW distance covariance.

Description

Performs a permutation test based on the IPCW distance covariance.

Usage

ipcw.dcov.test(
Y,
X ,
affine $=$ FALSE,
standardize = FALSE,
timetrafo = "none",
type. X = "sample",
metr. X = "euclidean",
use = "all",
cutoff = NULL,
$B=499$
)

Arguments

Y A column with two rows, where the first row contains the survival times and the second row the status indicators (a survival object will work).
X
affine logical; indicates if X should be transformed such that the result is invariant under affine transformations of X .
standardize logical; should X be standardized using the standard deviations of single observations. No effect when affine $=$ TRUE .
timetrafo specifies a transformation applied on the follow-up times. Can be "none", "log" or a user-specified function.
type.X For "distance", X is interpreted as a distance matrix. For "sample" (or any other value), X is interpreted as a sample.
metr.X metr.X specifies the metric which should be used for X to analyze the distance covariance. Options are "euclidean", "discrete", "alpha", "minkowski", "gaussian", "gaussauto" and "boundsq". For "alpha", "minkowski", "gauss", "gaussauto" and "boundsq", the corresponding parameters are specified via "c(metric,parameter)" (see examples); the standard parameter is 2 for "minkowski" and " 1 " for all other metrics.
use specifies how to treat missing values. "complete.obs" excludes observations containing NAs, "all" uses all observations.
cutoff If provided, all survival times larger than cutoff are set to the cutoff and all corresponding status indicators are set to one. Under most circumstances, choosing a cutoff is highly recommended.

B The number of permutations used for the permutation test

Value

An list with two arguments, $\$$ dcov contains the IPCW distance covariance, $\$$ pvalue the corresponding p-value

References

Bottcher B, Keller-Ressel M, Schilling RL (2018). "Detecting independence of random vectors: generalized distance covariance and Gaussian covariance." Modern Stochastics: Theory and Applications, 3, 353-383.

Datta S, Bandyopadhyay D, Satten GA (2010). "Inverse Probability of Censoring Weighted Ustatistics for Right-Censored Data with an Application to Testing Hypotheses." Scandinavian Journal of Statistics, 37(4), 680-700.

Dueck J, Edelmann D, Gneiting T, Richards D (2014). "The affinely invariant distance correlation." Bernoulli, 20, 2305-2330.

Huo X, Szekely GJ (2016). "Fast computing for distance covariance." Technometrics, 58(4), 435447.

Lyons R (2013). "Distance covariance in metric spaces." The Annals of Probability, 41, 3284-3305.
Sejdinovic D, Sriperumbudur B, Gretton A, Fukumizu K (2013). "Equivalence of distance-based and RKHS-based statistics in hypothesis testing." The Annals of Statistics, 41, 2263-2291.
Szekely GJ, Rizzo ML, Bakirov NK (2007). "Measuring and testing dependence by correlation of distances." The Annals of Statistics, 35, 2769-2794.

Szekely GJ, Rizzo ML (2009). "Brownian distance covariance." The Annals of Applied Statistics, 3, 1236-1265.

Examples

```
X <- rnorm(100)
survtime <- rgamma(100, abs(X))
cens <- rexp(100)
status <- as.numeric(survtime < cens)
time <- sapply(1:100, function(u) min(survtime[u], cens[u]))
surv <- cbind(time, status)
ipcw.dcov.test(surv, X)
ipcw.dcov.test(surv, X, cutoff = quantile(time, 0.8))
# often better performance when using a cutoff time
```

plot.dcmatrix Plots a heatmap from a dcmatrix object using the function "pheatmap" from the package "pheatmap".

Description

Plots a heatmap from a dcmatrix object using the function "pheatmap" from the package "pheatmap".

Usage

```
## S3 method for class 'dcmatrix'
    plot(
        x,
        type = "dcor",
        trunc.up = NULL,
        trunc.low = NULL,
        cluster_rows = FALSE,
        cluster_cols = FALSE,
        display_numbers = TRUE,
    )
```


Arguments

x
type
trunc.up
trunc.low truncates the values to be plotted; if set to numeric, all values smaller than trunc.low are set to trunc.low.
cluster_rows, cluster_cols, display_numbers
passed to pheatmap().
... passed to pheatmap().

Value

a heatmap plotting the entries of the slot specified in type of the object specified in dcmat.

Index

dcmatrix, 2
dcorgaussianbiv, 6
dcsis, 6
distcor, 8
distcov, 10
distcov.test, 13
distsd, 16
extract_np, 18
hsplot, 18
ipcw.dcor, 19
ipcw.dcov, 21
ipcw.dcov.test, 23
plot.dcmatrix, 25

