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SpiceFP-package A Sparse and Structured Procedure to Identify Combined Effects of
Functional Predictors

Description

A set of functions allowing to implement the ’SpiceFP’ approach which is iterative. It involves
transformation of functional predictors into several candidate explanatory matrices (based on con-
tingency tables), to which relative edge matrices with contiguity constraints are associated. Gen-
eralized Fused Lasso regression are performed in order to identify the best candidate matrix, the
best class intervals and related coefficients at each iteration. The approach is stopped when the
maximal number of iterations is reached or when retained coefficients are zeros. Supplementary
functions allow to get coefficients of any candidate matrix or mean of coefficients of many candi-
dates. The methods in this package are describing in Girault Gnanguenon Guesse, Patrice Loisel,
Bénedicte Fontez, Thierry Simonneau, Nadine Hilgert (2021) "An exploratory penalized regres-
sion to identify combined effects of functional variables -Application to agri-environmental issues"
https://hal.archives-ouvertes.fr/hal-03298977.

Details

The main function of the package is the spicefp function. It directly performs the three main steps
of the SpiceFP approach, by using intermediate functions of the package.
1) At he first step, contingency tables are constructed by defining joint modalities using class in-
tervals or bins. Several candidate partitions are then defined. For each statistical individual i and

https://hal.archives-ouvertes.fr/hal-03298977
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each candidate partition (denoted u here), the 2 (resp. 3) functional predictors are transformed into
frequency bi(resp. tri)-variate histograms (or contingency tables), stored as row vectors. The com-
bination of these row vectors for all individuals enables the construction of a candidate explanatory
matrix indexed by u (denoted here Xu). The function candidates is designed to build these can-
didate matrices.
2) At the second step, for each candidate explanatory matrix, an edge matrix is defined to represent
the contiguity constraints between modalities of the contingency table.
3) Finally at the last step, the best class intervals and related regression coefficients are defined by:
i) performing a Generalized Fused Lasso using each candidate explanatory matrix. The SpiceFP
model is the following

yi = Xu
i β

u + εi,

where βu is the coefficient to be estimated on the 2D (resp. 3D) intervals. The estimator of β is
obtained as follows:

β̂u,γ(λ) = argmin
1

2
‖y −Xuβ‖22 + λ‖Du,γβ‖1,

where λ is a penalty parameter that controls the smoothness of the coefficients, and γ is the ratio be-
tween the regularization parameters of parsimony and fusion. ii) choosing the best candidate matrix
and selecting its variables using an information criterion and checking the shutdown conditions to
stop the approach. Indeed, SpiceFP may be used in an iterative way. It therefore allows to identify
up to K best candidate matrices and related coefficients.

Author(s)

Maintainer: Girault Gnanguenon Guesse <girault.gnanguenon@gmail.com>

Authors:

• Patrice Loisel <patrice.loisel@inrae.fr>

• Benedicte Fontez <benedicte.fontez@supagro.fr>

• Nadine Hilgert <nadine.hilgert@inrae.fr>

Other contributors:

• Thierry Simonneau <thierry.simonneau@inrae.fr> [contractor]

• Isabelle Sanchez <isabelle.sanchez@inrae.fr> [contractor]

candidates candidates

Description

The "candidates" function essentially provides the candidate matrices and their characteristics.
These candidate matrices can be constructed from 2 or 3 functional predictors.
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Usage

candidates(
fp1,
fp2,
fp3 = NULL,
fun1,
fun2,
fun3 = NULL,
parlists,
ncores = parallel::detectCores() - 1,
xcentering = TRUE,
xscaling = FALSE

)

Arguments

fp1 numerical matrix with in columns observations of one statistical individual to
partition. Each column corresponds to the functional predictor observation for
one statistical individual. The order of statistical individuals is the same as in
fp2. It is assumed that no data are missing and that all functional predictors are
observed on an equidistant (time) scale.

fp2 numerical matrix with the same number of columns and rows as fp1. Columns
are also observations. The order of statistical individuals is the same as in fp1.

fp3 NULL by default. numerical matrix with the same number of columns and rows
as fp1 and fp2. The order of statistical individuals is the same as in fp1 and fp2.

fun1 a function object with 2 arguments. First argument is fp1 and the second is a list
of parameters that will help to partition fp1, such as the number of class inter-
vals, etc. For example, the list of parameters for using the logbreaks function is
equivalent to list(alpha, J). All arguments to be varied for the creation of differ-
ent candidate matrices must be stored in the parameter list. The other arguments
must be set by default.

fun2 a function object with 2 arguments. First argument is fp2 and the second is a list
of parameters.

fun3 NULL by default. Same as fun1 and fun2, a function with 2 arguments fp3 and
a list of parameters.

parlists list of 2 elements when fp3 and fun3 are equal to NULL or of 3 elements when
fp3 and fun3 are provided. All elements of parlists are lists that have the same
length. Each list contains all the lists of parameters required to create different
candidates. The first element of parlists concerns the list of parameters required
for fun1, the second element is relative to fun2 and the third to fun3. See Exam-
ple 2 below.

ncores numbers of cores that will be used for parallel computation. By default, it is
equal to detectCores()-1.

xcentering TRUE by default. Defined whether or not the variables in the new candidate
matrices should be centered.

xscaling FALSE by default. Defined whether or not the variables in the candidate matri-
ces should be scaled.
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Details

The function begins by partitioning each of the functional predictors using the function and associ-
ated parameter lists. Once the class intervals are obtained for each predictor, a contingency table is
created for each statistical individual. This table counts the components of the observation variable
(time for time series). The contingency table is then transformed into a row vector that corresponds
to a row of the candidate matrix created. The number of candidate matrices is equal to the length of
each element contained in parlists. For a fixed index, the functional predictors (fp1, fp2, fp3), the
functions (fun1, fun2, fun3) and the lists of parameters associated to the index in each element of
parlists allow to create a single candidate matrix. In addition to constructing the candidate matrices,
the function associates with each matrix a vector containing the index and the numbers of class
intervals used per predictor.

Value

The function returns a list with:

spicefp.dimension the dimension of the approach. Equal to 2 if fp3=NULL and 3 if not

candidates a list that has the same length as the elements of parlists. Each element of this list
contains a candidate matrix and a vector with index and the numbers of class intervals used
per predictor

fp1, fp2, fp3, fun1, fun2, fun3, parlists, xcentering, xscaling same as inputs

Examples

##linbreaks: a function allowing to obtain equidistant breaks
linbreaks<-function(x,n){

sort(round(seq(trunc(min(x)),
ceiling(max(x)+0.001),
length.out =unlist(n)+1),
1)

)
}

p<-expand.grid(c(12,15),c(15,20))
pl<-list(split(p[,1], seq(nrow(p))),

split(p[,2], seq(nrow(p))))

# Setting ncores=2 for this example check purpose
test<-candidates(fp1=matrix(rnorm(1000,52,15),ncol=10),

fp2=matrix(rpois(1000,50),ncol=10),
fun1=linbreaks,
fun2=linbreaks,
parlists=pl,
xcentering = FALSE,
xscaling = FALSE,
ncores=2)

str(test)
names(test)

# Example 2 from the spiceFP data
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tpr.nclass=seq(10,16,2)
irdc.nclass=seq(20,24,2)
irdc.alpha=c(0.01,0.02,0.03)
p2<-expand.grid(tpr.nclass, irdc.alpha, irdc.nclass)
parlist.tpr<-split(p2[,1], seq(nrow(p2)))
parlist.irdc<-split(p2[,2:3], seq(nrow(p2)))
parlist.irdc<-lapply(

parlist.irdc,function(x){
list(x[[1]],x[[2]])}

)
m.irdc <- as.matrix(Irradiance[,-c(1)])
m.tpr <- as.matrix(Temperature[,-c(1)])
test2<-candidates(fp1=m.irdc,

fp2=m.tpr,
fun1=logbreaks,
fun2=linbreaks,
parlists=list(parlist.irdc,

parlist.tpr),
xcentering = TRUE,
xscaling = FALSE,
ncores=2)

length(test2$candidates)
class(test2$candidates)
#View(test2$candidates[[1]][[1]])
dim(test2$candidates[[1]][[1]])
test2$candidates[[1]][[2]]

# Closing the connections for the example check purpose
closeAllConnections()

coef_spicefp coef_spicefp

Description

This function allows to obtain the coefficients of a model (involving a candidate matrix and 2 reg-
ularization parameters). There are two possible options to use this function: 1/ by minimizing an
information criterion and selecting a number of model (option by default), or 2/ directly by provid-
ing the parameters of the model(s) that the user wishes to reconstruct.

Usage

coef_spicefp(
spicefp.result,
iter_,
criterion = "AIC_",
nmodels = 1,
model.parameters = NULL,
dim.finemesh = NULL,
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ncores = parallel::detectCores() - 1,
write.external.file = TRUE

)

Arguments

spicefp.result List. Outputs of the spicefp function.

iter_ integer. number of the iteration of interest.

criterion character. One of "AIC_", "BIC_", "Cp_". Can be NULL, "AIC_" by default. If
specified, nmodels must also be provided.

nmodels integer. Equal to 1 by default. Represents the number of best models, according
to the information criterion used. Should be NULL if criterion = NULL.

model.parameters

data.frame. NULL by default. One or more rows contained in the file where
the model statistics were stored. Be careful to use the file related to the selected
iteration. Names used in model.parameters shoud be the same in the file.

dim.finemesh numeric vector of length 2 or 3. This vector informs about the dimension of the
fine-mesh arrays (or matrices).

ncores numbers of cores that will be used for parallel computation. By default, it is
equal to detectCores()-1.

write.external.file

logical. indicates whether the result table related to each iteration has been writ-
ten as a file (txt) in your working directory. This argument must be equal to the
argument with the same name in the spicefp function.

Details

By providing criterion and nmodels, the function returns the coefficients of the nmodels best models
chosen by the selected information criterion. When model.parameters is instead provided, it returns
the coefficients of the models described on each row of the data.frame.

Value

Returns a list of 2 elements:

Model.parameters data.frame where each row contains statistics related to the models of interest.
Same as input if model.parameters is provided.

coef.list List of length nmodels or the number of rows in Model.parameters. Each element of this
list contains the model results as provided by the genlasso package, its coefficients without
and with NA, a fine-mesh array with the coefficients, and the estimation of Xβ. Coefficients
with NA are coefficient vector where the coefficient value of never-observed joint modalities
is NA.

Examples

##linbreaks: a function allowing to obtain equidistant breaks
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linbreaks<-function(x,n){
sort(round(seq(trunc(min(x)),

ceiling(max(x)+0.001),
length.out =unlist(n)+1),

1)
)

}
# In this example, we will evaluate 2 candidates with 14 temperature
# classes and 15 irradiance classes. The irradiance breaks are obtained
# according to a log scale (logbreaks function) with different alpha
# parameters for each candidate (0.005, 0.01).
## Data and inputs
tpr.nclass=14
irdc.nclass=15
irdc.alpha=c(0.005, 0.01)
p2<-expand.grid(tpr.nclass, irdc.alpha, irdc.nclass)
parlist.tpr<-split(p2[,1], seq(nrow(p2)))
parlist.irdc<-split(p2[,2:3], seq(nrow(p2)))
parlist.irdc<-lapply(

parlist.irdc,function(x){
list(x[[1]],x[[2]])}

)
m.irdc <- as.matrix(Irradiance[,-c(1)])
m.tpr <- as.matrix(Temperature[,-c(1)])

# For the constructed models, only two regularization parameter ratios
# penratios=c(1/25,5) is used. In a real case, we will have to evaluate
# more candidates and regularization parameters ratio.
ex_sp<-spicefp(y=FerariIndex_Difference$fi_dif,

fp1=m.irdc,
fp2=m.tpr,
fun1=logbreaks,
fun2=linbreaks,
parlists=list(parlist.irdc,

parlist.tpr),
penratios=c(1/25,5),
appropriate.df=NULL,
nknots = 100,
ncores =2,
write.external.file = FALSE)

# coef_spicefp
## coefficients based on the parameters of the model
## focus on model selected by Mallows's Cp at iteration 1

start_time_spc <- Sys.time()
results.eval.iter1<-ex_sp$Evaluations[[1]]$Evaluation.results$evaluation.result
c.mdl <- coef_spicefp(ex_sp, iter_=1,

criterion =NULL,
nmodels=NULL,

model.parameters=results.eval.iter1[which.min(results.eval.iter1$Cp_),],
ncores = 1,
write.external.file =FALSE)



evaluate.candidates 9

g1<-c.mdl$coef.list$'231'$Candidate.coef.NA.finemeshed
g1.x<-as.numeric(rownames(g1))
g1.y<-as.numeric(colnames(g1))
duration_spc <- Sys.time() - start_time_spc

#library(fields)
#plot(c(10,2000),c(15,45),type= "n", axes = FALSE,
# xlab = "Irradiance (mmol/m2/s - Logarithmic scale)",
# ylab = "Temperature (deg C)",log = "x")
#rect(min(g1.x),min(g1.y),max(g1.x),max(g1.y), col="black", border=NA)
#image.plot(g1.x,g1.y,g1, horizontal = FALSE,
# col=designer.colors(64, c("blue","white")),
# add = TRUE)
#axis(1) ; axis(2)

## Let's visualize the same model from other arguments of coef_spicefp
c.crit <- coef_spicefp(ex_sp, iter_=1,

criterion ="Cp_",nmodels=1,
ncores = 1,
write.external.file =FALSE)

g2<-c.crit$coef.list$'231'$Candidate.coef.NA.finemeshed
g2.x<-as.numeric(rownames(g2))
g2.y<-as.numeric(colnames(g2))
#plot(c(10,2000),c(15,45),type= "n", axes = FALSE,
# xlab = "Irradiance (mmol/m2/s - Logarithmic scale)",
# ylab = "Temperature (deg C)",log = "x")
#rect(min(g2.x),min(g2.y),max(g2.x),max(g2.y), col="black", border=NA)
#image.plot(g2.x,g2.y,g2, horizontal = FALSE,
# col=designer.colors(64, c("blue","white")),
# add = TRUE)
#axis(1) ; axis(2)
closeAllConnections()

evaluate.candidates evaluate.candidates

Description

This function performs for each candidate matrix, a Generalized Fused Lasso (sparse fused lasso
2d or 3d) and computes various statistics and information criteria related to the constructed model.

Usage

evaluate.candidates(
candmatrices,
y,
penratios,
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nknots,
appropriate.df = NULL,
ncores = parallel::detectCores() - 1,
penfun = NULL,
file_name = "parametertable",
write.external.file = TRUE

)

Arguments

candmatrices List. Output of the "candidates" function. The spicefp dimension is the first
element. The second contains many lists of one candidate matrix and related
vector with index and numbers of class intervals used per predictor. The other
elements of the lists are the inputs of "candidates" function. If the user does not
need the "candidates" function for the creation of candmatrices, it is possible to
build a list provided that it respects the same structure as well as the names of the
outputs of the "candidates" function. In this case only the first two elements of
the list are essential: spicefp.dimension and candidates. The remaining elements
can be NULL.

y numerical vector. Contains the dependent variable. This vector will be used as
response variable in the construction of models involving each candidate matrix.

penratios numeric vector with values greater than or equal to 0. It represents the ratio
between the regularization parameters of parsimony and fusion. When penra-
tios=0, it corresponds to the pure fusion. The higher its value, the more parsi-
monious the model is.

nknots integer. For one value in penratios vector, it represents the number of models
that will be constructed for each candidate matrix. It is the argument "nlam" of
coef.genlasso function. This argument can also be NULL. In this case, the
argument appropriate.df must be provided.

appropriate.df (appropriate degree of freedom) NULL by default. Numerical vector with values
greater than or equal to 1. The degree of freedom of generalized fused problem
is equal the number of connected components. A connected component gives
information on a group of non-zero coefficients sharing the same value and con-
nected by a contiguity matrix. More simply, it can be interpreted as a group
of coefficients that have a unique influence. When the user has a prior idea of
the number of zones of influence that the desired solution could contain, it is
advisable to provide appropriate.df, a vector of appropriate degrees of freedom.
In this case, nknots must be NULL.

ncores numbers of cores that will be used for parallel computation. By default, it is
equal to detectCores()-1.

penfun function with 2 arguments (dim1, dim2) when dealing with 2 dimensional spiceFP
or 3 arguments (dim1, dim2, dim3) when dealing with 3 dimensional spiceFP.
The argument order in the penalty function is associated with the order of num-
bers of class intervals used per predictor in the second element of candmatrices
argument. NULL by default. When penfun=NULL, getD2dSparse of genlasso
or getD3dSparse is used according to the dimension of spiceFP.
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file_name character. It is the name of the file in which the evaluation summary of all the
candidate matrices is stored. This file is saved in your working directory.

write.external.file

logical. Indicates whether the result table should be written as a file (txt) in your
working directory. It is recommended to use write.external.file=TRUE when
evaluating a large number of candidate matrices (more than 100) in order to
keep memory available.

Details

This function mainly returns statistics on the models built based on the candidate matrices. For each
candidate matrix, length(penratios) x nknots or length(penratios) x length(appropriate.df) models
are constructed in order to estimate the regularization parameters and to perform a variable selec-
tion. The computed statistics provide information on the quality of the models. For obvious reasons
of memory management, the coefficients related to each of these models are not stored. The statis-
tics are stored in a file named via the argument file_name and can be consulted to get an idea of
the state of progress of the program. The genlasso package is used for the implementation of the
Generalized Fused Lasso.

Value

The output is a list with :

evaluation.result Same as file_name. The file contains a matrix with in columns : the candidate
index (Candidate_id), the value of penratios used for this model (Pen_ratio), the parameter
that penalizes the difference in related coefficients (PenPar_fusion), the degree of freedom
of the model (Df_), the residual sum of squares (RSS_), the Akaike information criterion
(AIC_), the Bayesian information criterion (BIC_), the Mallows’ Cp (Cp_), the Generalized
Cross Validation (GCV_), the slope of the regression lm(y ~ Xβ) (Slope_), the ratio var(y −
Xβ)/var(y) (Var_ratio).

response.variable, penalty.ratios, nknots, appropriate.df, penalty.function Exactly the inputs y,
penratios, nknots, appropriate.df, penfun

Examples

# Constructing 2 candidates for spiceFP data (temperature and Irradiance)
linbreaks<-function(x,n){

sort(round(seq(trunc(min(x)),
ceiling(max(x)+0.001),
length.out =unlist(n)+1),

1)
)

}
# In this example, we will evaluate 2 candidates (each having 10
# temperature classes and respectively 10 and 20 irradiance classes).
# Only one value is used for alpha (logbreaks argument)
tpr.nclass=10
irdc.nclass=c(10,20)
irdc.alpha=0.005
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p2<-expand.grid(tpr.nclass, irdc.alpha, irdc.nclass)
parlist.tpr<-split(p2[,1], seq(nrow(p2)))
parlist.irdc<-split(p2[,2:3], seq(nrow(p2)))
parlist.irdc<-lapply(

parlist.irdc,function(x){
list(x[[1]],x[[2]])}

)
m.irdc <- as.matrix(Irradiance[,-c(1)])
m.tpr <- as.matrix(Temperature[,-c(1)])
test2<-candidates(fp1=m.irdc,

fp2=m.tpr,
fun1=logbreaks,
fun2=linbreaks,
parlists=list(parlist.irdc,

parlist.tpr),
xcentering = TRUE,
xscaling = FALSE,
ncores=2)

# Evaluating candidates
# For the constructed models, only one regularization parameter ratio
# penratios=c(1) is used. In a real case, we will have to evaluate
# more candidates and regularization parameters ratio.
start_time_ev <- Sys.time()
evcand<-evaluate.candidates(candmatrices = test2,

y=FerariIndex_Difference$fi_dif,
penratios=c(1),
appropriate.df=NULL,
nknots = 100,
ncores=2,
write.external.file = FALSE)

duration_ev <- Sys.time() - start_time_ev
tab_res<-evcand$evaluation.result
dim(tab_res)
tab_res[which.min(tab_res$AIC_),]

closeAllConnections()

FerariIndex_Difference

FerariIndex_Difference of vine dataset

Description

Data were collected during an experiment conducted on a vineyard of the INRAE/Institut Agro
campus at Montpellier in 2014 (Syrah vines). The objective of the experiment was to study the
influence of the micro-climate (temperature and irradiance) at the grape level on the anthocyanin
contents of the berries indicated by the Ferari index. This dataset contains Ferari index differences
between August 01, 2014 at 09:00 am and July 24th, 2014 at 09:00 am. The individuals are in rows.
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The individuals’ names (Indiv1,...,Indiv32) are used to name the rows. The same individuals are
also present in the irradiance and temperaure datasets.

Usage

FerariIndex_Difference

Format

A data frame with 32 observations and 1 variable.

fi_dif numeric. Ferari index differences between July 24th, 2014 at 09:00 am and August 01, 2014
at 09:00 am.

Source

These data were acquired during the Innovine project, funded by the Seventh Framework Pro-
gramme of the European Community (FP7/2007-2013), under Grant Agreement No. FP7-311775.

finemeshed2d finemeshed2d

Description

Function that helps to transform a vector into a matrix (with a fine mesh). In the implementation
of the spiceFP approach, it allows to transform matrices of coefficients having different dimensions
into matrices of the same dimension in order to perform arithmetic operations. In practice, the
matrix to be transformed is associated with a contingency table, which implies numerical variables
for which classes have been created.

Usage

finemeshed2d(
x,
n.breaks1 = 1000,
n.breaks2 = 1000,
round.breaks1 = 9,
round.breaks2 = 9

)

Arguments

x vector or one column matrix to scale. This vector comes from the vectorization
of the matrices to be transformed. x is named using the concatenation of the
names of the rows and the names of the columns of the matrix to be transformed,
as shown in the example below.

n.breaks1 integer. Number of breaks needed for the first variable. The variable for which
classes are in first position when constructing x’s names is the first variable.



14 finemeshed3d

n.breaks2 integer. Number of breaks needed for the second variable. The variable for
which classes are in second position when constructing x’s names is the second
variable.

round.breaks1 integer. Number of decimals for breaks of the first variable.

round.breaks2 integer. Number of decimals for breaks of the second variable.

Details

This function is designed to return a fine meshed matrix and breaks associated. In order to obtain a
fine mesh, a high number of breaks must be fixed.

Value

Returns:

finemeshed.matrix Matrix of dimension n.breaks2 x n.breaks1. The row and column names of
finemeshed.matrix are the breaks created from each variable and the associated n.breaks. Each
value of finemeshed.matrix is equal to the value of x indexed by the classes containing the row
and column names of finemeshed.matrix

finemeshed.values1 First variable breaks

finemeshed.values2 Second variable breaks

Examples

set.seed(45)
count_table<- hist_2d(x = rnorm(1000),

y = rnorm( 1000,5,0.1),
breaks_x = seq(-4, 4, by =1),
breaks_y = seq(2, 8, by =1))$Hist.Values

df.x<-as.data.frame.table(count_table)
x<-df.x$Freq
names(x)<-paste0(df.x$Var1,"_",df.x$Var2)

res.fm2d <- finemeshed2d(x,100,100)
dim(res.fm2d$finemeshed.matrix)

finemeshed3d finemeshed3d

Description

Function that helps to transform a vector into a 3 dimensional array (with a fine mesh). In the
implementation of the spiceFP approach, it allows to transform matrices of coefficients having
different dimensions into matrices of the same dimension in order to perform arithmetic operations.
In practice, the 3d array to be transformed is associated with a contingency table, which implies
numerical variables for which classes have been created.
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Usage

finemeshed3d(
x,
n.breaks1 = 10,
n.breaks2 = 1000,
n.breaks3 = 500,
round.breaks1 = 9,
round.breaks2 = 9,
round.breaks3 = 9

)

Arguments

x vector or one column matrix to scale. This vector comes from the vectorization
of the 3d array to be transformed. x is named using the concatenation of the
names of the dimension of the array to be transformed, as shown in the example
below.

n.breaks1 integer. Number of breaks needed for the first variable The variable for which
classes are in first position when constructing x’s names is the first variable.

n.breaks2 integer. Number of breaks needed for the second variable. The variable for
which classes are in second position when constructing x’s names is the second
variable.

n.breaks3 integer. Number of breaks needed for the third variable. The variable for which
classes are in third position when constructing x’s names is the third variable.

round.breaks1 integer. Number of decimals for breaks of the first variable.

round.breaks2 integer. Number of decimals for breaks of the second variable.

round.breaks3 integer. Number of decimals for breaks of the third variable.

Details

This function is designed to return a 3d fine meshed array and breaks associated. In order to obtain
a fine mesh, a high number of breaks must be fixed.

Value

Returns:

finemeshed.array Array of dimension n.breaks1 x n.breaks2 x n.breaks3. The dimension names
of finemeshed.array are the breaks created from each variable and the associated n.breaks.
Each value of finemeshed.array is equal to the value of x indexed by the classes containing the
row and column names of finemeshed.array

finemeshed.values1 First variable breaks

finemeshed.values2 Second variable breaks

finemeshed.values3 Third variable breaks
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Examples

set.seed(4)
count_table<-hist_3d(x = rnorm(1000),

y = rnorm( 1000,5,0.1),
z = rnorm( 1000,2,1),
breaks_x = seq(-4, 4, by =1),
breaks_y = seq(2, 8, by =1),
breaks_z = seq(-3, 6, by =1))$Hist.Values

df.x<-as.data.frame.table(count_table)
x<-df.x$Freq
names(x)<-paste0(df.x$Var1,"_",df.x$Var2,"_",df.x$Var3)

res.fm3d<- finemeshed3d(x,10,50,100)
dim(res.fm3d$finemeshed.array)

getD3dSparse getD3dSparse

Description

getD3dSparse is a function that helps to construct generalized lasso penalty matrix D when using
the fusedlasso function over a 3 dimensional grid

Usage

getD3dSparse(dim1, dim2, dim3)

Arguments

dim1 positive integer. Based on a 3 dimensional grid, dim1 represents the number of
units represented on the first dimension

dim2 positive integer which represents the number of units represented on the second
dimension

dim3 positive integer which represents the number of units represented on the third
dimension

Details

The function returns a sparse penalty matrix providing information on the connections between the
variables during the implementation of a generalizad fused lasso.
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Value

a matrix with dim1 x dim2 x dim3 columns. Each row represents an edge (a link between 2 vari-
ables) and is constructed with the couple (-1, 1), relative to these 2 variables and 0 for all others.
In the context of a generalized fused lasso, this matrix penalizes only the differences in coefficients
(fusion). To obtain parsimony in addition to the fusion, a diagonal matrix with the same number of
columns must be bound to the penalty matrix constructed by getD3dSparse. This matrix will con-
tain diagonally the ratio: parsimony penalty parameter on fusion penalty parameter. When using
fusedlasso function, this operation is performed when you provide the argument gamma.

Examples

library(genlasso)
library(Matrix)
D<-getD3dSparse(2,3,2)
plot(getGraph(D))

hist_2d hist_2d

Description

This function results from a modification of the hist2d function of the gplots package in order to
build the 2D histogram with breaks directly provided as inputs of the new function.

Usage

hist_2d(
x,
y,
breaks_x,
breaks_y,
same.scale = FALSE,
na.rm = TRUE,
FUN = base::length

)

Arguments

x either a numerical vector to be partitioned or a matrix of 2 numerical columns
to be partitioned.

y a numerical vector to be partitioned. Not required if x is a matrix.
breaks_x a numerical vector. Contains the breaks related to x for the histogram
breaks_y a numerical vector. Contains the breaks related to y for the histogram
same.scale logical. Default to FALSE. If TRUE, breaks_x will be used for x and y
na.rm logical. Default to TRUE. Indicates whether missing values should be removed
FUN function used to summarize bin contents.
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Details

The default function used for the argument FUN is the function length. When another function is
used, it is applied on x, or on the first column of x if this is a two-column matrix. The lower limit
of each class interval is included in the class and the upper limit is not.

Value

Using a given set of breaks per each variable, the function returns :

Hist.Values a matrix with in rows class intervals of x and in columns class intervals of y. Contin-
gency table is returned if FUN=length

breaks_x, breaks_y same as the inputs of the function

Midpoints.x, Midpoints.y the midpoints for each bin per variable

nobs.x , nobs.y number of observations of x and y

n.bins vector of 2 elements containing the number of bins for x and y

Examples

set.seed(45)
hist_2d(x = rnorm(1000),

y = rnorm( 1000,5,0.1),
breaks_x = seq(-4, 4, by =1),
breaks_y = seq(2, 8, by =1))

hist_3d hist_3d

Description

This function can be used in order to construct a 3D histogram based on 3 variables and relative
breaks directly provided as inputs.

Usage

hist_3d(
x,
y,
z,
breaks_x,
breaks_y,
breaks_z,
same.scale = FALSE,
na.rm = TRUE,
FUN = length

)



hist_3d 19

Arguments

x either a numerical vector to be partitioned or a matrix with 3 numerical columns
to be partitioned.

y a numerical vector to be partitioned. Not required if x is a matrix.

z a numerical vector to be partitioned. Not required if x is a matrix

breaks_x a numerical vector. Contains the breaks related to x for the histogram

breaks_y a numerical vector. Contains the breaks related to y for the histogram

breaks_z a numerical vector. Contains the breaks related to z for the histogram

same.scale logical. Default to FALSE. If TRUE, breaks_x will be used for x, y and z

na.rm logical. Default to TRUE. Indicates whether missing values should be removed

FUN function used to summarize bin contents.

Details

The default function used for the argument FUN is the function length. When another function is
used, it is applied on x or on the first column of x if this is a three-column matrix. The lower limit
of each class interval is included in the class and the upper limit is not.

Value

Using a given set of breaks per each variable, the function returns :

Hist.Values a 3 dimensional array. The 1st (respectively 2nd, 3rd) dimension is related to the class
intervals of x (resp. y, z). Contingency table is returned if FUN=length

breaks_x, breaks_y, breaks_z same as the inputs of the function

Midpoints.x, Midpoints.y, Midpoints.z the midpoints for each bin per variable

nobs.x , nobs.y, nobs.z number of observations of x, y and z

n.bins vector of 3 elements containing the number of bins for x, y and z

Examples

set.seed(4)
hist_3d(x = rnorm(1000),

y = rnorm( 1000,5,0.1),
z = rnorm( 1000,2,1),
breaks_x = seq(-4, 4, by =1),
breaks_y = seq(2, 8, by =1),
breaks_z = seq(-2, 6, by =1))
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Irradiance Photosynthetic Photon Flux Density PPFD (PPFD) measurements of
vine dataset

Description

Data were collected during an experiment conducted on a vineyard of the INRAE/Institut Agro
campus at Montpellier in 2014 (Syrah vines). The objective of the experiment was to study the
influence of the micro-climate (temperature and irradiance) at the grape level on the anthocyanin
contents of the berries indicated by the Ferari index. This dataset is related to irradiance measure-
ments in the morning (sunrise to twelve am) between July 24th, 2014 at 09:00 am and August 01,
2014 at 09:00 am. These observations are made at the same time (every 12 minutes) as the tem-
perature observations. The individuals are in columns while the observation times are in rows. The
same individuals are also present in the Temperature and FerariIndex_Difference datasets.

Usage

Irradiance

Format

A data frame (of one functionnal variable) with 127 rows (observation times) and 33 columns: the
1st one is a character vector which corresponds to date-time in format "yyyy-mm-dd hh:mm:ss", the
others are numeric vectors made of the observations of irradiance (PPFD) measured in 10−6mol.m−2.s−1

on each of the 32 statistical individuals Indiv1,...,Indiv32. Irradiance corresponds to the number of
incident photons useful for photosynthesis, received per unit of time on a horizontal surface unit.

Source

These data were acquired during the Innovine project, funded by the Seventh Framework Pro-
gramme of the European Community (FP7/2007-2013), under Grant Agreement No. FP7-311775.

logbreaks logbreaks

Description

A function that allows to obtain histogram class limits following a logarithmic scale. It also has a
parameter that allows to set the scale at your convenience.
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Usage

logbreaks(
x,
parlist = list(alpha, J),
round_breaks = 0,
plot_breaks = FALSE,
effect.threshold.begin = NA,
effect.threshold.end = NA

)

Arguments

x either a numeric vector to be partitioned or a numeric vector containing the
minimum and maximum of the vector to be partitioned.

parlist a list of 2 elements. The first one is alpha, a numeric and positive value. It is
a parameter affecting the number of breaks closed to the minimum. The sec-
ond one is J. It is a nonnegative and nonzero integer and represent the selected
number of classes.

round_breaks a nonnegative integer. Equal to 0 by default, it is the number of decimal values
of the breaks.

plot_breaks logical. FALSE by default. If TRUE, the breaks are plotted.

effect.threshold.begin

NA by default. Numeric value between the minimum and maximum of x. If it
isn’t NA, the first class is created with xmin and effect.threshold.begin.

effect.threshold.end

NA by default. Numeric value between the minimum and maximum of x. If it
isn’t NA, the last class is created with xmax and effect.threshold.end.

Details

The breaks are obtained as follows:

L(w) = min(x) +
eα

w−1
J − 1

eα − 1
(max(x)−min(x)), w = 1, . . . , J + 1.

Value

The return is a numeric vector of length J+1 with the breaks obtained following a log scale.

Examples

logbreaks(c(10,1000), parlist=list(0.2,5))
logbreaks(c(10,1000), parlist=list(0.2,5),plot_breaks=TRUE)
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meancoef meancoef

Description

This function can be used to compute the mean of coefficients from different partitions in the context
of the spicefp approach.

Usage

meancoef(coef.list, weight)

Arguments

coef.list list. The second element of the coef_spicefp function outputs. It has the same
name as the argument.

weight a numerical vector of weights with the same length as coef.list.

Details

Here, the fine-mesh coefficients are weighted and a weighted mean is deduced. If the user wishes,
he can use as weights the slopes associated with the qualities of the models concerned.

Value

Returns a list of :

weighted_mean fine-mesh matrix or array with the weighted mean of the coefficients

y.estimated weighted estimation of Xβ

coefficients.array An array with all the fine-mesh coefficients that will be used to compute the
weighted mean

weight same as inputs

Examples

##linbreaks: a function allowing to obtain breaks linearly
linbreaks<-function(x,n){

sort(round(seq(trunc(min(x)),
ceiling(max(x)+0.001),
length.out =unlist(n)+1),

1)
)

}
# In this example, we will evaluate 2 candidates with 14 temperature
# classes and 15 irradiance classes. The irradiance breaks are obtained
# according to a log scale (logbreaks function) with different alpha
# parameters for each candidate (0.005, 0.01).
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## Data and inputs
tpr.nclass=14
irdc.nclass=15
irdc.alpha=c(0.005, 0.01)
p2<-expand.grid(tpr.nclass, irdc.alpha, irdc.nclass)
parlist.tpr<-split(p2[,1], seq(nrow(p2)))
parlist.irdc<-split(p2[,2:3], seq(nrow(p2)))
parlist.irdc<-lapply(

parlist.irdc,function(x){
list(x[[1]],x[[2]])}

)
m.irdc <- as.matrix(Irradiance[,-c(1)])
m.tpr <- as.matrix(Temperature[,-c(1)])

# For the constructed models, only two regularization parameter ratios
# penratios=c(1/25,5) is used. In a real case, more candidates
# and regularization parameter ratios should be evaluated.
ex_sp<-spicefp(y=FerariIndex_Difference$fi_dif,

fp1=m.irdc,
fp2=m.tpr,
fun1=logbreaks,
fun2=linbreaks,
parlists=list(parlist.irdc,

parlist.tpr),
penratios=c(1/25,5),
appropriate.df=NULL,
nknots = 100,
ncores =2,
write.external.file = FALSE)

## Focus on the 2 best models retained by the AIC criterion at iteration 1
c.mdls <- coef_spicefp(ex_sp, iter_=1, criterion ="AIC_",

nmodels=2, ncores = 2,
dim.finemesh=c(1000,1000),
write.external.file = FALSE)

# meancoef
# Compute the mean of the coefficients of these models
mean.c.mdls<-meancoef(c.mdls$coef.list,

weight = c.mdls$Model.parameters$Slope_)
g3<-mean.c.mdls$weighted_mean
g3.x<-as.numeric(rownames(g3))
g3.y<-as.numeric(colnames(g3))

#library(fields)
#plot(c(10,2000),c(15,45),type= "n", axes = FALSE,
# xlab = "Irradiance (mmol/m2/s - Logarithmic scale)",
# ylab = "Temperature (deg C)",log = "x")
#rect(min(g3.x),min(g3.y),max(g3.x),max(g3.y), col="black", border=NA)
#image.plot(g3.x,g3.y,g3, horizontal = FALSE,
# col=designer.colors(256, c("blue","white","red")),
# add = TRUE)
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#axis(1) ; axis(2)

closeAllConnections()

spicefp spicefp

Description

This function is used to implement the spiceFP approach. This approach transforms 2 (by default)
or 3 functional predictors into candidate explonatory matrices in order to identify joint classes of
influence. It can take functional predictors and partitioning functions as inputs in order to create
candidate matrices to be evaluated. The user can choose among the existing partitioning functions
(as logbreaks) or provide his own partitioning functions specific to the functional predictors under
consideration. The user can also directly provide candidate matrices already constructed as desired.

Usage

spicefp(
y,
fp1,
fp2,
fp3 = NULL,
fun1,
fun2,
fun3 = NULL,
parlists,
xcentering = TRUE,
xscaling = FALSE,
candmatrices = NULL,
K = 2,
criterion = "AIC_",
penratios = c(1/10, 1/5, 1/2, 1, 2, 5, 10),
nknots = 50,
appropriate.df = NULL,
penfun = NULL,
dim.finemesh = c(1000, 1000),
file_name = paste0("parametertable", 1:2),
ncores = parallel::detectCores() - 1,
write.external.file = TRUE

)



spicefp 25

Arguments

y a numerical vector. Contains the dependent variable. This vector will be used as
response variable in the construction of models involving each candidate matrix.

fp1 a numerical matrix with in columns observations of one statistical individual to
partition. Each column corresponds to the functional predictor observation for
one statistical individual. The order of the statistical individuals is the same as
in fp2. It is assumed that no data are missing and that all functional predictors
are observed on an equidistant (time) scale.

fp2 a numerical matrix with the same number of columns and rows as fp1. Columns
are also observations. The order of the statistical individuals is the same as in
fp1.

fp3 NULL by default. A numerical matrix with the same number of columns and
rows as fp1 and fp2. The order of the statistical individuals is the same as in fp1
and fp2.

fun1 a function object with 2 arguments. First argument is fp1 and the second is a
list of parameters that will help to partition fp1, such as the number of class
intervals, etc. For example using the logbreaks function, the list of parameters
is equivalent to list(alpha, J). All the arguments to be varied for the creation
of different candidate matrices must be stored in the parameter list. The other
arguments must be set by default.

fun2 a function object with 2 arguments. First argument is fp2 and the second is a list
of parameters.

fun3 NULL by default. Same as fun1 and fun2, a function with 2 arguments fp3 and
a list of parameters.

parlists a list of 2 elements when fp3 and fun3 are equal to NULL or of 3 elements when
fp3 and fun3 are provided. All the elements of parlists are lists that have the
same length. Each list contains all the lists of parameters that have to be used
to create different candidates. The first element of parlists concerns the first
functional predictor fp1, the second element is relative to fp2 and the third to
fp3.

xcentering TRUE by default. Defined whether or not the variables in the new candidate
matrices should be centered.

xscaling FALSE by default. Defined whether or not the variables in the candidate matri-
ces should be scaled.

candmatrices NULL by default. List. Output of the "candidates" function. The spiceFP di-
mension is its first element. The second contains many lists of one candidate
matrix and related vector with index and numbers of class intervals used per
predictor. The other elements of the lists are the inputs of "candidates" function.
If the user does not need the "candidates" function for the creation of candma-
trices, it is possible to build a list while making sure that it respects the same
structure as well as the names of the outputs of the "candidates" function. In this
case, only the first two elements of the list are essential: spicefp.dimension and
candidates. The remaining elements can be NULL.

K number of iterations of the spiceFP approach. Equal to 2 by default.
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criterion character. One of "AIC_", "BIC_", "Cp_". The criterion to be used in each iter-
ation in order to identify the best candidate matrix and to estimate the regulation
parameters. This criterion is used to perform model selection as well as variable
selection.

penratios a numeric vector with values greater than or equal to 0. It represents the ratio
between the regularization parameters of parsimony and fusion. When penra-
tios=0, it corresponds to the pure fusion. The higher its value, the more parsi-
monious the model is.

nknots integer. For one value in penratios vector, it represents the number of models
that will be constructed for each candidate matrix. It is the argument "nlam" of
coef.genlasso function. This argument can be also NULL. In this case, the
argument appropriate.df must be provided.

appropriate.df (appropriate degree of freedom) NULL by default. When used, nknots must be
NULL. It is the argument "df" of coef.genlasso function. When the user has a
prior idea of the number of zones of influence that the solution could contain, it is
advisable to provide appropriate.df, a vector of appropriate degrees of freedom.
appropriate.df is a numerical vector with values greater than or equal to 1. The
degree of freedom of generalized fused Lasso models is equal to the number of
connected components. A connected component gives information on a group
of non-zero coefficients sharing the same value and connected by a contiguity
matrix. More simply, it can be interpreted as a group of coefficients that have a
unique influence.

penfun function with 2 arguments (dim1, dim2) when dealing with 2 dimensional spiceFP,
or with 3 arguments (dim1, dim2, dim3) when dealing with 3 dimensional
spiceFP. The argument order in the penalty function is associated with the order
of numbers of class intervals used per predictor in the second element of cand-
matrices argument. NULL by default. When penfun=NULL, getD2dSparse of
genlasso or getD3dSparse is used according to the dimension of spiceFP.

dim.finemesh numeric vector of length 2 or 3. This vector informs about the dimension of the
fine-mesh arrays (or matrices) that will be used for the visualization of the sum
of the coefficients selected at different iterations.

file_name character vector. Of length K, it contains the list of names that will be used to
name the files containing informations on the candidate matrix models

ncores numbers of cores that will be used for parallel computation. By default, it is
equal to detectCores()-1.

write.external.file

logical. indicates whether the result table related to each iteration should be
written as a file (txt) in your working directory. It is recommended to use
write.external.file=TRUE when evaluating a large number of candidate matri-
ces (more than 100) in order to keep memory available.

Details

Three main steps are involved to implement spiceFP: transformation of functional predictors, cre-
ation of a graph of contiguity constraints and identification of the best class intervals and related
regression coefficients.
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Value

Returns a list with:

Candidate.Matrices a list with candidate matrices and their characteristics. same as candmatrices
if it has been provided.

Evaluations List of length less than or equal to K. Each element of the list contains information
about an iteration. Contains the results related to the evaluation of the candidate matrices.
These include the name of the file where the model information is stored, the best candidate
matrix and related coefficients, the partition vector that indexes it, the Xβ estimation, the
residuals, etc.

coef.NA List of length less than or equal to K. For each iteration, it contains the coefficient vector
where the coefficient value of never-observed joint modalities is NA

coef.NA.finemeshed List of length less than or equal to K. For each iteration, the coefficient vector
is transformed into fine-mesh array or matrix allowing arithmetic operations to be performed
between coefficients coming from different partitions

spicefp.coef fine-mesh array or matrix. Sum of the coefficients selected at all iterations

Examples

##linbreaks: a function allowing to obtain breaks linearly
linbreaks<-function(x,n){

sort(round(seq(trunc(min(x)),
ceiling(max(x)+0.001),
length.out =unlist(n)+1),

1)
)

}

# In this example, we will evaluate 2 candidates with 14 temperature
# classes and 15 irradiance classes. The irradiance breaks are obtained
# according to a log scale (logbreaks function) with different alpha
# parameters for each candidate (0.005, 0.01).
## Data and inputs
tpr.nclass=14
irdc.nclass=15
irdc.alpha=c(0.005, 0.01)
p2<-expand.grid(tpr.nclass, irdc.alpha, irdc.nclass)
parlist.tpr<-split(p2[,1], seq(nrow(p2)))
parlist.irdc<-split(p2[,2:3], seq(nrow(p2)))
parlist.irdc<-lapply(

parlist.irdc,function(x){
list(x[[1]],x[[2]])}

)
m.irdc <- as.matrix(Irradiance[,-c(1)])
m.tpr <- as.matrix(Temperature[,-c(1)])

# For the constructed models, only two regularization parameter ratios
# penratios=c(1/25,5) are used. In a real case, we will have to evaluate
# more candidates and regularization parameters ratio.
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start_time_sp <- Sys.time()
ex_sp<-spicefp(y=FerariIndex_Difference$fi_dif,

fp1=m.irdc,
fp2=m.tpr,
fun1=logbreaks,
fun2=linbreaks,
parlists=list(parlist.irdc,

parlist.tpr),
penratios=c(1/25,5),
appropriate.df=NULL,
nknots = 100,
ncores =2,
write.external.file=FALSE)

duration_sp <- Sys.time() - start_time_sp
# View(ex_sp$Evaluations[[1]]$Evaluation.results$evaluation.result)
# View(ex_sp$Evaluations[[2]]$Evaluation.results$evaluation.result)
# Visualization of the coefficients
g<-ex_sp$spicefp.coef
g.x<-as.numeric(rownames(g))
g.y<-as.numeric(colnames(g))

#library(fields)
#plot(c(10,2000),c(15,45),type= "n", axes = FALSE,
# xlab = "Irradiance (mmol/m²/s - Logarithmic scale)",
# ylab = "Temperature (°C)",log = "x")
#rect(min(g.x),min(g.y),max(g.x),max(g.y), col="black", border=NA)
#image.plot(g.x,g.y,g, horizontal = FALSE,
# col=designer.colors(256, c("blue","white","red")),
# add = TRUE)
#axis(1) ; axis(2)

closeAllConnections()

Temperature Temperature measurements of vine dataset

Description

Data were collected during an experiment conducted on a vineyard of the INRAE/Institut Agro
campus at Montpellier in 2014 (Syrah vines). The objective of the experiment was to study the
influence of the micro-climate (temperature and irradiance) at the grape level on the anthocyanin
contents of the berries indicated by the Ferari index. This dataset is related to temperature mea-
surements in the morning (sunrise to twelve am) between July 24th, 2014 at 09:00 am and August
01, 2014 at 09:00 am. These observations are made at the same time (every 12 minutes) as the
irradiance observations. The individuals are in columns while the observation times are in rows.
The same individuals are also present in the Irradiance and FerariIndex_Difference datasets.
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Usage

Temperature

Format

A data frame (of one functionnal variable) with 127 rows (observation times) and 33 columns: the
1st one is a character vector which corresponds to date-time in format "yyyy-mm-dd hh:mm:ss",
the others are numeric vectors made of the observations of temperature measured in degree celsius
on each of the 32 statistical individuals Indiv1,...,Indiv32.

Source

These data were acquired during the Innovine project, funded by the Seventh Framework Pro-
gramme of the European Community (FP7/2007-2013), under Grant Agreement No. FP7-311775.
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