Tuto PheVis

Introduction

Welcome to PheVis package, an unsupervised R package for phenotyping at visit resolution. I will briefly explain how it works, for more details about the underlying method. The detailed method is available on MedRxiv (doi: https://doi.org/10.1101/2020.06.15.20131458)

Toy dataset

First we need a toy dataset, luckily, there is one provided inside the package. Here are the first rows and columns of the dataset.

library(PheVis)
library(dplyr)
library(knitr)
library(ggplot2)

data("data_phevis")

kable(head(data_phevis[,1:7]))
subject time PR_state mainICD mainCUI var1 var2
1 2000-01-11 1 1 12 10 0
1 2000-02-06 1 1 2 9 1
1 2000-02-08 1 0 6 8 1
1 2000-02-23 1 0 6 10 1
1 2000-02-25 1 1 11 7 1
1 2000-02-27 1 2 10 11 2

We are going to split it in train and test set, add an ENCOUNTER_NUM column (one identifier by visit) and convert date to numeric format.

df <- data_phevis %>%
  mutate(ENCOUNTER_NUM = row_number(),
         time = round(as.numeric(time)))

set.seed(1)

trainsize <- 0.8*length(unique(df$subject))
trainid <- sample(x = unique(df$subject), size = trainsize)
testid <- unique(df$subject)[!unique(df$subject) %in% trainid]

df_train <- as.data.frame(df[df$subject %in% trainid,])
df_test <- as.data.frame(df[df$subject %in% testid,])

Train PheVis

To train PheVis we first should set the parameters that are used by the algorithm:

var_vec <- c(paste0("var",1:10), "mainCUI", "mainICD")
main_icd <- "mainICD"
main_cui <- "mainCUI"
GS <- "PR_state"
half_life <- Inf

Now we train the model, it might take a while.

train_model <- PheVis::train_phevis(half_life = half_life,
                                    df = df_train,
                                    START_DATE = "time",
                                    PATIENT_NUM = "subject",
                                    ENCOUNTER_NUM = "ENCOUNTER_NUM",
                                    var_vec = var_vec,
                                    main_icd = main_icd,
                                    main_cui = main_cui)
#> -- Arguments passed check -> PheVis begins --
#> Joining with `by = join_by(id, id_encounter, var, start_date)`
#> Joining with `by = join_by(PATIENT_NUM, ENCOUNTER_NUM)`
#> Joining with `by = join_by(START_DATE, PATIENT_NUM, ENCOUNTER_NUM)`

Test PheVis

Now that we have trained the model, we are going to use it to get probabilities prediction for the test set. It also takes a while as the cumulated variables must be computed for the test dataset too.

test_model <- PheVis::test_phevis(train_param = train_model$train_param,
                                  df_test = df_test,
                                  START_DATE = "time",
                                  PATIENT_NUM = "subject",
                                  ENCOUNTER_NUM = "ENCOUNTER_NUM",
                                  surparam = train_model$surparam,
                                  model = train_model$model)
#> -- Arguments passed check -> PheVis begins --
#> Joining with `by = join_by(id, id_encounter, var, start_date)`
#> Joining with `by = join_by(PATIENT_NUM, ENCOUNTER_NUM)`
#> Joining with `by = join_by(START_DATE, PATIENT_NUM, ENCOUNTER_NUM)`

Results

train_model

We can access the different components of the returned objects. train_model is a list containing multiples objects. We have surparam, the parameters computed inside PheVis to compute the surrogate (mean and sd of main surrogates).

train_model$surparam
#> $mean_icd
#> [1] 0.5073889
#> 
#> $sd_icd
#> [1] 0.8720246
#> 
#> $mean_nlp
#> [1] 4.532568
#> 
#> $sd_nlp
#> [1] 4.554872
#> 
#> $min_all
#> [1] -1.576955

model which contains the fixed effect of the model and the type of model trained (usually glmer for mixed effect logistic regression but might be glm for logistic regression if mixed model fails to converge).

train_model$model
#> $fixedEffect
#>   (Intercept)       mainCUI       mainICD          var1          var4 
#> -31.829323195  -0.041409221  -0.017401159   0.037806247  -0.015078210 
#>          var9         var10      var1_cum      var4_cum      var9_cum 
#>   0.082143744  -0.004552059   0.083685829   0.052506165   0.050956436 
#>     var10_cum   mainCUI_cum   mainICD_cum      last_vis     last_5vis 
#>   0.097538021   0.067701132   0.312671148  -0.102492199   0.303248468 
#>           cum     cum_month      cum_year 
#>   0.190078954   0.427306844   0.131637638 
#> 
#> $model
#> [1] "glmer"

df_train_result the data.frame with the surrogates (qualitative and quantitative), the output probability and the visit id.

head(train_model$df_train_result)
#>   ENCOUNTER_NUM         PRED SUR_QUANTI SUR_QUALI
#> 1             1 1.593243e-11   3.781298         3
#> 2             2 1.777235e-09   5.367145         3
#> 3             3 1.072111e-07   6.684416         3
#> 4             4 1.422840e-06   8.001687         3
#> 5             5 2.292557e-04  11.563440         3
#> 6             6 5.327203e-01  16.052404         3

train_param corresponds to the hyperparameters of PheVis chosen by the user.

train_model$train_param
#> $half_life
#> [1] Inf
#> 
#> $omega
#> [1] 2
#> 
#> $var_vec
#>  [1] "var1"    "var2"    "var3"    "var4"    "var5"    "var6"    "var7"   
#>  [8] "var8"    "var9"    "var10"   "mainCUI" "mainICD"
#> 
#> $main_icd
#> [1] "mainICD"
#> 
#> $main_cui
#> [1] "mainCUI"
#> 
#> $GS
#> NULL

df_x_train is the final data.frame to predict the probability with the cumulated features.

head(train_model$df_x_train[,c(1:2, 14:15, 29:30)])
#>   var1 var2 var1_cum var2_cum cum_month  cum_year
#> 1   10    0       10        0  3.781298  3.781298
#> 2    9    1       19        1  5.367145  5.367145
#> 3    8    1       27        2  6.684416  6.684416
#> 4   10    1       37        3  4.220388  8.001687
#> 5    7    1       44        4  7.782141 11.563440
#> 6   11    2       55        6 12.271106 16.052404

test_model

test_model is also a list containing two data.frame. We have df_result with the predictions of the model.

head(test_model$df_result)
#>   PATIENT_NUM ENCOUNTER_NUM START_DATE SUR_QUANTI SUR_QUALI   PREDICTION
#> 1          18           347      10994   3.512722         3 2.592243e-12
#> 2          18           348      10998   6.854930         3 1.905788e-09
#> 3          18           349      11001   8.391746         3 3.516195e-07
#> 4          18           350      11008   9.928562         3 1.445644e-05
#> 5          18           351      11012  11.245832         3 4.459431e-04
#> 6          18           352      11014  14.539009         3 8.700905e-02

And df_pred the data.frame with the model predictions.

head(test_model$df_pred[,c(1:2, 14:15, 29:30)])
#>   var1 var2 PATIENT_NUM ENCOUNTER_NUM last_5vis       cum
#> 1    6    3          18           347  0.000000  3.512722
#> 2    4    2          18           348  3.512722  6.854930
#> 3    7    2          18           349  6.854930  8.391746
#> 4    4    1          18           350  8.391746  9.928562
#> 5   10    0          18           351  9.928562 11.245832
#> 6    3    2          18           352 11.245832 14.539009

plot predictions

We can display a graph with the prediction and the gold-standard with the function ggindividual_plot.

df_plot <- test_model$df_result %>%
  left_join(df_test) %>%
  filter(PATIENT_NUM %in% c(18, 23, 26, 32))
#> Joining with `by = join_by(ENCOUNTER_NUM)`

PheVis::ggindividual_plot(subject = df_plot$PATIENT_NUM,
                          time = df_plot$START_DATE,
                          gold_standard = df_plot$PR_state,
                          prediction = df_plot$PREDICTION)

Performances

Now we can see the performance of the model using ROC cure and Precision Recall (PR) curve

pr_curve <-PRROC::pr.curve(scores.class0 = test_model$df_result$PREDICTION,
                           weights.class0 = df_test$PR_state,
                           curve = TRUE)

plot(pr_curve)

roc_curve <- PRROC::roc.curve(scores.class0 = test_model$df_result$PREDICTION,
                              weights.class0 = df_test$PR_state,
                              curve = TRUE)
plot(roc_curve)