
Package ‘XRJulia’
October 12, 2022

Type Package

Title Structured Interface to Julia

Version 0.9.0

Date 2019-05-01

Author John M. Chambers

Maintainer John Chambers <jmc@r-project.org>

Description A Julia interface structured according to the general
form described in package 'XR' and in the book ``Extending R''.

License GPL (>= 2)

Imports methods, XR

NeedsCompilation no

SystemRequirements Julia, v 1.0 or later

RoxygenNote 6.1.1

Suggests knitr, rmarkdown

VignetteBuilder knitr

Repository CRAN

Date/Publication 2019-05-05 19:10:03 UTC

R topics documented:
XRjulia-package . 2
asServerObjectMethods . 2
findJulia . 3
from_Julia-class . 4
functions . 4
juliaClassDef . 6
JuliaFunction-class . 7
JuliaInterface-class . 8
JuliaObject-class . 9
juliaOptions . 10
juliaVersion . 10

1

2 asServerObjectMethods

largeVectors . 11
noScalar . 12
proxyJuliaObjects . 13
RJulia . 13
setJuliaClass . 13

Index 15

XRjulia-package Structured Interface to Julia

Description

A Julia interface structured according to the general form described in package XR and the book
"Extending R".

Author(s)

John Chambers

Maintainer: John Chambers <jmc@stat.stanford.edu>

References

Chambers, John M. Extending R Chapman & Hall/CRC 2016.

asServerObjectMethods Julia methods for asServerObject()

Description

The default method for JuliaObject is modelled on the overall default method in XR.

For arrays, the method uses the reshape() function in Julia to create a suitable multi-way array.

For "plain" lists, the method produces the Julia expression for a list or a dictionary; with other
attributes, uses the .RClass form.

Usage

S4 method for signature 'ANY,JuliaObject'
asServerObject(object, prototype)

S4 method for signature 'array,JuliaObject'
asServerObject(object, prototype)

S4 method for signature 'list,JuliaObject'
asServerObject(object, prototype)

findJulia 3

Arguments

object The R object.

prototype The proxy for a prototype of the Julia object, supplied by the evaluator.

findJulia Find a Julia Executable

Description

This function looks for an executable Julia application in the local operating system. The location
can be prespecified by setting environment variable JULIA_BIN; otherwise, the function looks in
various conventional locations and if that doesn’t work, runs a shell command to look for julia.

Usage

findJulia(test = FALSE)

Arguments

test Should the function test for the existence of the application. Default FALSE.
Calling with TRUE is useful to bullet-proof examples or tests for the absence of
Julia. If the test search succeeds, the location is saved in environment variable
JULIA_BIN.

Value

The location as a character string, unless test is TRUE, in which case success or failure is returned,
and the location found (or the empty string) is saved as the environment variable. Note that in this
case, FALSE is returned if the Julia package JSON has not been added.

If test is FALSE, failure to find a Julia in the current system is an error.

On Mac OS X

Installing Julia in the usual way does not put the command line version in a standard location, but
instead in a folder under /Applications. Assuming one wants to have Julia available from the
command line, creating a symbolic link to it in /usr/local/bin is a standard approach. If the
current version of Julia is 0.6:

sudo ln -s /Applications/Julia-0.6.app/Contents/Resources/julia/bin/julia /usr/local/bin/julia

If for some reason you did not want this to be available, set the shell variable JULIA_BIN to the first
file in the command, the one in /Applications.

4 functions

from_Julia-class Class for General Julia Composite Type Objects

Description

The Julia side of the interface will return a general object from a composite type as an R object of
class "from_Julia. its Julia fields (converted to R objects) can be accessed by the $ operator.

Slots

serverClass the Julia type.

module the Julia module, or ""

fields the converted versioin of the Julia fields; these are accessed by the $ operator.

functions Function Versions of Methods for Julia Interface evaluators.

Description

Function Versions of Methods for Julia Interface evaluators.

Usage

juliaSource(..., evaluator = RJulia())

juliaAddToPath(directory = "julia",
package = utils::packageName(topenv(parent.frame())), pos = NA,
evaluator = RJulia(.makeNew = FALSE), where = topenv(parent.frame()))

juliaUsing(module, evaluator)

juliaImport(..., evaluator)

juliaSend(object, evaluator = XR::getInterface(.JuliaInterfaceClass))

juliaGet(object, evaluator = XR::getInterface(.JuliaInterfaceClass))

juliaPrint(object, ..., evaluator = XRJulia::RJulia())

juliaEval(expr, ..., evaluator = XR::getInterface(.JuliaInterfaceClass))

juliaCommand(expr, ...,
evaluator = XR::getInterface(.JuliaInterfaceClass))

functions 5

juliaCall(expr, ..., evaluator = XR::getInterface(.JuliaInterfaceClass))

juliaSerialize(object, file, append = FALSE,
evaluator = XR::getInterface(.JuliaInterfaceClass))

juliaUnserialize(file, all = FALSE,
evaluator = XR::getInterface(.JuliaInterfaceClass))

juliaName(object)

juliaImport(..., evaluator)

Arguments

... arguments to the corresponding method for an evaluator object.
evaluator The evaluator object to use. By default, and usually, the current evaluator is

used, and one is started if none has been. But see the note under juliaImport
for the load actions created in special cases.

directory the directory to add, defaults to "julia"
package, pos arguments to the method, usually omitted.
where for the load action, omitted if called from a package source file. Otherwise, must

be the environment in which a load action can take place.
module String identifying a Julia module.
object A proxy in R for a Julia object.
expr A string that should be legal when parsed and evaluated in Julia.
file, append, all

Arguments to the evalutor’s serialize and unserialize methods. See the reference,
Chapter 10.

Functions

• juliaSource: evaluate the file of Julia source.
• juliaAddToPath: adds the directory specified to the search path for Julia modules. If called

from the source directory of a package during installation, sets up a load action for that pack-
age. If you want to add the path to all evaluators in this session, call the function before
creating an evaluator. Otherwise, the action applies only to the specified evaluator or, by
default, to the current evaluator.

• juliaUsing: the "using" form of Julia imports: the module is imported with all exports ex-
posed.

• juliaImport: adds the module information specified to the modules imported for future Julia
evaluator objects.
Add the module to the table of imports for Julia evaluators, and import it to the current evalu-
ator if there is one. If called from the source directory of a package during installation, both
juliaImport and juliaAddToPath() set up a load action for that package. The functional
versions, not the methods themselves, should be called from package source files to ensure
that the load actions are created. Note that calling either function before any evaluator has
been generated will install that call as a setup action for all XRJulia evaluators.

6 juliaClassDef

• juliaSend: sends the object to Julia, converting it via methods for asServerObject and
returns a proxy for the converted object.

• juliaGet: converts the proxy object that is its argument to an R object.

• juliaPrint: Print an object in Julia. Either one object or several arguments as would be
given to the Eval() method.

• juliaEval: evaluates the expr string subsituting the arguments. See the corresponding eval-
uator method for details.

• juliaCommand: evaluates the expr string subsituting the arguments; used for a command that
is not an expression.

• juliaCall: call the function in Julia, with arguments given; expr is the string name of the
function

• juliaSerialize: serialize the object in Julia

• juliaUnserialize: unserialize the file in Julia

• juliaName: return the name by which this proxy object was assigned in Julia

• juliaImport: Import a Julia module or add a directory to the Julia Search Path If called from
the source directory of a package during installation, both juliaImport and juliaAddToPath()
also set up a load action for that package. The functional versions, not the methods themselves,
should be called from package source files to ensure that the load actions are created.

juliaClassDef Information about a Julia Class

Description

The Julia class definition information is computed, and converted to R.

Usage

juliaClassDef(Class, module = "", ..., .ev = RJulia())

Arguments

Class, module Strings identifying the Julia composite type and optionally, the module contain-
ing it.

..., .ev Don’t supply these, .ev defaults to the current Julia interface evaluator.

Value

the Julia definition of the specified class, optionally from the module.

JuliaFunction-class 7

JuliaFunction-class Proxy Objects in R for Julia Functions

Description

A class and generator function for proxies in R for Julia functions.

Usage

JuliaFunction(...)

S4 method for signature 'JuliaFunction'
initialize(name, module = "", evaluator =
RJulia(, ...))

Arguments

name, module The name and module of the Julia function.

evaluator The evaluator object to use. By default, and usually, the current evaluator is
used, and one is started if none has been.

... For RJulia, the arguments as interpreted by the initialize method, so typically
name and optionally module. Remaining arguments are passed along to the next
method.

Details

An object from this class is an R function that is a proxy for a function in Julia. Calls to the R
function evaluate a call to the Julia function. The arguments in the call are converted to equivalent
Julia objects; these typically include proxy objects for results previously computed through the
XRJulia interface.

Slots

name the name of the server language function

module the name of the module, if that needs to be imported

evaluatorClass the class for the evaluator, by default and usually, JuliaInterface

Examples

if(findJulia(test = TRUE)) {
even so, the Julia may not be valid
so we catch any errors in the example, mainly to keep CRAN quiet
tryCatch({set.seed(228)

x <- matrix(rnorm(1000),20,5)
xm <- juliaSend(x)
juliaCommand("using LinearAlgebra")
svdJ <- JuliaFunction("svd")

8 JuliaInterface-class

sxm <- svdJ(xm)
sxm

}, error = function(e) message("Julia Example error: " ,e$message))}

JuliaInterface-class An Interface to Julia

Description

The JuliaInterface class provides an evaluator for computations in Julia, following the structure in
the XR package. Proxy functions and classes allow use of the interface with no explicit reference
to the evaluator. The function RJulia() returns an evaluator object.

Fields

host The remote host, as a character string. By default this will be the local host, and initializing
the evalutor will set the field to "localhost".

port The port number for commuicating to Julia from this evalutor. By default, the port is set by
adding the evaluator number-1 to a base port number. By default the base port is randomly
chosen at package load time (this strategy may change).

The port may be controlled in two ways. If you know a good range or set of ports, it will be
preferrable to supply unique port values (integer) in the initialization call. A less direct way
is set the R option "JuliaBasePort", which will then be used as the base port. Since evaluator
numbers are used to increment the port, the call to options should normally come before
initializing the first Julia evaluator.

julia_bin The location for an executable version of the Julia interpreter. By default, this assumes
there is a file named "julia" on the command-line search path. If Julia is not usable from the
command line or if you want to run with a different version, supply the executable file name
as this argument. It is also possible to set the location for all evaluators by setting the shell
variable JULIA_BIN to this location before starting R.

connection The connection object through which commands are sent to Julia. Normally will be
created by the initialization of the evaluator. Should only be supplied as a currently open
socket on which to communicate with the Julia interpreter.

serverWrapup a vector of actions for the ServerEval to take after evaluation. Used to clean up
after special operations, such as sending large objects to Julia.

largeObject Vectors with length bigger than this will be handled specially. See largeVectors.
Default currently 1000. To change this, call juliaOptions() to set option largeObject.

fileBase a pattern for file names that the evaluator will use in Julia for various data transfer and
other purposes. The evaluator appends "_1", "_2", etc. To change this, call juliaOptions()
to set option fileBase. It is initiaized to an R tempfile with pattern "Julia".

JuliaObject-class 9

Methods

Import(module, ...) Import the module. The "Interface" method assumes a command "import"
in the server language and does not handle any extra arguments (e.g., for importing specific
members).

initialize(...) initializes the evaluator in a language-independent sense.

ProxyClassName(serverClass) If there is a proxy class defined corresponding to this server-
Class, return the name of that class (typically pasted with the server langauge, separated by
underscore). If no such class is defined, return NA.

ServerClassDef(Class, module, ...) Individual interface packages will define this to return a
named list or other object such that value$fields and value$methods are the server fields and
methods, character vectors of names or named objects whose elements give further informa-
tion. This default version returns NULL, indicating that no metadata is available.

ServerEval(expr, key, get) Must be defined by the server language interface: evaluates ‘expr‘(a
text string). If ‘key‘ is an empty string, ‘expr‘ is treated as a directive, with no defined value.
Otherwise, ‘key‘ is a non-empty string, and the server object should be assigned with this
name. The value returned is the R result, which may be an AssignedProxy() object. If ‘get‘ is
TRUE or the value judged simple enough, it will be converted to an ordinary R object instead.

ServerRemove(key) Should be defined by the server language interface: The reference previously
created for ‘key‘ should be removed. What happens has no effect on the client side; the intent
is to potentially recover memory.

ServerTask(task, expr, key = "", get = NA) Call the task operation in the Julia code for the
interface; the arguments must be the simple strings or logical value expected.

Source(filename) Parse and evaluate the contents of the file. This method is likely to be overriden
for particular langauges with a directive to include the contents of the file. The ‘XR‘ version
reads the file and processes the entire contents as a single string, newlines inserted between
lines of the file.

Using(...) The Julia "using" form of importing. Arguments are module names. All the exported
members of these modules will then be available, without prefix.

JuliaObject-class Proxy Objects in R for Julia Objects

Description

This is a class for all proxy objects from a Julia class with an R proxy class definition. Objects will
normally be from a subclass of this class, for the specific Julia class.

Details

Proxy objects returned from the Julia interface will be promoted to objects from a specific R proxy
class for their Julia class, if such a class has been defined.

10 juliaVersion

juliaOptions Get and/or Set Internal Option Parameters in the Julia Evaluator

Description

The Julia code for an evaluator maintains a dictionary, RJuliaParams, of named parameters used
to control various evaluation details. These and any other desired options can be queried and/or set
by calls to juliaOptions.

Usage

juliaOptions(..., .ev = XRJulia::RJulia())

Arguments

... arguments to the corresponding method for an evaluator object.

.ev The evaluator object to use. By default, and usually, the current evaluator.

Details

The function behaves essentially like the options() function in R itself, returning a list of the
current entries corresponding to unnamed character arguments and setting the parameters named to
the value in the corresponding named argument to juliaOptions. If no parameter corresponding
to a name has been set, requesting the corresponding returned value is nothing, NULL in R.

Value

A named list of those parameters requested (as unnamed character string arguments). If none, an
empty list. Note that options are always returned converted to R, not as proxyies.

juliaVersion Get or test the Julia Version information

Description

The Julia constant structure VERSION is returned. If test is TRUE, only returns a logical testing
whether this version is compatible with XRJulia.

Usage

juliaVersion(test = FALSE, .ev = RJulia())

Arguments

test If TRUE, tests compatibility (currently that the major number is at least 1). De-
fault FALSE

.ev The evaluator object to use. By default, and usually, the current evaluator.

largeVectors 11

Value

A named list with the members of the Julia object, the usually relevant ones being "major",
"minor" and "patch". test=TRUE overrides as described.

largeVectors Internal Computations for Large Vectors

Description

Internal Computations for Large Vectors

Sending Large Vectors between R and Julia

Large vectors will be slow to transfer as JSON, and may fail in Julia. Internal computations have
been added to transfer vectors of types real, integer, logical and character by more direct computa-
tions when they are large. The computations and their implementation are described here.

R and Julia both have the concept of numeric (floating point) and integer arrays whose elements have
a consistent type and both implement these (following Fortran) as contiguous blocks in memory,
augmented by length or dimension information. They also both have a mechanism for arrays of
character strings, class "character" in R and array type Array{String, 1} in Julia. Julia has
arrays for boolean data; R stores the corresponding logical as integers.

JSON has no such concepts, so interface evaluators using the standard JSON form provided by
’XR’ must send such data as a JSON list. This will become inefficient for very large data from
these classes. Users have reported failure by Julia to parse the corresponding JSON.

The ’XRJulia’ package (as of version 0.7.9) implements special code to send vectors to Julia, by
writing an intermediate file that Julia reads. The actual text sent to Julia is a call to the relevant Julia
function. The code is triggered within the methods for the asServerObject function, so vectors
should be transferred this way whether on their own or as part of a larger structure, such as an array
or the column of a data frame.

Similarly, large arrays to be retrieved in R by the Get() method or the optional argument .get =
TRUE will be written to an intermediate file by Julia and read by R.

As vectors become large, direct transfer becomes much faster. On a not-very-powerful laptop,
vectors of length 10^7 transfer in an elapsed time of a few seconds. Character vectors are slightly
slower than numeric, as explained below, but in all cases it would be hard to do much computation
with the data that did not swamp the cost of transfer. That said, as always it’s more sensible to
transfer data once and then use the corresponding proxy object in later calls.

Details

For all vectors, the method uses binary writes and reads, which are defined in both R and Julia. No
special computationss are needed for numeric, integer, complex and raw. For these, the R binary
representation corresponds to array types in Julia. The special pseudo-value NA is defined for vectors
in R, but no corresponding concept exists in Julia. For numeric and complex vectors, the floating-
point pattern NaN is used. For all other vectors, a warning is issued and either a numeric object or a
special character string is used instead.

12 noScalar

For logicals, the internal representation in R uses integers. The Julia code when data is sent from R
casts the integer array to a boolean array. On the return side, the Julia boolean array is converted to
integer before writing.

Character vectors take a little more work, partly because of a weirdness in binary writes for string
arrays in Julia. Where R character vectors can be written in binary form and then read back in,
writing a String array in Julia omits the end-of-string character, effectively writing a single string,
from which the array cannot be recovered. Communicating the entire vector to Julia requires that
the Julia side uses this information to split the single string resulting from the R binary write by
matching the end-of-string character explicitly For sending back to R, the Julia code appends an
end-of-string character to each string before writing the array to a file. This produces the R format
for a binary read of a character vector.

Two fields in the evaluator object control details. A large object is defined as a vector of length
greater than the integer field largeObject. Julia creates intermediate files for sending large arrays
to R by appending sequenctial numbers to a character field fileBase. By default, largeObject and
fileBase is obtained from tempfile() with pattern "Julia". Note that all the files are removed
at the end of the evaluation of the expression sending or getting the relevant objects.

Since these fields must be known to the Julia evaluator, they should not be set directly—this will
have no effect. Instead call the function juliaOptions() with these parameter names.

noScalar Send a Non-scalar Version of an Object

Description

Ensures that an object is interpreted as a vector (array) when sent to the server language. The default
strategy is to send length-1 vectors as scalars.

Usage

noScalar(object)

Arguments

object A vector object. Calling with a non-vector is an error.

Value

the object, but with the S4 bit turned on. Relies on the convention that XR interfaces leave S4
objects as vectors, not scalars, even when they are of length 1

References

Chambers, John M. (2016) Extending R, Chapman & Hall/CRC. (Chapter 12, discussing this pack-
age, is included in the package: ../doc/Chapter_XR.pdf.)

../doc/Chapter_XR.pdf

proxyJuliaObjects 13

proxyJuliaObjects Proxy Objects in R for Julia Objects

Description

Proxy Objects in R for Julia Objects

RJulia An Evaluator for the Julia Interface.

Description

Returns an evaluator for the Julia interface. Starts one on the first call, or if arguments are provided;
providing argument .makeNew = TRUE will force a new evaluator. Otherwise, the current evaluator
is returned.

Usage

RJulia(...)

Arguments

... Arguments passed to getInterface() but none usually required. See JuliaInterface
for details of the evaluator.

setJuliaClass Define a Proxy Julia Class (Composite Type)

Description

Given the name and optionally the module for a Julia composite type, defines an R proxy class with
the same fields as the Julia type. By default, uses metadata from Julia to find the fields. If the call
supplies the desired field names explicitly, metadata is not used.

Usage

setJuliaClass(juliaType, module = "", fields = character(),
where = topenv(parent.frame()), proxyObjectClass = "JuliaObject",
...)

14 setJuliaClass

Arguments

juliaType, module

Strings identifying the composite type and optionally the module containing it.
In normal use, metadata from Julia is used to find the definition of the type.

fields, where, proxyObjectClass, ...

Overriding arguments that should not be used by direct calls from package
source code.

Index

∗ package
XRjulia-package, 2

asServerObject, 6
asServerObject,ANY,JuliaObject-method

(asServerObjectMethods), 2
asServerObject,array,JuliaObject-method

(asServerObjectMethods), 2
asServerObject,list,JuliaObject-method

(asServerObjectMethods), 2
asServerObjectMethods, 2

findJulia, 3
from_Julia-class, 4
functions, 4

getInterface, 13

initialize,JuliaFunction-method
(JuliaFunction-class), 7

juliaAddToPath (functions), 4
juliaCall (functions), 4
juliaClassDef, 6
juliaCommand (functions), 4
juliaEval (functions), 4
JuliaFunction (JuliaFunction-class), 7
JuliaFunction-class, 7
juliaGet (functions), 4
juliaImport (functions), 4
JuliaInterface, 7, 13
JuliaInterface (JuliaInterface-class), 8
JuliaInterface-class, 8
juliaName (functions), 4
JuliaObject (JuliaObject-class), 9
JuliaObject-class, 9
juliaOptions, 8, 10, 12
juliaPrint (functions), 4
juliaSend (functions), 4
juliaSerialize (functions), 4
juliaSource (functions), 4

juliaUnserialize (functions), 4
juliaUsing (functions), 4
juliaVersion, 10

largeVectors, 8, 11

noScalar, 12

options, 8, 10

proxyJuliaObjects, 13

RJulia, 13

setJuliaClass, 13

tempfile, 12

XRjulia (XRjulia-package), 2
XRjulia-package, 2

15

	XRjulia-package
	asServerObjectMethods
	findJulia
	from_Julia-class
	functions
	juliaClassDef
	JuliaFunction-class
	JuliaInterface-class
	JuliaObject-class
	juliaOptions
	juliaVersion
	largeVectors
	noScalar
	proxyJuliaObjects
	RJulia
	setJuliaClass
	Index

