RcppDPR: 'Rcpp' Implementation of Dirichlet Process Regression

'Rcpp' reimplementation of the the Bayesian non-parametric Dirichlet Process Regression model for penalized regression first published in Zeng and Zhou (2017) <doi:10.1038/s41467-017-00470-2>. A full Bayesian version is implemented with Gibbs sampling, as well as a faster but less accurate variational Bayes approximation.

Version: 0.1.9
Imports: Rcpp (≥ 1.0.13)
LinkingTo: Rcpp, RcppArmadillo, RcppGSL
Suggests: testthat (≥ 3.0.0), snpStats
Published: 2025-03-15
DOI: 10.32614/CRAN.package.RcppDPR
Author: Mohammad Abu Gazala [cre, aut], Daniel Nachun [ctb], Ping Zeng [ctb]
Maintainer: Mohammad Abu Gazala <abugazalamohammad at gmail.com>
License: GPL-3
NeedsCompilation: yes
Materials: NEWS
CRAN checks: RcppDPR results

Documentation:

Reference manual: RcppDPR.pdf

Downloads:

Package source: RcppDPR_0.1.9.tar.gz
Windows binaries: r-devel: RcppDPR_0.1.9.zip, r-release: not available, r-oldrel: not available
macOS binaries: r-devel (arm64): not available, r-release (arm64): not available, r-oldrel (arm64): not available, r-devel (x86_64): not available, r-release (x86_64): not available, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=RcppDPR to link to this page.