Package 'bartXViz'

December 21, 2025

Title Visualization of BART and BARP using SHAP

Version 1.0.9 **Date** 2025-12-21

Description

Complex machine learning models are often difficult to interpret. Shapley values serve as a powerful tool to understand and explain why a model makes a particular prediction. This package computes variable contributions using permutation-based Shapley values for Bayesian Additive Regression Trees (BART) and its extension with Post-Stratification (BARP). The permutation-based SHAP method proposed by Strumbel and Kononenko (2014) <doi:10.1007/s10115-013-0679-x> is grounded in data obtained via MCMC sampling. Similar to the BART model introduced by Chipman, George, and McCulloch (2010) <doi:10.1214/09-AOAS285>, this package leverages Bayesian posterior samples generated during model estimation, allowing variable contributions to be computed without requiring additional sampling. The BART model is designed to work with the following R packages: 'BART' <doi:10.18637/jss.v097.i01>, 'bartMachine' <doi:10.18637/jss.v070.i04>, and 'dbarts' <https:

//CRAN.R-project.org/package=dbarts>. For XGBoost and baseline adjustments, the approach by Lundberg et al. (2020) <doi:10.1038/s42256-019-0138-9> is also considered. The BARP model proposed by Bisbee (2019) <doi:10.1017/S0003055419000480> was implemented with reference to <https://github.com/jbisbee1/BARP> and is designed to work with modified functions based on that implementation. BARP extends post-stratification by computing variable contributions within each stratum defined by stratifying variables. The resulting Shapley values are visualized through both global and local explanation methods.

License GPL (>= 2)

Depends R (>= 3.5.0), SuperLearner

Imports bartMachine, BART, ggplot2, ggforce, data.table, ggfittext, ggpubr, foreach, gggenes, Rcpp, dplyr, tidyr, stringr,abind, utils,grid,dbarts, forcats, gridExtra,reshape2, missForest

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8 **RoxygenNote** 7.3.3

URL https://github.com/ldongeunl/bartXViz

NeedsCompilation yes

2 barps

```
Author Dong-eun Lee [aut, cre],
Eun-Kyung Lee [aut]

Maintainer Dong-eun Lee <1dongeun.leel@gmail.com>
Repository CRAN

Date/Publication 2025-12-21 09:00:02 UTC
```

Contents

Index		29
	waterfall_plot	27
	svy	26
	poststrat_30	26
	plot.ExplainbartMachine	24
	plot.ExplainBART	22
	plot.Explainbarp	21
	plot.Explain	19
	one_hot	18
	Explain_stats	16
	Explain.wbart	15
	Explain.bartMachine	13
	Explain.bart	11
	Explain.barp	10
	Explain	7
	decision_plot	5
	census06	5
	cces_30_df	4
	barps	- 2

Description

barps

This function uses Bayesian Additive Regression Trees (BART) to extrapolate survey data to a level of geographic aggregation at which the original survey was not sampled to be representative of. This is a modified version of the barp function from the **BARP** to allow for seed fixation.(https://github.com/jbisbee1/BARP)

Bayesian Additive Regression Trees with Post-Stratification (BARP)

```
barps(
   y,
   x,
   dat,
   census,
```

barps 3

```
geo.unit,
algorithm = "BARP",
setSeed = NULL,
proportion = "None",
cred_int = c(0.025, 0.975),
BSSD = FALSE,
nsims = 200,
...
)
```

Arguments

У	Outcome of interest. Should be a character of the column name containing the variable of interest.
x	Prognostic covariates. Should be a vector of column names corresponding to the covariates used to predict the outcome variable of interest.
dat	Survey data containing the x and y column names. The explanatory variables X included in the model must be converted to factors prior to input.
census	Census data containing the x column names. It must also have the same structure as X. If the user provides raw census data, BARP will calculate proportions for each unique bin of x covariates. Otherwise, the researcher must calculate bin proportions and indicate the column name that contains the proportions, either as percentages or as raw counts.
geo.unit	The column name corresponding to the unit at which outcomes should be aggregated.
algorithm	Algorithm for predicting opinions. Can be any algorithm(s) included in the SuperLearner package. If multiple algorithms are listed, predicted opinions are provided for each separately, as well as for the weighted ensemble. Defaults to BARP which implements Bayesian Additive Regression Trees via bartMachine.
setSeed	Seed to control random number generation.
proportion	The column name corresponding to the proportions for covariate bins in the Census data. If left to the default None value, BARP assumes raw census data and estimates bin proportions automatically.
cred_int	A vector giving the lower and upper bounds on the credible interval for the predictions.
BSSD	Calculate bootstrapped standard deviation. Defaults to FALSE in which case the standard deviation is generated by BART's default.
nsims	The number of bootstrap simulations.
• • •	Additional arguments to be passed to bartMachine or SuperLearner.

Value

Returns an object of class BARP, containing a list of the following components:

pred.opn

A data.frame where each row corresponds to the geographic unit of interest and the columns summarize the predicted outcome and the upper and lower bounds for the given credible interval (cred_int).

4 cces_30_df

trees	A bartMachine object.
risk	A data.frame containing the cross-validation risk for each algorithm and the associated weight used in the ensemble predictions. Only useful when multiple algorithms are used.
barp.dat	Data containing the estimates and credible intervals for each observation in the input census dataset.
setSeed	The random seed value employed during model estimation using bartMachine.
proportion	The number of observations in each combination of features.
X	The names of the explanatory variables included in the model.

Source

https://github.com/jbisbee1/BARP

See Also

barps is used to implement Bayesian Additive Regression Trees based on the **bartMachine** package. For detailed options, see https://CRAN.R-project.org/package=bartMachine.

barps also uses the **SuperLearner** package to implement alternative regularizers. For more details, see https://CRAN.R-project.org/package=SuperLearner.

cces_30_df	Survey Data on Public Opinion about Abortion Coverage in Insurance Plans(2018)

Description

A dataset used for modeling support for abortion coverage in insurance plans in the United States, combining individual- and district-level covariates from a 2018 survey. Out of all U.S. states, only data from 30 states are included in this dataset.

A data frame with 49,095 rows and 6 variables:

abortion Allow employers to decline coverage of abortions in insurance plans (0: Oppose, 1: Support).

state A factor variable representing the 30 selected U.S. states. The raw data includes states with state_fips values ranging from 1 to 30.

eth An ethnicity variable stored as a factor (White, Black, Hispanic, Other).

gender A factor variable representing gender (Female, Male).

age A factor variable dividing respondents into age groups (18–29, 30–39, 40–49, 50–59, 60–69, 70+).

educ A factor variable representing educational attainment (No HS, HS, Some college, 4-Year College, Post-grad).

census06 5

References

Juan Lopez-Martin, Justin H. Phillips, and Andrew Gelman, Multilevel Regression and Poststratification Case Studies https://bookdown.org/j15522/MRP-case-studies/introduction-to-mrp.html#data

census06

Census-Based Population Proportions for Covariate Bins (2006)

Description

The data frame has the following components:

• This dataset provides population counts in covariate bins based on the 2006 U.S. Census, Each row represents a unique combination of demographic covariates within a state. A data frame with 2940 rows and 9 variables:

stateid Numeric identifier for the state

region Region code

age Age group (1 = 18-30, 2=31-50, 3=51-65, 4=65+)

gXr Gender and race interaction

educ Education level (1 = LTHS,2 = HS,3 = Some Coll,4 = Coll+)

pvote Republican presidential vote share in the previous election

religcon Proportion of population identifying as religious conservatives

libcon State-level ideology score (liberal to conservative)

n Population count for the given covariate bin within the state

References

Bisbee, James. "Barp: Improving mister p using bayesian additive regression trees." American Political Science Review 113.4 (2019): 1060-1065. https://github.com/jbisbee1/BARP>

decision_plot

Decision Plot

Description

The decision_plot function is a graph that visualizes how individual features contribute to a model's prediction for a specific observation using Shapley values. It can be used to visualize one or multiple observations.

decision_plot

Usage

```
decision_plot(
  object,
  obs_num = NULL,
  title = NULL,
  geo.unit = NULL,
  geo.id = NULL,
  bar_default = TRUE
)
```

Arguments

object Enter the name of the object that contains the model's contributions and results

obtained using the Explain function.

obs_num single or multiple observation numbers

title plot title

geo.unit The name of the stratum variable in the BARP model as a character.

geo.id Enter a single value of the stratum variable as a character.

bar_default bar_default is an option for adjusting the legend's color scale to fit the win-

dow length, and its default value is set to TRUE. If plots fail to render in LaTeX

documents, it is recommended to set this option to FALSE.

Value

plot_out The decision plot for one or multiple observations specified in obs_num.

Examples

```
## Friedman data
set.seed(2025)
n <- 200
p <- 5
X <- data.frame(matrix(runif(n * p), ncol = p))
y <- 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)

## BART model
model <- dbarts::bart (X,y, keeptrees = TRUE,ndpost = 200 )

# prediction wrapper function
pfun <- function (object, newdata) {
predict(object, newdata)
}

# Calculate shapley values
model_exp <- Explain ( model, X = X,  pred_wrapper = pfun )

# Single observation
decision_plot(model_exp, obs_num=1 )</pre>
```

Explain 7

```
#Multiple observation
decision_plot(model_exp, obs_num=10:40 )
```

Explain

Approximate Shapley Values

Description

Compute fast (approximate) Shapley values for a set of features using the Monte Carlo algorithm described in Strumbelj and Igor (2014). An efficient algorithm for tree-based models, commonly referred to as Tree SHAP, is also supported for **lightgbm**(https://cran.r-project.org/package=lightgbm) and **xgboost**(https://cran.r-project.org/package=xgboost) models; see Lundberg et. al. (2020) for details.

```
Explain(object, ...)
## Default S3 method:
Explain(
  object,
  feature_names = NULL,
  X = NULL
  nsim = 1,
  pred_wrapper = NULL,
  newdata = NULL,
  parallel = FALSE,
)
## S3 method for class 'lm'
Explain(
  object,
  feature_names = NULL,
  Χ,
  nsim = 1,
  pred_wrapper,
  newdata = NULL,
  exact = FALSE,
  parallel = FALSE,
)
## S3 method for class 'xgb.Booster'
Explain(
  object,
```

8 Explain

```
feature_names = NULL,
  X = NULL
  nsim = 1,
  pred_wrapper,
  newdata = NULL,
  exact = FALSE,
 parallel = FALSE,
)
## S3 method for class 'lgb.Booster'
Explain(
  object,
  feature_names = NULL,
 X = NULL
  nsim = 1,
  pred_wrapper,
  newdata = NULL,
  exact = FALSE,
  parallel = FALSE,
)
```

Arguments

object

A fitted model object (e.g., a ranger::ranger(), or xgboost::xgboost(),object,

to name a few).

. . .

Additional arguments to be passed

feature_names

Character string giving the names of the predictor variables (i.e., features) of interest. If NULL(default) they will be taken from the column names of X.

Χ

A matrix-like R object (e.g., a data frame or matrix) containing ONLY the feature columns from the training data (or suitable background data set). If the input includes categorical variables that need to be one-hot encoded, please input data that has been processed using data.table::one_hot(). In XGBoost, the input should be the raw dataset containing only the explanatory variables, not the data created using xgb.DMatrix. **NOTE:** This argument is required whenever exact = FALSE.

nsim

The number of Monte Carlo repetitions to use for estimating each Shapley value (only used when exact = FALSE). Default is 1. **NOTE:** To obtain the most accurate results, nsim should be set as large as feasibly possible.

pred_wrapper

Prediction function that requires two arguments, object and newdata. **NOTE:**
This argument is required whenever exact = FALSE. The output of this function should be determined according to:

Regression A numeric vector of predicted outcomes.

Binary classification A vector of predicted class probabilities for the reference class.

nsııı

Explain 9

Multiclass classification A vector of predicted class probabilities for the reference class.

newdata A matrix-like R object (e.g., a data frame or matrix) containing ONLY the fea-

ture columns for the observation(s) of interest; that is, the observation(s) you want to compute explanations for. Default is NULL which will produce approximate Shapley values for all the rows in X (i.e., the training data). If the input includes categorical variables that need to be one-hot encoded, please input data

that has been processed using data.table::one_hot().

parallel Logical indicating whether or not to compute the approximate Shapley values in

parallel across features; default is FALSE. **NOTE:** setting parallel = TRUE requires setting up an appropriate (i.e., system-specific) *parallel backend* as described in the **foreach**(https://cran.r-project.org/package=foreach);

for details, see vignette("foreach", package = "foreach") in R.

exact Logical indicating whether to compute exact Shapley values. Currently only

available for stats::lm()(https://CRAN.R-project.org/package=STAT), xgboost::xgboost()

(https://CRAN.R-project.org/package=xgboost), and lightgbm::lightgbm()(https: //CRAN.R-project.org/package=lightgbm) objects. Default is FALSE. Note

that setting exact = TRUE will return explanations for each of the stats::terms()

in an stats::lm() object. Default is FALSE.

Value

An object of class Explain with the following components:

newdata The data frame formatted dataset employed for the estimation of Shapley values.

If a variable has categories, categorical variables are one-hot encoded.

phis A list format containing Shapley values for individual variables.

fnull The expected value of the model's predictions.

fx The prediction value for each observation.

factor_names The name of the categorical variable. If the data contains only continuous or

dummy variables, it is set to NULL.

Note

Setting exact = TRUE with a linear model (i.e., an stats::lm() or stats::glm() object) assumes that the input features are independent.

References

Strumbelj, E., and Igor K. (2014). Explaining prediction models and individual predictions with feature contributions. Knowledge and information systems, 41(3), 647-665.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N., and Lee, Su-In (2020). From local explanations to global understanding with Explainable AI for trees. Nature Machine Intelligence, 2(1), 2522–5839.

10 Explain.barp

Examples

Explain.barp

Approximate Shapley Values Computed from the BARP Model

Description

This function is implemented to calculate the contribution of each variable in the BARP (Bayesian Additive Regression Tree with post-stratification) model using the permutation method.

```
## S3 method for class 'barp'
Explain(
  object,
  feature_names = NULL,
  X = NULL,
  nsim = 1,
  pred_wrapper = NULL,
  census = NULL,
  geo.unit = NULL,
  parallel = FALSE,
  ...
)
```

Explain.bart 11

Arguments

object A BARP model (Bayesian Additive Regression Tree) estimated using the barps

function, a modified version of the barp function from the BARP library with a

fixed seed.

feature_names The name of the variable for which you want to check the contribution. The

default value is set to NULL, which means the contribution of all variables in X

will be calculated.

X The dataset containing all independent variables used as input when estimating

the BART model. The explanatory variables X included in the model must be

converted to factors prior to input.

nsim The number of Monte Carlo sampling iterations, which is fixed at 1 by default

in the case of the BARP model.

pred_wrapper A function used to estimate the predicted values of the model.

census Census data containing the names of the X columns. It should also have the

same format as X and include a variable named 'proportion', which indicates the

number of individuals corresponding to each combination.

geo.unit Enter the name of the stratification variable used in post stratification.

parallel The default value is set to FALSE, but it can be changed to TRUE for parallel

computation.

. . . Additional arguments to be passed

Value

Returns of class Explainbarp with consisting of a list with the following components:

phis A list containing the Shapley values for each variable.

newdata The data used to check the contribution of variables. If a variable has two cat-

egories, it is dummy-coded, and if it has three or more categories, categorical

variables are one-hot encoded.

fnull The expected value of the model's predictions.

fx The prediction value for each observation.

factor_names The name of the categorical variable. If the data contains only continuous or

dummy variables, it is set to NULL.

Explain.bart Approximate Shapley Values Computed from a BART Model Fitted us-

ing bart

Description

Explain.bart function is used to calculate the contribution of each variable in the Bayesian Additive Regression Trees (BART) model using permutation. It is used to compute the Shapley values of models estimated using the bart function from the dbarts.

12 Explain.bart

Usage

```
## S3 method for class 'bart'
Explain(
  object,
  feature_names = NULL,
  X = NULL,
  nsim = 1,
  pred_wrapper = NULL,
  newdata = NULL,
  parallel = FALSE,
  ...
)
```

Arguments

object A BART model (Bayesian Additive Regression Tree) estimated using the bart

function from the dbarts.

feature_names The name of the variable for which you want to check the contribution. The

default value is set to NULL, which means the contribution of all variables in X

will be calculated.

X The dataset containing all independent variables used as input when estimating

the BART model.

nsim The number of Monte Carlo sampling iterations, which is fixed at 1 by default

in the case of the BART model.

pred_wrapper A function used to estimate the predicted values of the model.

checking the contribution of newly input data using the model. The default value is set to NULL, meaning that the input X data, i.e., the data used for model

estimation, will be used by default.

parallel The default value is set to FALSE, but it can be changed to TRUE for parallel

computation.

... Additional arguments to be passed

Value

Returns of class ExplainBART with consisting of a list with the following components:

phis A list containing the Shapley values for each variable.

newdata The data used to check the contribution of variables. If a variable has categories,

categorical variables are one-hot encoded.

fnull The expected value of the model's predictions.

fx The prediction value for each observation.

factor_names The name of the categorical variable. If the data contains only continuous or

dummy variables, it is set to NULL.

Explain.bartMachine 13

Examples

Explain.bartMachine

Approximate Shapley Values Computed from a BART Model Fitted using bartMachine

Description

This function is used to calculate the contribution of each variable in the Bayesian Additive Regression Trees (BART) model using permutation. It is used to compute the Shapley values of models estimated using the bartMachine function from the **bartMachine**.

Usage

```
## $3 method for class 'bartMachine'
Explain(
  object,
  feature_names = NULL,
  X = NULL,
  nsim = 1,
  pred_wrapper = NULL,
  newdata = NULL,
  parallel = FALSE,
  ...
)
```

Arguments

object

A BART model (Bayesian Additive Regression Tree) estimated using the bartMachine function from the **bartMachine**.

14 Explain.bartMachine

feature_names The name of the variable for which you want to check the contribution. The default value is set to NULL, which means the contribution of all variables in X

will be calculated.

X The dataset containing all independent variables used as input when estimat-

ing the BART model. Categorical or character variables must not contain an

underscore ("_") in their values or labels.

nsim The number of Monte Carlo repetitions used for estimating each Shapley value

is set to 1 by default for the BART model.

pred_wrapper A function used to estimate the predicted values of the model.

newdata New data containing the variables included in the model. This is used when

checking the contribution of newly input data using the model. The default value is set to NULL, meaning that the input X data, i.e., the data used for model

estimation, will be used by default.

parallel The default value is set to FALSE, but it can be changed to TRUE for parallel

computation.

... Additional arguments to be passed

Value

An object of class ExplainbartMachine with the following components:

phis A list containing the Shapley values for each variable.

newdata The data used to check the contribution of variables. If a variable has categories,

categorical variables are one-hot encoded.

fnull The expected value of the model's predictions.

fx The prediction value for each observation.

factor_names The name of the categorical variable. If the data contains only continuous or

dummy variables, it is set to NULL.

Examples

```
## Friedman data
set.seed(2025)
n <- 200
p <- 5
X <- data.frame(matrix(runif(n * p), ncol = p))
y <- 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)

## Using the bartMachine
model <- bartMachine::bartMachine(X, y, seed = 2025, num_iterations_after_burn_in =200 )

## prediction wrapper function
pfun <- function (object, newdata) {
   bartMachine::bart_machine_get_posterior(object,newdata) $ y_hat_posterior_samples
}

## Calculate shapley values
model_exp <- Explain ( model, X = X,  pred_wrapper = pfun )</pre>
```

Explain.wbart 15

Explain.wbart Approximate Shapley Value ing wbart or gbart	s Computed from a BART Model Fitted us-
--	---

Description

Explain.wbart function is used to calculate the contribution of each variable in the Bayesian Additive Regression Trees (BART) model using permutation. It is used to compute the Shapley values of models estimated using the wbart or gbart functions from **BART**.

Usage

```
## S3 method for class 'wbart'
Explain(
  object,
  feature_names = NULL,
  X = NULL,
  nsim = 1,
  pred_wrapper = NULL,
  newdata = NULL,
  parallel = FALSE,
  ...
)
```

Arguments

object	A BART model (Bayesian Additive Regression Tree) estimated using the bart function from the dbarts .
feature_names	The name of the variable for which you want to check the contribution. The default value is set to NULL, which means the contribution of all variables in X will be calculated.
X	The dataset containing all independent variables used as input when estimating the BART model.
nsim	The number of Monte Carlo repetitions used for estimating each Shapley value is set to 1 by default for the BART model.
pred_wrapper	A function used to estimate the predicted values of the model.
newdata	New data containing the variables included in the model. This is used when checking the contribution of newly input data using the model. The default value is set to NULL, meaning that the input X data, i.e., the data used for model estimation, will be used by default.
parallel	The default value is set to FALSE, but it can be changed to TRUE for parallel computation.

Additional arguments to be passed

16 Explain_stats

Value

Returns of class ExplainBART with consisting of a list with the following components:

phis A list containing the Shapley values for each variable.

newdata The data used to check the contribution of variables. If a variable has categories,

categorical variables are one-hot encoded.

fnull The expected value of the model's predictions.

fx The prediction value for each observation.

dummy variables, it is set to NULL.

Examples

```
## Friedman data
set.seed(2025)
n <- 200
p <- 5
X <- data.frame(matrix(runif(n * p), ncol = p))
y <- 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)
## Using the BART
model <- BART::wbart(X,y,ndpost=200)
## prediction wrapper function
pfun <- function(object, newdata) {
        predict(object , newdata)
        }
## Calculate shapley values
model_exp <- Explain ( model, X = X,  pred_wrapper = pfun )</pre>
```

Explain_stats

Numerical summary of Shapley values from an Explain object

Description

Computes global numerical summaries of Shapley values using two averaging criteria: observation-based and posterior-sample-based.

```
Explain_stats(
    x,
    probs = 0.95,
    abs = TRUE,
    na.rm = TRUE,
    geo.unit = NULL,
```

Explain_stats 17

```
geo.id = NULL
## Default S3 method:
Explain_stats(
 х,
 probs = 0.95,
 abs = TRUE,
 na.rm = TRUE,
  geo.unit = NULL,
 geo.id = NULL
)
## S3 method for class 'Explainbarp'
Explain_stats(
  Х,
 probs = 0.95,
  abs = TRUE,
 na.rm = TRUE,
  geo.unit = NULL,
 geo.id = NULL
)
```

Arguments

X	An object belonging to the Explain class or its subclasses, containing the Shapley values.
probs	Enter the probability for the quantile interval. Default is 0.95.
abs	Logical. If TRUE, summarizes absolute Shapley values (importance-style).
na.rm	Logical. Remove NA values in summaries. Default is TRUE.
geo.unit	(Explainbarp only) Name of the stratification variable used in post-stratification.
geo.id	(Explainbarp only) One value of interest among the values of the stratification variable.

Value

A named list with two elements:

obs A data.frame containing observation-based numerical summaries of Shapley values for each variable.

Post A data.frame containing posterior-sample-based numerical summaries of Shap-

A data frame containing posterior-sample-based numerical summaries of Shapley values for each variable.

Examples

```
## Friedman data
set.seed(2025)
n <- 200</pre>
```

one_hot

```
p <- 5
X <- data.frame(matrix(runif(n * p), ncol = p))
y <- 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)
## Using the dbarts library
model <- dbarts::bart(X,y,keeptrees = TRUE , ndpost = 200)
## prediction wrapper function
pfun <- function(object, newdata) {
        predict(object , newdata)
        }
## Calculate shapley values
model_exp <- Explain ( model, X = X,  pred_wrapper = pfun )
# Numerical summaries of summarised Shapley values
Explain_stats ( model_exp,  probs = 0.95)</pre>
```

one_hot

One Hot Encode

Description

One-Hot-Encode unordered factor columns of a data.table

Usage

```
one_hot(
   dt,
   cols = "auto",
   sparsifyNAs = FALSE,
   naCols = FALSE,
   dropCols = TRUE,
   dropUnusedLevels = FALSE)
```

Arguments

dt A data.table

cols Which column(s) should be one-hot-encoded? DEFAULT = "auto" encodes all

unordered factor columns

sparsifyNAs Should NAs be converted to 0s?

naCols Should columns be generated to indicate the present of NAs? Will only apply to

factor columns with at least one NA

dropCols Should the resulting data.table exclude the original columns which are one-hot-

encoded?

dropUnusedLevels

Should columns of all 0s be generated for unused factor levels?

plot.Explain 19

Details

One-hot-encoding converts an unordered categorical vector (i.e. a factor) to multiple binarized vectors where each binary vector of 1s and 0s indicates the presence of a class (i.e. level) of the of the original vector.

Value

data.table object From the input data, a data frame in which categorical variables have been one-hot encoded is returned.

Source

https://cran.r-project.org/web/packages/mltools

Examples

```
library(data.table)

dt <- data.table(
    ID = 1:4,
    color = factor(c("red", NA, "blue", "blue"), levels=c("blue", "green", "red"))
)

one_hot(dt)
one_hot(dt, sparsifyNAs=TRUE)
one_hot(dt, naCols=TRUE)
one_hot(dt, dropCols=FALSE)
one_hot(dt, dropUnusedLevels=TRUE)</pre>
```

plot.Explain

A Function for Visualizing the Shapley Values

Description

The plot.Explain function provides various visualization methods for Shapley values. The values and format used in the graph are determined based on the input parameters.

```
## S3 method for class 'Explain'
plot(
    x,
    average = NULL,
    type = NULL,
    num_post = NULL,
    plot.flag = TRUE,
    adjust = FALSE,
```

20 plot.Explain

```
probs = 0.95,
title = NULL,
xlab = NULL,
ylab = NULL,
...
)
```

Arguments

x An Explain class object containing the Shapley values of models.

average Input the reference value for calculating the mean of the object's phi list. "obs"

represents the average based on observations (#post by #variable), while "post" represents the average based on posterior samples (#obs by #variable). If "both" is entered, calculations are performed based on both observation and posterior

sample criteria. If no value is specified, "both" is used as the default.

type "bar" represents a bar chart that includes the average contribution of each vari-

able, while "bee" represents a summary plot, allowing you to determine the

graph's format.

num_post To check the contribution of variables for a single posterior sample, enter a value

within the number of posterior samples.

plot.flag If average = "obs", the quantile interval of each variable's is provided by de-

fault.

adjust The default value is FALSE. Enter TRUE to check the Shapley values adjusted

based on the model's average contribution.

probs Enter the probability for the quantile interval. The default value is 0.95.

title The title of the plot, with a default value of NULL.

xlab Enter the label to be displayed on the x-axis. If not provided, a default label will

be used.

ylab Enter the label for the y-axis if needed.

... Additional arguments to be passed

Value

The plot is returned based on the specified option.:

out

If average is "obs" or "post", a bar plot or summary plot is generated based on the selected averaging criterion. When average is set to "both", either a bar plot or a boxplot comparing the distributions of Shapley values computed under the two averaging criteria is generated. In the case where a boxplot is produced, the observation-based and posterior-sample-based summaries can additionally be rendered separately via out\$observation and out\$post, respectively. If adjust is TRUE, the adjusted Shapley values are displayed. If num_post is specified, a bar plot or summary plot for the selected posterior sample is generated.

plot.Explainbarp 21

plot.Explainbarp

Visualization of Shapley Values from the BARP Model

Description

This function is implemented to visualize the computed Shapley values in various ways for objects of the Explainbarp class. The type of plot generated depends on the input parameters. Since the BARP model is designed to be visualized for a single stratum, the user must specify both the stratum variable and the value of the stratum to be visualized.

Usage

```
## S3 method for class 'Explainbarp'
plot(
    x,
    average = NULL,
    type = NULL,
    num_post = NULL,
    plot.flag = TRUE,
    adjust = FALSE,
    probs = 0.95,
    title = NULL,
    geo.unit = NULL,
    geo.id = NULL,
    xlab = NULL,
    ylab = NULL,
    ...
)
```

Arguments

X	An ExplainBARP class object containing the Shapley values of the BARP model.
average	Input the reference value for calculating the mean of the object's phi list. "obs" represents the average based on observations (#post by #variable), while "post" represents the average based on posterior samples (#obs by #variable). If "both" is entered, calculations are performed based on both observation and posterior sample criteria. If no value is specified, "both" is used as the default.
type	"bar" represents a bar chart that includes the average contribution of each variable, while "bee" represents a summary plot, allowing you to determine the graph's format.
num_post	To check the contribution of variables for a single posterior sample, enter a value within the number of posterior samples.
plot.flag	If average = "obs", the quantile interval of each variable's is provided by default.
adjust	The default value is FALSE. Enter TRUE to check the Shapley values adjusted based on the model's average contribution.

22 plot.ExplainBART

probs	Enter the probability for the quantile interval. The default value is 0.95.
title	The title of the plot, with a default value of NULL.
geo.unit	Enter the name of the stratification variable used in post stratification.
geo.id	Enter one value of interest among the values of the stratification variable.
xlab	Enter the label to be displayed on the x-axis. If not provided, a default label will be used.
ylab	Enter the label for the y-axis if needed.
	Additional arguments to be passed

Value

The plot is returned based on the specified option.:

out

If average is "obs" or "post", a bar plot or summary plot is generated based on the selected averaging criterion. When average is set to "both", either a bar plot or a boxplot comparing the distributions of Shapley values computed under the two averaging criteria is generated. In the case where a boxplot is produced, the observation-based and posterior-sample-based summaries can additionally be rendered separately via out\$observation and out\$post, respectively. If adjust is TRUE, the adjusted Shapley values are displayed. If num_post is specified, a bar plot or summary plot for the selected posterior sample is generated.

plot.ExplainBART

A Function for Visualizing the Shapley Values of BART Models

Description

The plot.ExplainBART function provides various visualization methods for Shapley values. It is designed to visualize ExplainBART class objects, which contain Shapley values computed from models estimated using the bart function from the **dbarts** or the wbart/gbart functions from **BART**. The values and format used in the graph are determined based on the input parameters.

```
## S3 method for class 'ExplainBART'
plot(
    x,
    average = NULL,
    type = NULL,
    num_post = NULL,
    plot.flag = TRUE,
    adjust = FALSE,
    probs = 0.95,
    title = NULL,
    xlab = NULL,
    ylab = NULL,
    ...
)
```

plot.ExplainBART 23

Arguments

X	An ExplainBART class object containing the Shapley values of the BART model.
average	Input the reference value for calculating the mean of the object's phi list. "obs" represents abind the average based on observations (#post by #variable), while "post" represents the average based on posterior samples (#obs by #variable). If "both" is entered, calculations are performed based on both observation and posterior sample criteria. If no value is specified, "both" is used as the default.
type	"bar" represents a bar chart that includes the average contribution of each variable, while "bee" represents a summary plot, allowing you to determine the graph's format.
num_post	To check the contribution of variables for a single posterior sample, enter a value within the number of posterior samples.
plot.flag	If average = "obs", the quantile interval of each variable's is provided by default.
adjust	The default value is FALSE. Enter TRUE to check the Shapley values adjusted based on the model's average contribution.
probs	Enter the probability for the quantile interval. The default value is 0.95.
title	The title of the plot, with a default value of NULL.
xlab	Enter the label to be displayed on the x-axis. If not provided, a default label will be used.
ylab	Enter the label for the y-axis if needed.
	Additional arguments to be passed

Value

The plot is returned based on the specified option.:

out

If average is "obs" or "post", a bar plot or summary plot is generated based on the selected averaging criterion. When average is set to "both", either a bar plot or a boxplot comparing the distributions of Shapley values computed under the two averaging criteria is generated. In the case where a boxplot is produced, the observation-based and posterior-sample-based summaries can additionally be rendered separately via out\$observation and out\$post, respectively. If adjust is TRUE, the adjusted Shapley values are displayed. If num_post is specified, a bar plot or summary plot for the selected posterior sample is generated.

Examples

```
## Friedman data
set.seed(2025)
n <- 200
p <- 5
X <- data.frame(matrix(runif(n * p), ncol = p))
y <- 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)
## Using dbarts</pre>
```

```
model <- dbarts::bart (X,y, keeptrees = TRUE, ndpost = 200)</pre>
# prediction wrapper function
pfun <- function (object, newdata) {</pre>
predict(object, newdata)
# Calculate shapley values
model_exp <- Explain ( model, X = X, pred_wrapper = pfun )</pre>
# Distribution of Shapley values (boxplot)
# computed based on observation and posterior sample criteria
plot(model_exp,average = "both" )
# Barplot based on observation criteria
plot(model_exp,average = "obs",type ="bar",probs = 0.95)
# Barplot based on posterior sample
plot(model_exp,average = "post",type ="bar" )
# Summary plot based on posterior sample
plot(model_exp,average = "post",type ="bees" )
# Summary plot of the 100th posterior sample
plot(model_exp,average = "post",type ="bees",num_post = 100)
# Barplot of the adjusted baseline
plot(model_exp, type ="bar", adjust= TRUE )
```

plot.ExplainbartMachine

A Function for Visualizing the Shapley Values of BART Models

Description

The plot. ExplainbartMachine function provides various visualization methods for Shapley values. It is designed to visualize ExplainbartMachine class objects, which contain Shapley values computed from models estimated using the bartMachine function from the **bartMachine**. The values and format used in the graph are determined based on the input parameters.

```
## $3 method for class 'ExplainbartMachine'
plot(
    x,
    average = NULL,
    type = NULL,
    num_post = NULL,
```

```
plot.flag = TRUE,
adjust = FALSE,
probs = 0.95,
title = NULL,
xlab = NULL,
ylab = NULL,
...
)
```

Arguments

X	An ExplainbartMachine class object containing the Shapley values of the BART model.
average	Input the reference value for calculating the mean of the object's phi list. "obs" represents abind the average based on observations (#post by #variable), while "post" represents the average based on posterior samples (#obs by #variable). If "both" is entered, calculations are performed based on both observation and posterior sample criteria. If no value is specified, "both" is used as the default.
type	"bar" represents a bar chart that includes the average contribution of each variable, while "bee" represents a summary plot, allowing you to determine the graph's format.
num_post	To check the contribution of variables for a single posterior sample, enter a value within the number of posterior samples.
plot.flag	If average = "obs", the quantile interval of each variable's is provided by default.
adjust	The default value is FALSE. Enter TRUE to check the Shapley values adjusted based on the model's average contribution.
probs	Enter the probability for the quantile interval. The default value is 0.95.
title	The title of the plot, with a default value of NULL.
xlab	Enter the label to be displayed on the x-axis. If not provided, a default label will be used.
ylab	Enter the label for the y-axis if needed.
	Additional arguments to be passed

Value

The plot is returned based on the specified option.:

out

If average is "obs" or "post", a bar plot or summary plot is generated based on the selected averaging criterion. When average is set to "both", either a bar plot or a boxplot comparing the distributions of Shapley values computed under the two averaging criteria is generated. In the case where a boxplot is produced, the observation-based and posterior-sample-based summaries can additionally be rendered separately via out\$observation and out\$post, respectively. If adjust is TRUE, the adjusted Shapley values are displayed. If num_post is specified, a bar plot or summary plot for the selected posterior sample is generated.

26 svy

poststrat_30	Post-Stratification Table of 2014-2018 American Community Survey (ACS)

Description

A dataset used for poststratification modeling based on the 2014–2018 American Community Survey (ACS), including 12,000 combinations of demographic and geographic strata. The table includes more combinations than the number of observed units, so some strata are not represented in the CCES sample. This dataset includes only the 30 states that are present in the cces_30_df.

A data frame with 7200 rows and 6 variables:

state A factor variable representing the 30 selected U.S. states. The same states as those included in cces_30_df.

eth An ethnicity variable stored as a factor (White, Black, Hispanic, Other).

gender A factor variable representing gender (Female, Male).

age A factor variable dividing respondents into age groups (18–29, 30–39, 40–49, 50–59, 60–69, 70+).

educ A factor variable representing educational attainment (No HS, HS, Some college, 4-Year College, Post-grad).

n Number of individuals in each demographic-geographic combination

References

Juan Lopez-Martin, Justin H. Phillips, and Andrew Gelman, Multilevel Regression and Poststratification Case Studies https://bookdown.org/j15522/MRP-case-studies/introduction-to-mrp.html#data

svy

Survey Data on Support for Gay Marriage (2006)

Description

A dataset used for modeling support for gay marriage in the United States, combining individualand state-level covariates from a 2006 survey.

• A data frame with 5000 rows and 11 variables:

id Unique observation identifier

state Two-letter abbreviation for U.S. state

stateid Numeric identifier for the state

region Region code

age Age group (1 = 18-30, 2 = 31-50, 3 = 51-65, 4 = 65+)

gXr Gender and race interaction

waterfall_plot 27

```
educ Education level (1 = LTHS,2 = HS,3 = Some Coll,4 = Coll+) supp_gaymar Support for gay marriage (0 = oppose, 1 = support) pvote Republican presidential vote share in the previous election religcon Proportion of population identifying as religious conservatives libcon State-level ideology score (liberal to conservative)
```

References

Bisbee, James. "Barp: Improving mister p using bayesian additive regression trees." American Political Science Review 113.4 (2019): 1060-1065.

waterfall_plot

Waterfall Plot

Description

The waterfall_plot function is a bar chart that displays the positive and negative contributions across sequential data points, visualizing how each variable's contributions change for a single observation.

Usage

```
waterfall_plot(
  object,
  obs_num = NULL,
  title = NULL,
  geo.unit = NULL,
  geo.id = NULL,
  obs_name = NULL
)
```

Arguments

object	Enter the name of the object that contains the model's contributions and results obtained using the Explain function.
obs_num	observation number (only one)
title	plot title
geo.unit	The name of the stratum variable in the BARP model as a character.
geo.id	Enter a single value of the stratum variable as a character.
obs_name	Enter the name of the vector containing observation IDs or names.

Value

The function returns a waterfall plot.

plot_out The waterfall plot of the observation at index obs_num.

28 waterfall_plot

Examples

```
## Friedman data
set.seed(2025)
n <- 200
p <- 5
X <- data.frame(matrix(runif(n * p), ncol = p))
y <- 10 * sin(pi* X[ ,1] * X[,2]) +20 * (X[,3] -.5)^2 + 10 * X[ ,4] + 5 * X[,5] + rnorm(n)

## Using dbarts
model <- dbarts::bart (X, y, keeptrees = TRUE, ndpost = 200)

# prediction wrapper function
pfun <- function (object, newdata) {
   predict(object, newdata)
}

# Calculate shapley values
model_exp <- Explain(model, X = X, pred_wrapper=pfun)

# Waterfall plot of 100th observation
waterfall_plot(model_exp, obs_num=100)</pre>
```

Index

```
* datasets
    cces_30_df, 4
    census06, 5
    poststrat_30, 26
    svy, 26
barps, 2
cces_30_df, 4
census06, 5
decision_plot, 5
Explain, 7
Explain.barp, 10
Explain.bart, 11
{\tt Explain.bartMachine}, 13
Explain.wbart, 15
{\tt Explain\_stats}, \\ 16
one_hot, 18
plot (plot.ExplainBART), 22
plot.Explain, 19
plot.Explainbarp, 21
\verb|plot.ExplainBART|, 22|
\verb|plot.ExplainbartMachine|, 24|
poststrat_30, 26
svy, 26
waterfall_plot, 27
```