Package 'Umatrix'

April 25, 2024

Type Package Title Visualization of Structures in High-Dimensional Data Version 4.0 Date 2024-04-25 Author Florian Lerch[aut,cre], Michael Thrun[aut], Felix Pape[ctb], Jorn Lotsch[aut], Raphael Paebst[ctb], Alfred Ultsch[aut] Maintainer Jorn Lotsch < j.lotsch@em.uni-frankfurt.de> Description By gaining the property of emergence through self-organization, the enhancement of SOMs(self organizing maps) is called Emergent SOM (ESOM). The result of the projection by ESOM is a grid of neurons which can be visualised as a three dimensional landscape in form of the Umatrix. Further details can be found in the referenced publications (see url). This package offers tools for calculating and visualising the ESOM as well as Umatrix, Pmatrix and UStarMatrix. All the functionality is also available through graphical user interfaces implemented in 'shiny'. Based on the recognized data structures, the method can be used to generate new data. Imports Rcpp, ggplot2, shiny, shinyjs, reshape2, fields, plyr, png, tools, grid, abind, deldir, geometry, pdist, AdaptGauss, **DataVisualizations** Suggests rgl LinkingTo Rcpp **Depends** R (>= 3.5.0) License GPL-3 URL http://wscg.zcu.cz/wscg2016/short/A43-full.pdf NeedsCompilation yes **Repository** CRAN Date/Publication 2024-04-25 09:30:02 UTC

R topics documented:

Umatrix-package

	16
ustarmatrixCalc	15
umatrixForEsom	
showMatrix3D	13
pmatrixForEsom	12
plotMatrix	11
iUstarmatrix	10
iUmapIsland	9
iEsomTrain	8
iClassification	8
Hepta	7
generate_data	6
esomTrain	4
calculate_Delauny_radius	3
BMUHepta	3

Index

Umatrix-package U

Umatrix-package

Description

The **ESOM**(emergent self organizing map) is an improvement of the regular **SOM**(self organizing map) which allows for toroid grids of neurons and is intended to be used in combination with the **Umatrix**. The set of neurons is referred to as **weights** within this package, as they represent the values within the high dimensional space. The neuron with smallest distance to a datapoint is called a **Bestmatch** and can be considered as projection of said datapoint. As the Umatrix is usually toroid, it is drawn four consecutive times to remove border effects. An island, or Imx, is a filter mask, which cuts out a subset of the Umatrix, which shows every point only a single time while avoiding border effects cutting through potential clusters. Finally the Pmatrix shows the density structures within the grid, by a set radius. It can be combined with the Umatrix resulting in the UStarMatrix, which is therefore a combination of density based structures as well as clearly divided ones.

References

Ultsch, A.: Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series, In Oja, E. & Kaski, S. (Eds.), Kohonen maps, (1 ed., pp. 33-46), Elsevier, 1999.

Ultsch, A.: Maps for the visualization of high-dimensional data spaces, Proc. Workshop on Self organizing Maps (WSOM), pp. 225-230, Kyushu, Japan, 2003.

Ultsch, A.: U* C: Self-organized Clustering with Emergent Feature Maps, Lernen, Wissensentdeckung und Adaptivitaet (LWA), pp. 240-244, Saarbruecken, Germany, 2005.

Lotsch, J., Ultsch, A.: Exploiting the Structures of the U-Matrix, in Villmann, T., Schleif, F.-M., Kaden, M. & Lange, M. (eds.), Proc. Advances in Self-Organizing Maps and Learning Vector Quantization, pp. 249-257, Springer International Publishing, Mittweida, Germany, 2014.

Ultsch, A., Behnisch, M., Lotsch, J.: ESOM Visualizations for Quality Assessment in Clustering, In Merenyi, E., Mendenhall, J. M. & O'Driscoll, P. (Eds.), Advances in Self-Organizing Maps and Learning Vector Quantization: Proceedings of the 11th International Workshop WSOM 2016, pp. 39-48, Houston, Texas, USA, January 6-8, 2016, (10.1007/978-3-319-28518-4_3), Cham, Springer International Publishing, 2016.

Thrun, M. C., Lerch, F., Lotsch, J., Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 2016.

BMUHepta

Best matching units (BMU) of Hepta from FCPS (Fundamental Clustering Problem Suite)

Description

Best matching units (BMU) of an ESOM projection of the Hepta data set from FCPS (Fundamental Clustering Problem Suite) on an 80 x 40 planar grid of artifical neurons.

Usage

data("BMUHepta")

Details

Size 212, Dimensions 3 (key, linecoordinates, columncoorditaes)

Classes 7, stored in Hepta\$Cls

References

Ultsch A, Lotsch J: Machine-learned cluster identification in high-dimensional data. J Biomed Inform. 2017 Feb;66:95-104. doi: 10.1016/j.jbi.2016.12.011. Epub 2016 Dec 28.

Examples

```
data("BMUHepta")
str("BMUHepta")
```

calculate_Delauny_radius

Calculate the Delauny graph based radius

Description

Function to calculate the radius for data generation.

Usage

```
calculate_Delauny_radius(Data, BestMatches,
Columns = 80, Lines = 50, Toroid = TRUE)
```

Arguments

Matrix of data (as submitted to Umatrix generation)
Array with positions of Bestmatches
Number of columns of the Umatrix
Number of columns of the Umatrix
Whether a toroid Umatrx was used

Value

Returns a list of results.

neighbourDistances

	Distances on the Umatrix neigborhood matrix.
RadiusByEM	Radius suggested by EM algorithm.

References

Ultsch A, Lotsch J: Machine-learned cluster identification in high-dimensional data. J Biomed Inform. 2017 Feb;66:95-104. doi: 10.1016/j.jbi.2016.12.011. Epub 2016 Dec 28.

Examples

```
## Not run:
data("Hepta")
data("HeptaBMU")
DelaunyHepta <- calculate_Delauny_radius(Data = Hepta$Data, BestMatches = HeptaBMU, Toroid = FALSE)
## End(Not run)
```

esomTrain

Train an ESOM (emergent self organizing map) and project data

Description

The ESOM (emergent self organizing map) algorithm as defined by [Ultsch 1999]. A set of weigths(neurons) on a two-dimensional grid get trained to adapt the given datastructure. The weights will be used to project data on a two-dimensional space, by seeking the BestMatches for every datapoint.

esomTrain

Arguments

Data	Data that will be used for training and projection	
Lines	Height of grid	
Columns	Width of grid	
Epochs	Number of Epochs the ESOM will run	
Toroid	If TRUE, the grid will be toroid	
NeighbourhoodFu	nction	
	Type of Neighbourhood; Possible values are: "cone", "mexicanhat" and "gauss"	
StartLearningRa	te	
	Initial value for LearningRate	
EndLearningRate		
	Final value for LearningRate	
StartRadius	Start value for the Radius in which will be searched for neighbours	
EndRadius	End value for the Radius in which will be searched for neighbours	
NeighbourhoodCo	boling	
	Cooling method for radius; "linear" is the only available option at the moment	
LearningRateCooling		
	Cooling method for LearningRate; "linear" is the only available option at the moment	
shinyProgress	Generate progress output for shiny if Progress Object is given	
ShiftToHighestDensity		
	If True, the Umatrix will be shifted so that the point with highest density will be at the center	
InitMethod	name of the method that will be used to choose initializations Valid Inputs: "uni_min_max": uniform distribution with minimum and maximum from sam- pleData "norm_mean_std": normal distribution based on mean and standard deviation of sampleData	
Кеу	Vector of numeric keys matching the datapoints. Will be added to Bestmatches	
UmatrixForEsom	If TRUE, Umatrix based on resulting ESOM is calculated and returned	

Details

On a toroid grid, opposing borders are connected.

Value

List with	
BestMatches	BestMatches of datapoints
Weights	Trained weights
Lines	Height of grid
Columns	Width of grid
Toroid	TRUE if grid is a toroid
JumpingDataPointsHist	
	Nr of DataPoints that jumped to a different BestMatch in every epoch

References

Kohonen, T., Self-organized formation of topologically correct feature maps. Biological cybernetics, 1982. 43(1): p. 59-69.

Ultsch, A., Data mining and knowledge discovery with emergent self-organizing feature maps for multivariate time series. Kohonen maps, 1999. 46: p. 33-46.

Examples

```
data('Hepta')
res=esomTrain(Hepta$Data, Key = 1:nrow(Hepta$Data))
```

generate_data Generative ESOM

Description

Function to generate new data with the same structure as the input data.

Usage

```
generate_data(Data, density_radius, Cls = NULL, gen_per_data = 10)
```

Arguments

Data	Matrix of data (as submitted to Umatrix generation)
density_radius	Numeric value of data generation radius
Cls	Classification of the data as a vector
gen_per_data	New isntances per original iunstance to be generated

Value

Returns a list of results.

original_data The input data. original_classes The input classes. generated_data The generated data. generated_classes The generated classes.

References

Ultsch A, Lotsch J: Machine-learned cluster identification in high-dimensional data. J Biomed Inform. 2017 Feb;66:95-104. doi: 10.1016/j.jbi.2016.12.011. Epub 2016 Dec 28.

Hepta

Examples

```
## Not run:
data("Hepta")
data("HeptaBMU")
HeptaData <- Hepta$Data
HeptaCls <y- Hepta$Cls
HeptaGenerated <- generate_data(HeptaData, 1, HeptaCls )</pre>
```

End(Not run)

Hepta

Hepta from FCPS (Fundamental Clustering Problem Suite)

Description

Dataset with 7 easily seperable classes.

Usage

data("Hepta")

Details

Size 212, Dimensions 3, stored in Hepta\$Data

Classes 7, stored in Hepta\$Cls

References

Ultsch, A.: U* C: Self-organized Clustering with Emergent Feature Maps, Lernen, Wissensentdeckung und Adaptivitaet (LWA), pp. 240-244, Saarbruecken, Germany, 2005.

Examples

```
data("Hepta")
str("Hepta")
```

iClassification

Description

This tool is a 'shiny' GUI that visualizes a given Umatrix and allows the user to select areas and mark them as clusters.

Arguments

Umatrix	Matrix of Umatrix Heights
BestMatches	Array with positions of Bestmatches
Cls	Classification of the Bestmatches
Imx	Matrix of an island that will be cut out of the Umatrix
Toroid	Are BestMatches placed on a toroid grid? TRUE by default

Value

A vector containing the selected class ids. The order is corresponding to the given Bestmatches

References

Thrun, M. C., Lerch, F., Loetsch, J., Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 2016.

Examples

```
## Not run:
data("Hepta")
e = esomTrain(Hepta$Data, Key = 1:nrow(Hepta$Data))
cls = iClassification(e$Umatrix, e$BestMatches)
```

End(Not run)

iEsomTrain

iEsomTrain

Description

Trains the ESOM and shows the Umatrix.

iUmapIsland

Arguments

Data	Matrix of Data that will be used to learn. One DataPoint per row
BestMatches	Array with positions of Bestmatches
Cls	Classification of the Bestmatches as a vector
Кеу	Numeric vector of keys matching the Bestmatches
Toroid	Are BestMatches placed on a toroid grid? TRUE by default

Value

List with

Umatrix	matrix with height values of the umatrix	
BestMatches	matrix containing the bestmatches	
Lines	number of lines of the chosen ESOM	
Columns	number of columns of the chosen ESOM	
Epochs	number of epochs of the chosen ESOM	
Weights	List of weights	
Toroid	True if a toroid grid was used	
EsomDetails	Further details describing the chosen ESOM parameters	
JumpingDataPointsHist		
	Number of Datapoints that jumped to another neuron in each epoch	

References

Thrun, M. C., Lerch, F., Loetsch, J., Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 2016.

iUmapIsland

iUmapIsland

Description

The toroid Umatrix is usually drawn 4 times, so that connected areas on borders can be seen as a whole. An island is a manual cutout of such a tiled visualization, that is selected such that all connected areas stay intact. This 'shiny' tool allows the user to do this manually.

Arguments

Umatrix	Matrix of Umatrix Heights
BestMatches	Array with positions of BestMatches
Cls	Classification of the BestMatches

Value

Boolean Matrix that represents the island within the tiled Umatrix

References

Thrun, M. C., Lerch, F., Loetsch, J., Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 2016.

Examples

```
## Not run:
data("Hepta")
e = esomTrain(Hepta$Data, Key = 1:nrow(Hepta$Data))
Imx = iUmapIsland(e$Umatrix, e$BestMatches)
plotMatrix(e$Umatrix, e$BestMatches, Imx = Imx$Imx)
```

End(Not run)

iUstarmatrix *iUstarmatrix*

Description

Calculates the Ustarmatrix by combining a Umatrix with a Pmatrix.

Arguments

Weights	Weights that were trained by the ESOM algorithm
Lines	Height of the used grid
Columns	Width of the used grid
Data	Matrix of Data that was used to train the ESOM. One datapoint per row
Imx	Island mask that will be cut out from displayed Umatrix
Cls	Classification of the Bestmatches
Toroid	Are weights placed on a toroid grid?

Value

Ustarmatrix matrix with height values of the Ustarmatrix

References

Thrun, M. C., Lerch, F., Loetsch, J., Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 2016.

10

plotMatrix

plotMatrix

Description

Draws a plot based of given Umatrix or Pmatrix.

Arguments

Matrix	Umatrix or Pmatrix to be plotted	
BestMatches	Positions of BestmMtches to be plotted onto the Umatrix	
Cls	Class identifier for the BestMatches	
ClsColors	Vector of colors that will be used to colorize the different classes	
ColorStyle	If "Umatrix" the colors of a Umatrix (Blue -> Green -> Brown -> White) will be used; If "Pmatrix" the colors of a Pmatrix (White -> Yellow -> Red) will be used	
Toroid	Should the Umatrix be drawn 4times?	
BmSize	Integer between 0.1 and 5, magnification factor of the drawn BestMatch circles	
DrawLegend	If TRUE, a color legend will be drawn next to the plot	
FixedRatio	If TRUE, the plot will be drawn with a fixed ratio of x and y axis	
CutoutPol	Only draws the area within given polygon	
Nrlevels	Number of height levels that will be used within the Umatrix	
TransparentCon	tours	
	Use half transparent contours. Looks better but is slow	
Imx	Mask to cut out an island. Every value should be either 1 (stays in) or 0 (gets cut out)	
Clean	If TRUE axis, margins, surrounding the Umatrix image will be removed	
RemoveOcean	If TRUE, the surrounding blue area around an island will be reduced as much as possible (while still maintaining a rectangular form)	
Transparent0ce	an	
	If TRUE, the surrounding blue area around an island will be transparent	
Title	A title that will be drawn above the plot	
BestMatchesLab	els	
	Vector of strings corresponding to the order of BestMatches which will be drawn on the plot as labels	
BestMatchesShape		
	Numeric value of Shape that will be used. Responds to the usual shapes of ggplot	
MarkDuplicatedBestMatches		
	If TRUE, BestMatches that are shown more than once within an island, will be marked	
YellowCircle	If TRUE, a yellow circle is drawn around Bestmatches to distinct them better from background	

Details

The heightScale (nrlevels) is set at the proportion of the 1 percent quantile against the 99 percent quantile of the matrix values.

Value

A 'ggplot' of a Matrix

References

Thrun, M. C., Lerch, F., Loetsch, J., Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 2016.

Ultsch, A.: Maps for the visualization of high-dimensional data spaces, Proc. Workshop on Self organizing Maps (WSOM), pp. 225-230, Kyushu, Japan, 2003.

Siemon, H.P., Ultsch, A.: Kohonen Networks on Transputers: Implementation and Animation, in: Proceedings Intern. Neural Networks, Kluwer Academic Press, Paris, pp. 643-646, 1990.

Examples

```
data("Hepta")
e = esomTrain(Hepta$Data, Key = 1:nrow(Hepta$Data))
plotMatrix(e$Umatrix,e$BestMatches)
```

pmatrixForEsom pmatrixForEsom

Description

Generates a Pmatrix based on the weights of an ESOM.

Arguments

Data	A [n,k] matrix containing the data
Weights	Weights stored as a list in a 2D matrix
Lines	Number of lines of the SOM that is described by weights
Columns	Number of columns of the SOM that is described by weights
Radius	The radius for measuring the density within the hypersphere
PlotIt	If set the Pmatrix will also be plotted
Toroid	Are BestMatches placed on a toroid grid? TRUE by default

Value

UstarMatrix

showMatrix3D

References

Ultsch, A.: Maps for the visualization of high-dimensional data spaces, Proc. Workshop on Self organizing Maps (WSOM), pp. 225-230, Kyushu, Japan, 2003.

Ultsch, A., Loetsch, J.: Computed ABC Analysis for Rational Selection of Most Informative Variables in Multivariate Data, PloS one, Vol. 10(6), pp. e0129767. doi 10.1371/journal.pone.0129767, 2015.

Thrun, M. C., Lerch, F., Loetsch, J., Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 2016.

Examples

showMatrix3D showMatrix3D

Description

Visualizes the matrix(Umatrix/Pmatrix) in an interactive window in 3D.

Arguments

Matrix	Matrix to be plotted
BestMatches	Positions of BestMatches to be plotted onto the matrix
Cls	Class identifier for the BestMatch at the given point
Imx	a mask (island) that will be used to cut out the Umatrix
Toroid	Should the Matrix be drawn 4 times (in a toroid view)
HeightScale	Optional. Scaling Factor for Mountain Height
BmSize	Size of drawn BestMatches
Remove0cean	Remove as much area sourrounding an island as possible
ColorStyle	Either "Umatrix" or "Pmatrix" respectevily for their colors
ShowAxis	Draw an axis arround the drawn matrix
SmoothSlope	Try to increase the island size, to get smooth slopes around the island
ClsColors	Vector of colors that will be used for classes
FileName	Name for a stl file to write the Matrix to

Details

The heightScale is set at the proportion of the 1 percent quantile against the 99 percent quantile of the Matrix values.

References

Thrun, M. C., Lerch, F., Loetsch, J., Ultsch, A.: Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 2016.

Examples

End(Not run)

```
## Not run:
data("Hepta")
e = esomTrain(Hepta$Data, Key = 1:nrow(Hepta$Data))
showMatrix3D(e$Umatrix)
```

umatrixForEsom umatrixForEsom

Description

Calculate the Umatrix for given ESOM projection

Arguments

Weights	Weights from which the Umatrix will be calculated
Lines	Number of lines of the SOM that is described by weights
Columns	Number of columns of the SOM that is described by weights
Toroid	Boolean describing if the neural grid should be borderless

Value

Umatrix

References

Ultsch, A. and H.P. Siemon, Kohonen's Self Organizing Feature Maps for Exploratory Data Analysis. 1990.

ustarmatrixCalc

Examples

ustarmatrixCalc ustarmatrixCalc

Description

The UStarMatrix is a combination of the Umatrix (average distance to neighbours) and Pmatrix (density in a point). It can be used to improve the Umatrix, if the dataset contains density based structures.

Arguments

Umatrix	A given Umatrix
Pmatrix	A density matrix

Value

UStarMatrix

References

Ultsch, A. U* C: Self-organized Clustering with Emergent Feature Maps. in Lernen, Wissensentdeckung und Adaptivitaet (LWA). 2005. Saarbruecken, Germany.

Examples

Index

* ESOM esomTrain, 4 Umatrix-package, 2 * High-Dimensional Data Umatrix-package, 2 * High-dimensional Umatrix-package, 2 * Highdimensional Umatrix-package, 2 * P-Matrix pmatrixForEsom, 12 * P-matrix pmatrixForEsom. 12 * Pmatrix pmatrixForEsom, 12 * **Projection** Umatrix-package, 2 * SOM esomTrain, 4 Umatrix-package, 2 * U*-Matrix ustarmatrixCalc, 15 * U*-matrix ustarmatrixCalc, 15 * U*matrix ustarmatrixCalc, 15 * U-Matrix Umatrix-package, 2 umatrixForEsom, 14 * U-matrix umatrixForEsom, 14 * Umatrix Umatrix-package, 2 umatrixForEsom, 14 * Ustar-Matrix ustarmatrixCalc, 15 * Ustar-matrix ustarmatrixCalc, 15 * Ustarmatrix

ustarmatrixCalc, 15 * Visualization Umatrix-package, 2 * datasets Hepta FCPS ESOM BMUHepta, 3 * datasets Hepta FCPS Hepta, 7 * esom esomTrain, 4 * self organizing map esomTrain, 4 * som esomTrain, 4 BMUHepta, 3 calculate_Delauny_radius, 3 esomTrain, 4 generate_data, 6 Hepta, 7 iClassification, 8 iEsomTrain, 8 iUmapIsland, 9 iUstarmatrix, 10 plotMatrix, 11 pmatrixForEsom, 12 showMatrix3D, 13 Umatrix-package, 2 umatrixForEsom. 14 ustarmatrixCalc, 15