
Package ‘briKmeans’
October 12, 2022

Version 1.0

Date 2022-07-20

Title Package for Brik, Fabrik and Fdebrik Algorithms to Initialise
Kmeans

Author Javier Albert Smet <javas@kth.se> and
Aurora Torrente <etorrent@est-econ.uc3m.es>.
Alice Parodi, Mirco Patriarca, Laura Sangalli, Piercesare Secchi,
Simone Vantini and Valeria Vitelli, as contributors.

Maintainer Aurora Torrente <etorrent@est-econ.uc3m.es>

Depends R (>= 3.1.0), boot, cluster, depthTools, splines, splines2,
stats

Imports methods

Description Implementation of the BRIk, FABRIk and FDEBRIk algorithms
to initialise k-means. These methods are intended for the
clustering of multivariate and functional data, respectively.
They make use of the Modified Band Depth and bootstrap to
identify appropriate initial seeds for k-means, which are
proven to be better options than many techniques in the
literature. Torrente and Romo (2021) <doi:10.1007/s00357-020-09372-3>
It makes use of the functions kma and kma.similarity, from the
archived package fdakma, by Alice Parodi et al.

License GPL (>= 3)

NeedsCompilation no

Repository CRAN

Date/Publication 2022-07-21 08:40:10 UTC

R topics documented:
brik . 2
elbowRule . 3
fabrik . 5
fdebrik . 7

1

https://doi.org/10.1007/s00357-020-09372-3

2 brik

kma . 10
kma.similarity . 14
plotKmeansClustering . 17

Index 19

brik Computation of Initial Seeds and Kmeans Results

Description

brik computes appropriate seeds –based on bootstrap and the MBD depth– to initialise k-means,
which is then run.

Usage

brik(x, k, method="Ward", nstart=1, B=10, J = 2, ...)

Arguments

x a data matrix containing N observations (individuals) by rows and d variables
(features) by columns

k number of clusters

method clustering algorithm used to cluster the cluster centres from the bootstrapped
replicates; Ward, by default. Currently, only pam and randomly initialised kmeans
are implemented

nstart number of random initialisations when using the kmeans method to cluster the
cluster centres

B number of bootstrap replicates to be generated

J number of observations used to build the bands for the MBD computation. Cur-
rently, only the value J=2 can be used

... additional arguments to be passed to the kmeans function for the final clustering;
at this stage nstart is set to 1, as the initial seeds are fixed

Details

The brik algorithm is a simple, computationally feasible method, which provides k-means with a
set of initial seeds to cluster datasets of arbitrary dimensions. It consists of two stages: first, a set of
cluster centers is obtained by applying k-means to bootstrap replications of the original data to be,
next, clustered; the deepest point in each assembled cluster is returned as initial seeds for k-means.

Value

seeds a matrix of size k x d containing the initial seeds obtained with the BRIk algo-
rithm

km an object of class kmeans corresponding to the run of kmeans on x with starting
points seeds

elbowRule 3

Author(s)

Javier Albert Smet <javas@kth.se> and Aurora Torrente <etorrent@est-econ.uc3m.es>

References

Torrente, A. and Romo, J. (2020). Initializing k-means Clustering by Bootstrap and Data Depth. J
Classif (2020). https://doi.org/10.1007/s00357-020-09372-3.

Examples

brik algorithm
simulated data
set.seed(0)
g1 <- matrix(rnorm(200,0,3), 25, 8) ; g1[,1]<-g1[,1]+4;
g2 <- matrix(rnorm(200,0,3), 25, 8) ; g2[,1]<-g2[,1]+4; g2[,3]<-g2[,3]-4
g3 <- matrix(rnorm(200,0,3), 25, 8) ; g3[,1]<-g3[,1]+4; g3[,3]<-g3[,3]+4

x <- rbind(g1,g2,g3)
labels <-c(rep(1,25),rep(2,25),rep(3,25))

C1 <- kmeans(x,3)
C2 <- brik(x,3,B=25)

table(C1$cluster, labels)
table(C2kmcluster, labels)

elbowRule Selection of Appropriate DF Parameter Based on an Elbow Rule for
the Distortion

Description

elbowRule runs the FABRIk algorithm for different degrees of freedom (DF) and suggests the best
of such values as the one where the minimum distortion is obtained. An optional visualization of
the computed values allows the choice of alternative suitable DF values based on an elbow-like rule.

Usage

elbowRule(x, k, method="Ward", nstart=1, B = 10, J = 2, x.coord = NULL, OSF = 1,
vect = NULL, intercept = TRUE, degPolyn = 3, degFr = 4:20, knots = NULL,
plot = FALSE, ...)

Arguments

x a data matrix containing N observations (individuals) by rows and d variables
(features) by columns

k number of clusters

4 elbowRule

method clustering algorithm used to cluster the cluster centres from the bootstrapped
replicates; Ward, by default. Currently, only pam and randomly initialised kmeans
are implemented

nstart number of random initialisations when using the kmeans method to cluster the
cluster centres

B number of bootstrap replicates to be generated
J number of observations used to build the bands for the MBD computation. Cur-

rently, only the value J=2 can be used
x.coord initial x coordinates (time points) where the functional data is observed; if not

provided, it is assumed to be 1:d

OSF oversampling factor for the smoothed data; an OSF of m means that the number
of (equally spaced) time points observed in the approximated function is m times
the number of original number of features, d

vect optional collection of x coordinates (time points) where to assess the smoothed
data; if provided, it ignores the OSF

intercept if TRUE, an intercept is included in the basis; default is FALSE
degPolyn degree of the piecewise polynomial; 3 by default (cubic splines)
degFr a vector containing tentative values of the degrees of freedom, to be tested
knots the internal breakpoints that define the spline
plot a Boolean parameter; it allows plotting the distortion against the degrees of free-

dom. Set to FALSE by default
... additional arguments to be passed to the kmeans function for the final clustering;

at this stage nstart is set to 1, as the initial seeds are fixed

Details

The function implements a simple elbow-like rule that allows selecting an appropriate value for the
DF parameter among the tested ones. It computes the distortion obtained for each of these values
and returns the one yielding to the smallest distortion. By setting the parameter plot to TRUE the
distortion is plotted against the degrees of freedom and elbows or minima can be visually detected.

Value

df the original vector of DF values to be tested
tot.withinss a vector containing the distortion obtained for each tested DF value
optimal DF value producing the smallest distortion among the tested df

Author(s)

Javier Albert Smet <javas@kth.se> and Aurora Torrente <etorrent@est-econ.uc3m.es>

References

Torrente, A. and Romo, J. (2020). Initializing Kmeans Clustering by Bootstrap and Data Depth.
J Classif (2020). https://doi.org/10.1007/s00357-020-09372-3. Albert-Smet, J., Torrente, A. and
Romo J. (2021). Modified Band Depth Based Initialization of Kmeans for Functional Data Cluster-
ing. Submitted to Computational Statistics and Data Analysis.

fabrik 5

Examples

simulated data
set.seed(1)
x.coord = seq(0,1,0.01)
x <- matrix(ncol = length(x.coord), nrow = 80)
labels <- matrix(ncol = 100, nrow = 1)

centers <- matrix(ncol = length(x.coord), nrow = 4)
centers[1,] <- abs(x.coord)-0.5
centers[2,] <- (abs(x.coord-0.5))^2 - 0.8
centers[3,] <- -(abs(x.coord-0.5))^2 + 0.7
centers[4,] <- 0.75*sin(8*pi*abs(x.coord))

for(i in 1:4){
for(j in 1:20){

labels[20*(i-1) + j] <- i
if(i == 1){x[20*(i-1) + j,] <- abs(x.coord)-0.5 +

rnorm(length(x.coord),0,1.5)}
if(i == 2){x[20*(i-1) + j,] <- (abs(x.coord-0.5))^2 - 0.8 +

rnorm(length(x.coord),0,1.5)}
if(i == 3){x[20*(i-1) + j,] <- -(abs(x.coord-0.5))^2 + 0.7 +

rnorm(length(x.coord),0,1.5)}
if(i == 4){x[20*(i-1) + j,] <- 0.75*sin(8*pi*abs(x.coord)) +

rnorm(length(x.coord),0,1.5)}
}

}

ER <- elbowRule(x, 4, B=25, degFr = 5:12, plot=FALSE)
ER <- elbowRule(x, 4, B=25, degFr = 5:12, plot=TRUE)

fabrik Computation of Initial Seeds for Kmeans and Clustering of Functional
Data

Description

fabrik fits splines to the multivariate dataset and runs the BRIk algorithm on the smoothed data.
For functional data, this is just a straight forward application of BRIk to the k-means algorithm;
for multivariate data, the result corresponds to an alternative clustering method where the objective
function is not necessarily minimised, but better allocations are obtained in general.

Usage

fabrik(x, k, method="Ward", nstart=1, B = 10, J = 2, x.coord = NULL, OSF = 1,
vect = NULL, intercept = TRUE, degPolyn = 3, degFr = 5, knots = NULL, ...)

6 fabrik

Arguments

x a data matrix containing N observations (individuals) by rows and d variables
(features) by columns

k number of clusters

method clustering algorithm used to cluster the cluster centres from the bootstrapped
replicates; Ward, by default. Currently, only pam and randomly initialised kmeans
are implemented

nstart number of random initialisations when using the kmeans method to cluster the
cluster centres

B number of bootstrap replicates to be generated

J number of observations used to build the bands for the MBD computation. Cur-
rently, only the value J=2 can be used

x.coord initial x coordinates (time points) where the functional data is observed; if not
provided, it is assumed to be 1:d

OSF oversampling factor for the smoothed data; an OSF of m means that the number
of (equally spaced) time points observed in the approximated function is m times
the number of original number of features, d

vect optional collection of x coordinates (time points) where to assess the smoothed
data; if provided, it ignores the OSF

intercept if TRUE, an intercept is included in the basis; default is FALSE

degPolyn degree of the piecewise polynomial; 3 by default (cubic splines)

degFr degrees of freedom, as in the bs function

knots the internal breakpoints that define the spline

... additional arguments to be passed to the kmeans function for the final clustering;
at this stage nstart is set to 1, as the initial seeds are fixed

Details

The FABRIk algorithm extends the BRIk algorithm to the case of longitudinal functional data by
adding a step that includes B-splines fitting and evaluation of the curve at specific x coordinates.
Thus, it allows handling issues such as noisy or missing data. It identifies smoothed initial seeds
that are used as starting points of kmeans on the smoothed data. The resulting clustering does not
optimise the distortion (sum of squared distances of each data point to its nearest centre) in the
original data space but it provides in general a better allocation of datapoints to real groups.

Value

seeds a matrix of size k x D, where D is either m x d or the length of vect . It contains
the initial smoothed seeds obtained with the BRIk algorithm

km an object of class kmeans corresponding to the run of kmeans on the smoothed
data, with starting points seeds

Author(s)

Javier Albert Smet <javas@kth.se> and Aurora Torrente <etorrent@est-econ.uc3m.es>

fdebrik 7

References

Torrente, A. and Romo, J. (2020). Initializing Kmeans Clustering by Bootstrap and Data Depth.
J Classif (2020). https://doi.org/10.1007/s00357-020-09372-3. Albert-Smet, J., Torrente, A. and
Romo J. (2021). Modified Band Depth Based Initialization of Kmeans for Functional Data Cluster-
ing. Submitted to Computational Statistics and Data Analysis.

Examples

fabrik algorithm
simulated data
set.seed(1)
x.coord = seq(0,1,0.01)
x <- matrix(ncol = length(x.coord), nrow = 100)
labels <- matrix(ncol = 100, nrow = 1)

centers <- matrix(ncol = length(x.coord), nrow = 4)
centers[1,] <- abs(x.coord)-0.5
centers[2,] <- (abs(x.coord-0.5))^2 - 0.8
centers[3,] <- -(abs(x.coord-0.5))^2 + 0.7
centers[4,] <- 0.75*sin(8*pi*abs(x.coord))

for(i in 1:4){
for(j in 1:25){

labels[25*(i-1) + j] <- i
if(i == 1){x[25*(i-1) + j,] <- abs(x.coord)-0.5 +

rnorm(length(x.coord),0,1.5)}
if(i == 2){x[25*(i-1) + j,] <- (abs(x.coord-0.5))^2 - 0.8 +

rnorm(length(x.coord),0,1.5)}
if(i == 3){x[25*(i-1) + j,] <- -(abs(x.coord-0.5))^2 + 0.7 +

rnorm(length(x.coord),0,1.5)}
if(i == 4){x[25*(i-1) + j,] <- 0.75*sin(8*pi*abs(x.coord)) +

rnorm(length(x.coord),0,1.5)}
}

}

C1 <- kmeans(x,4)
C2 <- fabrik(x,4,B=25)

table(C1$cluster, labels)
table(C2kmcluster, labels)

fdebrik Computation of Initial Seeds for Kmeans with a Functional Extension
of Brik

Description

fdebrik first fits splines to the multivariate dataset; then it identifies functional centers that form
tighter groups, by means of the kma algorithm; finally, it converts these into a multivariate data set

8 fdebrik

in a selected dimension, clusters them and finds the deepest point of each cluster to be used as initial
seeds. The multivariate objective function is not necessarily minimised, but better allocations are
obtained in general.

Usage

fdebrik(x, k, method="Ward", nstart=1, B = 10, J = 2, x.coord = NULL,
functionalDist="d0.pearson", OSF = 1, vect = NULL, intercept = TRUE,
degPolyn = 3, degFr = 5, knots = NULL, ...)

Arguments

x a data matrix containing N observations (individuals) by rows and d variables
(features) by columns

k number of clusters

method clustering algorithm used to cluster the cluster centres from the bootstrapped
replicates; Ward, by default. Currently, only pam and randomly initialised kmeans
with nstart initializations are implemented

nstart number of random initialisations when using the kmeans method to cluster the
cluster centres

B number of bootstrap replicates to be generated

J number of observations used to build the bands for the MBD computation. Cur-
rently, only the value J=2 can be used

x.coord initial x coordinates (time points) where the functional data is observed; if not
provided, it is assumed to be 1:d

functionalDist similarity measure between functions to be used. Currently, only the cosine
of the angles between functions ("d0.pearson") and between their derivatives
("d1.pearson") can be used

OSF oversampling factor for the smoothed data; an OSF of m means that the number
of (equally spaced) time points observed in the approximated function is m times
the number of original number of features, d

vect optional collection of x coordinates (time points) where to assess the smoothed
data; if provided, it ignores the OSF

intercept if TRUE, an intercept is included in the basis; default is FALSE

degPolyn degree of the piecewise polynomial; 3 by default (cubic splines)

degFr degrees of freedom, as in the bs function

knots the internal breakpoints that define the spline

... additional arguments to be passed to the kmeans function for the final clustering;
at this stage nstart is set to 1, as the initial seeds are fixed

Details

The FDEBRIk algorithm extends the BRIk algorithm to the case of longitudinal functional data by
adding a B-spline fitting step, a collection of functional centers by means of the kma algorithm and
the evaluation of these at specific x coordinates. Thus, it allows handling issues such as noisy or

fdebrik 9

missing data. It identifies smoothed initial seeds that are used as starting points of kmeans on the
smoothed data. The resulting clustering does not optimise the distortion (sum of squared distances
of each data point to its nearest centre) in the original data space but it provides in general a better
allocation of datapoints to real groups.

Value

seeds a matrix of size k x D, where D is either m x d or the length of vect . It contains
the initial smoothed seeds obtained with the FDEBRIk algorithm

km an object of class kmeans corresponding to the run of kmeans on the smoothed
data, with starting points seeds

Author(s)

Javier Albert Smet <javas@kth.se> and Aurora Torrente <etorrent@est-econ.uc3m.es>

References

Torrente, A. and Romo, J. Initializing Kmeans Clustering by Bootstrap and Data Depth. J Clas-
sif (2021) 38(2):232-256. DOI: 10.1007/s00357-020-09372-3 Albert-Smet, J., Torrente, A. and
Romo, J. Modified Band Depth Based Initialization of Kmeans for Functional Data Clustering.
Submitted to Adv. Data Anal. Classif. (2022). Sangalli, L.M., Secchi, P., Vantini, V.S. and Vitelli,
V. K-mean alignment for curve clustering. Comput. Stat. Data Anal. (2010) 54(5):1219-1233.
DOI:10.1016/j.csda.2009.12.008

Examples

fdebrik algorithm
Not run:
simulated data
set.seed(1)
x.coord = seq(0,1,0.05)
x <- matrix(ncol = length(x.coord), nrow = 40)
labels <- matrix(ncol = 100, nrow = 1)

centers <- matrix(ncol = length(x.coord), nrow = 4)
centers[1,] <- abs(x.coord)-0.5
centers[2,] <- (abs(x.coord-0.5))^2 - 0.8
centers[3,] <- -(abs(x.coord-0.5))^2 + 0.7
centers[4,] <- 0.75*sin(8*pi*abs(x.coord))

for(i in 1:4){
for(j in 1:10){

labels[10*(i-1) + j] <- i
if(i == 1){x[10*(i-1) + j,] <- abs(x.coord)-0.5 +

rnorm(length(x.coord),0,1.5)}
if(i == 2){x[10*(i-1) + j,] <- (abs(x.coord-0.5))^2 - 0.8 +

rnorm(length(x.coord),0,1.5)}
if(i == 3){x[10*(i-1) + j,] <- -(abs(x.coord-0.5))^2 + 0.7 +

rnorm(length(x.coord),0,1.5)}
if(i == 4){x[10*(i-1) + j,] <- 0.75*sin(8*pi*abs(x.coord)) +

10 kma

rnorm(length(x.coord),0,1.5)}
}

}

C1 <- kmeans(x,4)
C2 <- fdebrik(x,4,B=5)

table(C1$cluster, labels)
table(C2kmcluster, labels)

End(Not run)

kma Clustering and alignment of functional data

Description

kma jointly performs clustering and alignment of a functional dataset (multidimensional or unidi-
mensional functions).

Usage

kma(x, y0 = NULL, y1 = NULL, n.clust = 1, warping.method = "affine",
similarity.method = "d1.pearson", center.method = "k-means", seeds = NULL,
optim.method = "L-BFGS-B", span = 0.15, t.max = 0.1, m.max = 0.1, n.out = NULL,
tol = 0.01, fence = TRUE, iter.max = 100, show.iter = 0, nstart=2, return.all=FALSE,
check.total.similarity=FALSE)

Arguments

x matrix n.func X grid.size or vector grid.size: the abscissa values where each
function is evaluated. n.func: number of functions in the dataset. grid.size: max-
imal number of abscissa values where each function is evaluated. The abscissa
points may be unevenly spaced and they may differ from function to function. x
can also be a vector of length grid.size. In this case, x will be used as abscissa
grid for all functions.

y0 matrix n.func X grid.size or array n.func X grid.size X d: evaluations of the
set of original functions on the abscissa grid x. n.func: number of functions in
the dataset. grid.size: maximal number of abscissa values where each function
is evaluated. d: (only if the sample is multidimensional) number of function
components, i.e. each function is a d-dimensional curve. Default value of y0
is NULL. The parameter y0 must be provided if the chosen similarity.method
concerns original functions.

y1 matrix n.func X grid.size or array n.func X grid.size X d: evaluations of the set
of original functions first derivatives on the abscissa grid x. Default value of y1
is NULL. The parameter y1 must be provided if the chosen similarity.method
concerns original function first derivatives.

kma 11

n.clust scalar: required number of clusters. Default value is 1. Note that if n.clust=1
kma performs only alignment without clustering.

warping.method character: type of alignment required. If warping.method='NOalignment'
kma performs only k-mean clustering (without alignment). If warping.method='affine'
kma performs alignment (and possibly clustering) of functions using linear affine
transformation as warping functions, i.e., x.final = dilation*x + shift. If warping.method='shift'
kma allows only shift, i.e., x.final = x + shift. If warping.method='dilation'
kma allows only dilation, i.e., x.final = dilation*x. Default value is 'affine'.

similarity.method

character: required similarity measure. Possible choices are: 'd0.pearson',
'd1.pearson', 'd0.L2', 'd1.L2', 'd0.L2.centered', 'd1.L2.centered'.
Default value is 'd1.pearson'. See kma.similarity for details.

center.method character: type of clustering method to be used. Possible choices are: 'k-means'
and 'k-medoids'. Default value is 'k-means'.

seeds vector max(n.clust) or matrix nstart X n.clust: indexes of the functions to be
used as initial centers. If it is a matrix, each row contains the indexes of the
initial centers of one of the nstart initializations. In the case where not all the
values of seeds are provided, those not provided are randomly chosen among
the n.func original functions. If seeds=NULL all the centers are randomly cho-
sen. Default value of seeds is NULL.

optim.method character: optimization method chosen to find the best warping functions at each
iteration. Possible choices are: 'L-BFGS-B' and 'SANN'. See optim function for
details. Default method is 'L-BFGS-B'.

span scalar: the span to be used for the loess procedure in the center estimation step
when center.method='k-means'. Default value is 0.15. If center.method='k-medoids'
value of span is ignored.

t.max scalar: t.max controls the maximal allowed shift, at each iteration, in the align-
ment procedure with respect to the range of curve domains. t.max must be
such that 0<t.max<1 (e.g., t.max=0.1 means that shift is bounded, at each it-
eration, between -0.1*range(x) and +0.1*range(x)). Default value is 0.1. If
warping.method='dilation' value of t.max is ignored.

m.max scalar: m.max controls the maximal allowed dilation, at each iteration, in the
alignment procedure. m.max must be such that 0<m.max<1 (e.g., m.max=0.1
means that dilation is bounded, at each iteration, between 1-0.1 and 1+0.1).
Default value is 0.1. If warping.method='shift' value of m.max is ignored.

n.out scalar: the desired length of the abscissa for computation of the similarity in-
dexes and the centers. Default value is round(1.1*grid.size).

tol scalar: the algorithm stops when the increment of similarity of each function
with respect to the corrispondent center is lower than tol. Default value is
0.01.

fence boolean: if fence=TRUE a control is activated at the end of each iteration. The
aim of the control is to avoid shift/dilation outlighers with respect to their com-
puted distributions. If fence=TRUE the running time can increase considerably.
Default value of fence is TRUE.

iter.max scalar: maximum number of iterations in the k-mean alignment cycle. Default
value is 100.

12 kma

show.iter boolean: if show.iter=TRUE kma shows the current iteration of the algorithm.
Default value is FALSE.

nstart scalar: number of initializations with different seeds. Default value is 2. This pa-
rameter is used only if center.method is 'k-medoids'. When center.method
= 'k-means' one initialization is performed.

return.all boolean: if return.all=TRUE the results of all the nstart initializations are re-
turned; the output is a list of length nstart. If return.all=FALSE only the best
result is provided (the one with higher mean similarity if similarity.method is
'd0.pearson' or'd1.pearson', or the one with lower distance if similarity.method
is 'd0.L2', 'd1.L2', 'd0.L2.centered' or 'd1.L2.centered'). Default value
is FALSE.

check.total.similarity

boolean: if check.total.similarity=TRUE at each iteration the algorithm
checks if there is a decrease of the total similarity and stops. In the afferma-
tive case the result obtained in the penultimate iteration is returned. Default
value is FALSE

Value

The function output is a list containing the following elements:

iterations scalar: total number of iterations performed by kma function.

x as input.

y0 as input.

y1 as input.

n.clust as input.

warping.method as input.
similarity.method

as input.

center.method as input.

x.center.orig vector n.out: abscissa of the original center.

y0.center.orig matrix 1 X n.out: the unique row contains the evaluations of the original function
center. If warping.method='k-means' there are two scenarios: if similarity.method='d0.pearson'
or 'd0.L2' or d0.L2.centered the original function center is computed via
loess procedure applied to original data; if similarity.method='d1.pearson'
or 'd1.L2' or d1.L2.centered it is computed by integration of first derivatives
center y1.center.orig (the integration constant is computed minimizing the
sum of the weighed L2 distances between the center and the original functions).
If warping.method='k-medoids' the original function center is the medoid of
original functions.

y1.center.orig matrix 1 X n.out: the unique row contains the evaluations of the original function
first derivatives center. If warping.method='k-means' the original center is
computed via loess procedure applied to original function first derivatives. If
warping.method='k-medoids' the original center is the medoid of original
functions.

kma 13

similarity.orig

vector: original similarities between the original functions and the original cen-
ter.

x.final matrix n.func X grid.size: aligned abscissas.

n.clust.final scalar: final number of clusters. Note that, when center.method='k.means',
the parameter n.clust.final may differ from initial number of clusters (i.e.,
from n.clust) if some clusters are found to be empty. In this case a warning
message is issued.

x.centers.final

vector n.out: abscissas of the final function centers and/or of the final function
first derivatives centers.

y0.centers.final

matrix n.clust.final X n.out: rows contain the evaluations of the final functions
centers. y0.centers.final is NULL if y0 is not given as input.

y1.centers.final

matrix n.clust.final X n.out: rows contains the evaluations of the final derivatives
centers. y1.centers.final is NULL if the chosen similarity measure does not
concern function first derivatives.

labels vector: cluster assignments.

similarity.final

vector: similarities between each function and the center of the cluster the func-
tion is assigned to.

dilation.list list: dilations obtained at each iteration of kma function.

shift.list list: shifts obtained at each iteration of kma function.

dilation vector: dilation applied to the original abscissas x to obtain the aligned abscissas
x.final.

shift vector: shift applied to the original abscissas x to obtain the aligned abscissas
x.final.

Author(s)

Alice Parodi, Mirco Patriarca, Laura Sangalli, Piercesare Secchi, Simone Vantini, Valeria Vitelli.

References

Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V., 2010. "K-mean alignment for curve clustering".
Computational Statistics and Data Analysis, 54, 1219-1233.

Sangalli, L.M., Secchi, P., Vantini, S., 2014. "Analysis of AneuRisk65 data: K-mean Alignment".
Electronic Journal of Statistics, Special Section on "Statistics of Time Warpings and Phase Varia-
tions", Vol. 8, No. 2, 1891-1904.

See Also

kma.similarity

14 kma.similarity

Examples

simulated data
set.seed(1)
x.coord = seq(0,1,0.01)
x <- matrix(ncol = length(x.coord), nrow = 100)
labels <- matrix(ncol = 100, nrow = 1)

centers <- matrix(ncol = length(x.coord), nrow = 4)
centers[1,] <- abs(x.coord)-0.5
centers[2,] <- (abs(x.coord-0.5))^2 - 0.8
centers[3,] <- -(abs(x.coord-0.5))^2 + 0.7
centers[4,] <- 0.75*sin(8*pi*abs(x.coord))

for(i in 1:4){
for(j in 1:25){

labels[25*(i-1) + j] <- i
if(i == 1){x[25*(i-1) + j,] <- abs(x.coord)-0.5 +

rnorm(length(x.coord),0,0.1)}
if(i == 2){x[25*(i-1) + j,] <- (abs(x.coord-0.5))^2 - 0.8 +

rnorm(length(x.coord),0,0.1)}
if(i == 3){x[25*(i-1) + j,] <- -(abs(x.coord-0.5))^2 + 0.7 +

rnorm(length(x.coord),0,0.1)}
if(i == 4){x[25*(i-1) + j,] <- 0.75*sin(8*pi*abs(x.coord)) +

rnorm(length(x.coord),0,0.1)}
}

}
C <- kma(x.coord, x, n.clust = 4,

warping.method = "NOalignment", similarity.method = "d0.pearson")
table(C$labels, labels)

kma.similarity Similarity/dissimilarity index between two functions

Description

kma.similarity computes a similarity/dissimilarity measure between two functions f and g. Users
can choose among different types of measures.

Usage

kma.similarity(x.f = NULL, y0.f = NULL, y1.f = NULL,
x.g = NULL, y0.g = NULL, y1.g = NULL, similarity.method, unif.grid = TRUE)

Arguments

x.f vector length.f : abscissa grid where function f and his first derivatives f ′ is
evaluated. length.f : numbrt of abscissa values where f is evaluated. x.f must
always be provided.

kma.similarity 15

y0.f vector length.f or matrix length.f X d: evaluations of function f on the abscissa
grid x.f. length.f : number of abscissa values where f is evaluated. d (only
if f and g are multidimensional) number of function’s components, i.e. f is
d-dimensional curve. Default value of y0.f is NULL. The vectory0.f must be
provided if the chosen similarity.method concerns original functions.

y1.f vector length.f or matrix length.f X d: evaluations of f first derivative, i.e., f ′,
on the abscissa grid x.f. Default value of y1.f is NULL. The vector y1.f must be
provided if the chosen similarity.method concerns function first derivatives.

x.g vector length.g: abscissa grid where function g and his first derivatives g′ is
evaluated. length.g: numbrt of abscissa values where g is evaluated. x.g must
always be provided.

y0.g vector length.g or matrix length.g X d: evaluations of function g on the abscissa
grid x.g. length.g: number of abscissa values where g is evaluated. d (only
if f and g are multidimensional) number of function’s components, i.e. g is
d-dimensional curve. Default value of y0.g is NULL. The vector y0.g must be
provided if the chosen similarity.method concerns original functions.

y1.g vector length.g or matrix length.g X d: evaluations of g first derivative, i.e., g′,
on the abscissa grid x.g. Default value is of y1.g NULL. The vector y1.g must be
provided if the chosen similarity.method concerns function first derivatives.

similarity.method

character: similarity/dissimilarity between f and g. Possible choices are: 'd0.pearson',
'd1.pearson', 'd0.L2', 'd1.L2', 'd0.L2.centered', 'd1.L2.centered'.
Default value is 'd1.pearson'. See details.

unif.grid boolean: if equal to TRUE the similarity measure is computed over an uniform
grid built in the intersection domain of the two functions, that is an additional
discretization is performed. If equal to FALSE the additional discretization is not
performed, so the functions are supposed to be already defined on the same ab-
scissa grid and the grid is supposed to be fine enough to well compute similarity.

Details

We report the list of the currently available similarities/dissimilarities. Note that all norms and inner
products are computed over D, that is the intersection of the domains of f and g. f and g denote
the mean value, respectively, of functions f and g.

1. 'd0.pearson': this similarity measure is the cosine of the angle between the two functions f
and g.

< f, g >L2

‖f‖L2‖g‖L2

2. 'd1.pearson': this similarity measure is the cosine of the angle between the two function
derivatives f ′ and g′.

< f ′, g′ >L2

‖f ′‖L2‖g′‖L2

3. 'd0.L2': this dissimilarity measure is the L2 distance of the two functions f and g normalized
by the length of the common domain D.

16 kma.similarity

‖f − g‖L2

|D|

4. 'd1.L2': this dissimilarity measure is the L2 distance of the two function first derivatives f ′ and
g′ normalized by the length of the common domain D.

‖f ′ − g′‖L2

|D|

5. 'd0.L2.centered': this dissimilarity measure is the L2 distance of f − f and g− g normalized
by the length of the common domain D.

‖(f − f)− (g − g)‖L2

|D|

6. 'd1.L2.centered': this dissimilarity measure is the L2 distance of f ′−f ′ and g′−g′ normalized
by the length of the common domain D.

‖(f ′ − f ′)− (g′ − g′)‖L2

|D|

For multidimensional functions, if similarity.method='d0.pearson' or 'd1.pearson' the sim-
ilarity/dissimilarity measure is computed via the average of the indexes in all directions.

The coherence properties specified in Sangalli et al. (2010) implies that if similarity.method
is set to 'd0.L2', 'd1.L2', 'd0.L2.centered' or 'd1.L2.centered', value of warping.method
must be 'shift' or 'NOalignment'. If similarity.method is set to 'd0.pearson' or 'd1.pearson'
all values for warping.method are allowed.

Value

scalar: similarity/dissimilarity measure between the two functions f and g computed via the simi-
larity/dissimilarity measure specified.

Author(s)

Alice Parodi, Mirco Patriarca, Laura Sangalli, Piercesare Secchi, Simone Vantini, Valeria Vitelli.

References

Sangalli, L.M., Secchi, P., Vantini, S., Vitelli, V., 2010. "K-mean alignment for curve clustering".
Computational Statistics and Data Analysis, 54, 1219-1233.

Sangalli, L.M., Secchi, P., Vantini, S., 2014. "Analysis of AneuRisk65 data: K-mean Alignment".
Electronic Journal of Statistics, Special Section on "Statistics of Time Warpings and Phase Varia-
tions", Vol. 8, No. 2, 1891-1904.

See Also

kma

plotKmeansClustering 17

plotKmeansClustering Kmeans Clustering Plot

Description

plotKmeansClustering represents, in different subpanels, each of the clusters obtained after run-
ning k-means. The corresponding centroid is highlighted.

Usage

plotKmeansClustering(x, kmeansObj, col=c(8,2), lty=c(2,1), x.coord = NULL,
no.ticks = 5, ...)

Arguments

x a data matrix containing N observations (individuals) by rows and d variables
(features) by columns

kmeansObj an object of class kmeans, containing the cluster labels output by kmeans

col a vector containing colors for the elements in x and for the centroid. The last
one is used for the centroid, whereas the previous ones are recycled

lty a vector containing the line type for the elements in x and for the centroid. The
last one is used for the centroid, whereas the previous ones are recycled

x.coord initial x coordinates (time points) where the functional data is observed; if not
provided, it is assumed to be 1:d

no.ticks number of ticks to be displayed in the X axis

... additional arguments to be passed to the plot function

Details

The function creates a suitable grid where to plot the different clusters independently. In the i-th cell
of the grid, the data points corresponding to the i-th cluster are represented in parallel coordinates
and the final centroid is highlighted.

Value

the function returns invisibly a list with the following components:

clusters a list containing one cluster per component; observations are given by rows

centroids a list with the centroid of each cluster

Author(s)

Javier Albert Smet <javas@kth.se> and Aurora Torrente <etorrent@est-econ.uc3m.es>

18 plotKmeansClustering

Examples

simulated data
set.seed(1)
x.coord = seq(0,1,0.01)
x <- matrix(ncol = length(x.coord), nrow = 100)
labels <- matrix(ncol = 100, nrow = 1)

centers <- matrix(ncol = length(x.coord), nrow = 4)
centers[1,] <- abs(x.coord)-0.5
centers[2,] <- (abs(x.coord-0.5))^2 - 0.8
centers[3,] <- -(abs(x.coord-0.5))^2 + 0.7
centers[4,] <- 0.75*sin(8*pi*abs(x.coord))

for(i in 1:4){
for(j in 1:25){

labels[25*(i-1) + j] <- i
if(i == 1){x[25*(i-1) + j,] <- abs(x.coord)-0.5 +

rnorm(length(x.coord),0,1.5)}
if(i == 2){x[25*(i-1) + j,] <- (abs(x.coord-0.5))^2 - 0.8 +

rnorm(length(x.coord),0,1.5)}
if(i == 3){x[25*(i-1) + j,] <- -(abs(x.coord-0.5))^2 + 0.7 +

rnorm(length(x.coord),0,1.5)}
if(i == 4){x[25*(i-1) + j,] <- 0.75*sin(8*pi*abs(x.coord)) +

rnorm(length(x.coord),0,1.5)}
}

}

plotKmeansClustering(x, kmeans(x,4))
plotKmeansClustering(x, brik(x,4)$km)
plotKmeansClustering(x, fabrik(x,4)$km)
plotKmeansClustering(x, fabrik(x,4,degFr=10)$km)

Index

∗MBD
brik, 2
elbowRule, 3
fabrik, 5
fdebrik, 7
plotKmeansClustering, 17

∗ Similarity
kma.similarity, 14

∗ bootstrap
brik, 2
elbowRule, 3
fabrik, 5
fdebrik, 7
plotKmeansClustering, 17

∗ cluster
elbowRule, 3
fabrik, 5
fdebrik, 7

∗ elbow rule
elbowRule, 3

∗ functional data
elbowRule, 3
fabrik, 5
fdebrik, 7

∗ kmeans
brik, 2
elbowRule, 3
fabrik, 5
fdebrik, 7
plotKmeansClustering, 17

brik, 2

elbowRule, 3

fabrik, 5
fdebrik, 7

kma, 10, 16
kma.similarity, 11, 13, 14

loess, 11, 12

optim, 11

plotKmeansClustering, 17

19

	brik
	elbowRule
	fabrik
	fdebrik
	kma
	kma.similarity
	plotKmeansClustering
	Index

