# Package 'MLFS' 

October 12, 2022
Type Package
Title Machine Learning Forest Simulator
Version 0.4.2
Author Jernej Jevsenak
Maintainer Jernej Jevsenak [jernej.jevsenak@gmail.com](mailto:jernej.jevsenak@gmail.com)
Description Climate-sensitive forest simulator based on the principles ofmachine learning. It stimulates all key processes in the forest: radial growth,height growth, mortality, crown recession, regeneration and harvesting. Themethod for predicting tree heights was described by Skudnik and Jevšenak(2022) [doi:10.1016/j.foreco.2022.120017](doi:10.1016/j.foreco.2022.120017), while the method for predictingbasal area increments (BAI) was described by Jevšenak and Skudnik (2021)[doi:10.1016/j.foreco.2020.118601](doi:10.1016/j.foreco.2020.118601).
License GPL-3
Imports $\operatorname{brnn}(>=0.6)$, ranger $(>=0.13 .1)$, reshape2 ( $>=1.4 .4$ ), pscl ( $>=$
1.5.5), naivebayes( $>=0.9 .7$ ), magrittr( $>=1.5$ ), dplyr( $>=$
$0.7 .0)$, tidyr ( $>=1.1 .3$ ), tidyselect( $>=1.0 .0$ )
Encoding UTF-8
LazyData true
Depends R(>=3.4)
NeedsCompilation no
Repository CRAN
RoxygenNote 7.1.2
Date/Publication 2022-04-20 08:22:37 UTC
$R$ topics documented:
add_stand_variables ..... 2
BAI_prediction ..... 3
calculate_BAL ..... 5
crownHeight_prediction ..... 5
data_BAI ..... 7
data_climate ..... 8
data_final_cut_weights ..... 9
data_ingrowth ..... 9
data_mortality ..... 10
data_NFI ..... 11
data_site ..... 12
data_tariffs ..... 12
data_thinning_weights ..... 13
data_tree_heights ..... 13
data_v1 ..... 14
data_v2 ..... 15
data_v3 ..... 16
data_v4 ..... 17
data_v5 ..... 18
data_v6 ..... 18
df_volume_parameters ..... 20
form_factors ..... 21
height_prediction ..... 21
ingrowth_parameter_list ..... 23
ingrowth_table ..... 23
max_size_data ..... 24
measurement thresholds ..... 24
MLFS ..... 25
predict_ingrowth ..... 31
predict_mortality ..... 33
simulate_harvesting ..... 35
volume_form_factors ..... 37
volume_functions ..... 38
volume_tariffs ..... 39
Index ..... 40

```
add_stand_variables add_stand_variables
```


## Description

This function adds two variables to existing data frame of individual tree measurements: 1) stand basal area and 2) the number of trees per hectare

## Usage

add_stand_variables(df)

## Arguments

df
a data frame with individual tree measurements that include basal area and the upscale factors. All trees should also be described with plotID and year variables

## Value

a data frame with added stand variables: total stand basal area and the number of trees per hectare

## Examples

```
data(data_v1)
data_v1 <- add_stand_variables(df = data_v1)
```

BAI_prediction BAI_prediction

## Description

The Basal Area Increment BAI sub model that is run within the MLFS

## Usage

BAI_prediction( df_fit, df_predict, species_n_threshold = 100, site_vars, include_climate, eval_model_BAI = TRUE, rf_mtry = NULL, $k=10$, blocked_cv = TRUE, measurement_thresholds = NULL, area_correction = NULL
)

## Arguments

df_fit a data frame with Basal Area Increments (BAI) and all independent variables as specified with the formula
df_predict data frame which will be used for BAI predictions
species_n_threshold
a positive integer defining the minimum number of observations required to treat a species as an independent group
site_vars a character vector of variable names which are used as site descriptors
include_climate
logical, should climate variables be included as predictors
eval_model_BAI logical, should the the BAI model be evaluated and returned as the output

$$
\begin{array}{ll}
\text { rf_mtry } & \begin{array}{l}
\text { a number of variables randomly sampled as candidates at each split of a ran- } \\
\text { dom forest model for predicting basal area increments (BAI). If NULL, default } \\
\text { settings are applied. }
\end{array} \\
\mathrm{k} & \begin{array}{l}
\text { the number of folds to be used in the k fold cross-validation }
\end{array} \\
\text { blocked_cv } \quad \begin{array}{l}
\text { logical, should the blocked cross-validation be used in the evaluation phase? } \\
\text { measurement_thresholds } \\
\text { data frame with two variables: 1) DBH_threshold and 2) weight. This informa- } \\
\text { tion is used to assign the correct weights in BAI and increment sub-model; and } \\
\text { to upscale plot-level data to hectares. }
\end{array}
\end{array}
$$

area_correction
an optional data frame with three variables: 1) plotID and 2) DBH_threshold and 3) the correction factor to be multiplied by weight for this particular category

## Value

a list with four elements:

1. \$predicted_BAI - a data frame with calculated basal area increments (BAI)
2. \$eval_BAI - a data frame with predicted and observed basal area increments (BAI), or a character string indicating that BAI model was not evaluated
3. \$rf_model_species - the output model for BAI (species level)
4. \$rf_model_speciesGroups - the output model for BAI (species group level)
\# add BA to measurement thresholds measurement_thresholds\$BA_threshold <- ((measurement_thresholds\$DBH_threshold * pi)/10000

BAI_outputs <- BAI_prediction(df_fit = data_BAI, df_predict = data_v6, site_vars = c("slope", "elevation", "northness", "siteIndex"), rf_mtry = 3, species_n_threshold = 100, include_climate $=$ TRUE, eval_model_BAI $=$ FALSE, $\mathrm{k}=10$, blocked_cv $=$ TRUE, measurement_thresholds $=$ measurement_thresholds)
\# get the ranger objects BAI_outputs_model_species <- BAI_outputs\$rf_model_species BAI_outputs_model_groups <- BAI_outputs\$rf_model_speciesGroups

## Examples

```
library(MLFS)
data(data_BAI)
data(data_v6)
data(measurement_thresholds)
```

```
calculate_BAL calculate_BAL
```


## Description

This function calculates the competition index BAL (Basal Area in Large trees) and adds it to the table of individual tree measurements that include basal area and the upscale factors. All trees should also be described with plotID and year variables

## Usage

calculate_BAL(df)

## Arguments

df a data frame with individual tree measurements that include basal area and the upscale factors. All trees should also be described with plotID and year variables

## Value

a data frame with calculated basal area in large trees (BAL)

## Examples

```
data(data_v1)
data_v1 <- calculate_BAL(df = data_v1)
```

crownHeight_prediction
crownHeight_prediction

## Description

Model for predicting crown height

## Usage

crownHeight_prediction( df_fit, df_predict, site_vars = site_vars, species_n_threshold = 100, $\mathrm{k}=10$, eval_model_crownHeight = TRUE, crownHeight_model = "lm",

```
        BRNN_neurons = 3,
        blocked_cv = TRUE
)
```


## Arguments

| df_fit | data frame with tree heights and basal areas for individual trees |
| :--- | :--- |
| df_predict | data frame which will be used for predictions |
| site_vars | optional, character vector with names of site variables |
| species_n_threshold |  |

a positive integer defining the minimum number of observations required to treat a species as an independent group
$k \quad$ the number of folds to be used in the $k$ fold cross-validation eval_model_crownHeight
logical, should the crown height model be evaluated and returned as the output crownHeight_model
character string defining the model to be used for crown heights. Available are ANN with Bayesian regularization (brnn) or linear regression (lm)
BRNN_neurons positive integer defining the number of neurons to be used in the brnn method.
blocked_cv logical, should the blocked cross-validation be used in the evaluation phase?

## Value

a list with four elements:

1. \$predicted_crownHeight - a data frame with imputed crown heights
2. \$eval_crownHeight - a data frame with predicted and observed crown heights, or a character string indicating that crown height model was not evaluated
3. \$model_species - the output model for crown heights (species level)
4. \$model_speciesGroups - the output model for crown heights (species group level)

## Examples

```
library(MLFS)
data(data_tree_heights)
data(data_v3)
# A) Example with linear model
Crown_h_predictions <- crownHeight_prediction(df_fit = data_tree_heights,
    df_predict = data_v3,
    crownHeight_model = "lm",
    site_vars = c(),
    species_n_threshold = 100,
    k = 10, blocked_cv = TRUE,
    eval_model_crownHeight = TRUE)
predicted_df <- Crown_h_predictions$predicted_crownHeight # df with imputed heights
evaluation_df <- Crown_h_predictions$eval_crownHeight # df with evaluation results
```

```
# B) Example with non-linear BRNN model
Crown_h_predictions <- crownHeight_prediction(df_fit = data_tree_heights,
    df_predict = data_v3,
    crownHeight_model = "brnn",
    BRNN_neurons = 3,
    site_vars = c(),
    species_n_threshold = 100,
    k = 10, blocked_cv = TRUE,
    eval_model_crownHeight = TRUE)
```

data_BAI An example of joined national forest inventory data, site descriptors, and climate data that is used as a fitting data frame for BAI sub model

## Description

This is simulated data that reassemble the national forest inventory data. We use it to show how to run examples for BAI sub model. To make examples running more quickly, we keep only one tree species: PINI.

## Usage

data_BAI

## Format

A data frame with 135 rows and 25 variables:
plotID a unique identifier for plot
treeID a unique identifier for tree
year year in which plot was visited
speciesGroup identifier for species group
code status of a tree: 0 (normal), 1(harvested), 2(dead), 3 (ingrowth)
species species name
height tree height in meters
crownHeight crown height in meters
protected logical, 1 if protected, otherwise 0
slope slope on a plot
elevation plot elevation
northness plot northness, 1 is north, 0 is south
siteIndex a proxy for site index, higher value represents more productive sites
BA basal area of individual trees in m 2
weight upscale weight to calculate hectare values
stand_BA Total stand basal area
stand_n The number of trees in a stand
BAL Basal Area in Large trees
p_BA basal area of individual trees in m 2 from previous simulation step
p_height tree height in meters from previous simulation step
p_crownHeight crown height in meters from previous simulation step
p_weight upscale weight to calculate hectare values from previous simulation step
BAI basal area increment
p_sum monthly precipitation sum
t_avg monthly mean temperature

## Description

This is simulated monthly climate data, and consists of precipitation sum and mean temperature

## Usage

data_climate

## Format

A data frame with 16695 rows and 5 variables:
plotID a unique identifier for plot
year year
month month
t_avg monthly mean temperature
p_sum monthly precipitation sum

```
data_final_cut_weights
```

    An example of data_final_cut_weights
    
## Description

Each species should have one weight that is multiplied with the probability of being harvested when final_cut is applied

## Usage

```
    data_final_cut_weights
```


## Format

A data frame with 36 rows and 6 variables:
species species name as used in data_NFI
step_1 final cut weight applied in step 1
step_2 final cut weight applied in step 2
step_3 final cut weight applied in step 3
step_4 final cut weight applied in step 4
step_5 final cut weight applied in step 5 and all subsequent steps

```
data_ingrowth An example of data_ingrowth suitable for the MLFS
```


## Description

An example of plot-level data with plotID, stand variables and site descriptors, and the two target variables describing the number of ingrowth trees for inner (ingrowth_3) and outer (ingrowth_15) circles

## Usage

data_ingrowth

## Format

A data frame with 365 rows and 11 variables:
plotID a unique identifier for plot
year year in which plot was visited
stand_BA Total stand basal area
stand_n The number of trees in a stand
BAL Basal Area in Large trees
slope slope on a plot
elevation plot elevation
siteIndex a proxy for site index, higher value represents more productive sites
northness plot northness, 1 is north, 0 is south
ingrowth_3 the number of new trees in inner circle
ingrowth_15 the number of new trees in outer circle

> data_mortality $\begin{aligned} & \text { An example of joined national forest inventory data, site descriptors, } \\ & \text { and climate data that is used as a fitting data frame for mortality sub } \\ & \text { model }\end{aligned}$

## Description

This is simulated data that reassemble the national forest inventory data. We use it to show how to run examples for mortality sub model

## Usage

data_mortality

## Format

A data frame with 6394 rows and 25 variables:
plotID a unique identifier for plot
treeID a unique identifier for tree
year year in which plot was visited
speciesGroup identifier for species group
code status of a tree: 0 (normal), 1(harvested), 2(dead), 3 (ingrowth)
species species name
height tree height in meters
crownHeight crown height in meters
protected logical, 1 if protected, otherwise 0

```
slope slope on a plot
elevation plot elevation
northness plot northness, 1 is north, 0 is south
siteIndex a proxy for site index, higher value represents more productive sites
BA basal area of individual trees in m2
weight upscale weight to calculate hectare values
stand_BA Total stand basal area
stand_n The number of trees in a stand
BAL Basal Area in Large trees
p_BA basal area of individual trees in m2 from previous simulation step
p_height tree height in meters from previous simulation step
p_crownHeight crown height in meters from previous simulation step
p_weight upscale weight to calculate hectare values from previous simulation step
BAI basal area increment
p_sum monthly precipitation sum
t_avg monthly mean temperature
```

data_NFI An example of national forest inventory data

## Description

This is simulated data that reassemble the national forest inventory

## Usage

data_NFI

## Format

A data frame with 11984 rows and 10 variables:
plotID a unique identifier for plot
treeID a unique identifier for tree
year year in which plot was visited
speciesGroup identifier for species group
code status of a tree: 0 (normal), 1(harvested), 2(dead), 3 (ingrowth)
DBH diameter at breast height in cm
species species name
height tree height in meters
crownHeight crown height in meters
protected logical, 1 if protected, otherwise 0

```
data_site An example of site descriptors
```


## Description

This is simulated data describing site descriptors

## Usage

data_site

## Format

A data frame with 371 rows and 5 variables:
plotID a unique identifier for plot
slope slope on a plot
elevation plot elevation
northness plot northness, 1 is north, 0 is south
siteIndex a proxy for site index, higher value represents more productive sites

```
data_tariffs
An example of table with one-parametric volume functions (adapted uniform French tariffs)
```


## Description

The adapted uniform French tariffs are typically used in Slovenia to determine tree volume based on tree DBH

## Usage

data_tariffs

## Format

A data frame with 1196 rows and 4 variables:
tarifa_class tariff class for a particular species on this plot
plotID plot identifier
species species name as used in data_NFI
v45 volume of tree with DBH 45 cm

## Description

Each species should have one weight that is multiplied with the probability of being harvested when thinning is applied

## Usage

```
    data_thinning_weights
```


## Format

A data frame with 36 rows and 6 variables:
species species name as used in data_NFI
step_1 thinning weight applied in step 1
step_2 thinning weight applied in step 2
step_3 thinning weight applied in step 3
step_4 thinning weight applied in step 4
step_5 thinning weight applied in step 5 and all subsequent steps

$$
\begin{aligned}
& \text { data_tree_heights } \quad \begin{array}{l}
\text { An example of data with individual tree and crown heights that can be } \\
\text { used as a fitting data frame for predicting tree and crown heights in } \\
M L F S
\end{array}
\end{aligned}
$$

## Description

This is simulated data that reassemble the national forest inventory data. We use it to show how to run examples for some specific functions

## Usage <br> data_tree_heights

## Format

A data frame with 2741 rows and 8 variables:
plotID a unique identifier for plot
treeID a unique identifier for tree
year year in which plot was visited
speciesGroup identifier for species group
species species name
height tree height in meters
crownHeight crown height in meters
BA basal area of individual trees in m2

```
data_v1 An example of joined national forest inventory and site data that is used within the MLFS
```


## Description

This is simulated data that reassemble the national forest inventory and simulated data. We use it to show how to run examples for some specific functions

## Usage

data_v1

## Format

A data frame with 11984 rows and 15 variables:
plotID a unique identifier for plot
treeID a unique identifier for tree
year year in which plot was visited
speciesGroup identifier for species group
code status of a tree: 0 (normal), 1(harvested), 2(dead), 3 (ingrowth)
species species name
height tree height in meters
crownHeight crown height in meters
protected logical, 1 if protected, otherwise 0
slope slope on a plot
elevation plot elevation
northness plot northness, 1 is north, 0 is south
siteIndex a proxy for site index, higher value represents more productive sites
BA basal area of individual trees in m 2
weight upscale weight to calculate hectare values

```
data_v2 An example of joined national forest inventory and site data that is used within the MLFS
```


## Description

This is simulated data that reassemble the national forest inventory data. We use it to show how to run examples for tree and crown height predictions

## Usage

data_v2

## Format

A data frame with 6948 rows and 14 variables:
plotID a unique identifier for plot
treeID a unique identifier for tree
year year in which plot was visited
speciesGroup identifier for species group
code status of a tree: 0 (normal), 1(harvested), 2(dead), 3 (ingrowth)
species species name
height tree height in meters
crownHeight crown height in meters
BA basal area of individual trees in m 2
weight upscale weight to calculate hectare values
p_BA basal area of individual trees in m 2 from previous simulation step
p_weight upscale weight to calculate hectare values from previous simulation step
p_height tree height in meters from previous simulation step
p_crownHeight crown height in meters from previous simulation step
data_v3 An example of joined national forest inventory and site data that is used within the MLFS

## Description

This is simulated data that reassemble the national forest inventory data. We use it to show how to run examples for tree and crown height predictions. The difference between data_v2 and data_v3 is that in data_v3, tree heights are already predicted

## Usage

data_v3

## Format

A data frame with 6948 rows and 14 variables:
plotID a unique identifier for plot
treeID a unique identifier for tree
year year in which plot was visited
speciesGroup identifier for species group
code status of a tree: 0 (normal), 1(harvested), 2(dead), 3 (ingrowth)
species species name
height tree height in meters
crownHeight crown height in meters
BA basal area of individual trees in m 2
weight upscale weight to calculate hectare values
p_BA basal area of individual trees in m 2 from previous simulation step
p_height tree height in meters from previous simulation step
p_crownHeight crown height in meters from previous simulation step
p_weight upscale weight to calculate hectare values from previous simulation step
volume tree volume in m3
p_volume tree volume in m3 from previous simulation step

```
data_v4
```

An example of joined national forest inventory and site data that is used within the MLFS

## Description

This is simulated data that reassemble the national forest inventory data. We use it to show how to run examples for predicting tree mortality. Mortality occurs in the middle of a simulation step, so all variables have the preposition 'mid'

## Usage

data_v4

## Format

A data frame with 6855 rows and 41 variables:
year year in which plot was visited
plotID a unique identifier for plot
treeID a unique identifier for tree
speciesGroup identifier for species group
code status of a tree: 0 (normal), 1(harvested), 2(dead), 3 (ingrowth)
species species name
slope slope on a plot
elevation plot elevation
northness plot northness, 1 is north, 0 is south
siteIndex a proxy for site index, higher value represents more productive sites
p_sum monthly precipitation sum
t_avg monthly mean temperature
BA_mid basal area of individual trees in m 2 in the middle of a simulation step
BAI_mid basal area increment in the middle of a simulation step
weight_mid upscale weight to calculate hectare values in the middle of a simulation step
height_mid tree height in meters in the middle of a simulation step
crownHeight_mid crown height in meters in the middle of a simulation step
volume_mid tree volume in m 3 in the middle of a simulation step
BAL_mid Basal Area in Large trees the middle of a simulation step
stand_BA_mid Total stand basal area the middle of a simulation step
stand_n_mid The number of trees in a stand the middle of a simulation step

```
data_v5 An example of joined national forest inventory and site data that is
used within the MLFS
```


## Description

This is simulated data that reassemble the national forest inventory data. We use it to show how to run examples for simulating harvesting.

## Usage

data_v5

## Format

A data frame with 5949 rows and 10 variables:
species species name
year year in which plot was visited
plotID a unique identifier for plot
treeID a unique identifier for tree
speciesGroup identifier for species group
code status of a tree: 0 (normal), 1(harvested), 2(dead), 3 (ingrowth)
volume_mid tree volume in m3 in the middle of a simulation step
weight_mid upscale weight to calculate hectare values in the middle of a simulation step
BA_mid basal area of individual trees in m 2 in the middle of a simulation step
protected logical, 1 if protected, otherwise 0
data_v6 An example of joined national forest inventory and site data that is used within the MLFS

## Description

This is simulated data that reassemble the national forest inventory data. We use it to show how to run examples for simulating Basal Area Increments (BAI) and the ingrowth of new trees. To make examples running more quickly, we keep only one tree species: PINI

## Usage

data_v6

## Format

A data frame with 186 rows and 27 variables:
species species name
year year in which plot was visited
plotID a unique identifier for plot
treeID a unique identifier for tree
speciesGroup identifier for species group
code status of a tree: 0 (normal), 1(harvested), 2(dead), 3 (ingrowth)
height tree height in meters
crownHeight crown height in meters
protected logical, 1 if protected, otherwise 0
slope slope on a plot
elevation plot elevation
northness plot northness, 1 is north, 0 is south
siteIndex a proxy for site index, higher value represents more productive sites
BA basal area of individual trees in m 2
weight upscale weight to calculate hectare values
stand_BA Total stand basal area
stand_n The number of trees in a stand
BAL Basal Area in Large trees
p_BA basal area of individual trees in m 2 from previous simulation step
p_height tree height in meters from previous simulation step
p_crownHeight crown height in meters from previous simulation step
p_weight upscale weight to calculate hectare values from previous simulation step
BAI basal area increment
p_sum monthly precipitation sum
t_avg monthly mean temperature
volume tree volume in m3
p_volume tree volume in m3 from previous simulation step

```
df_volume_parameters An example table with parameters and equations for n-parametric vol-
ume functions
```


## Description

Volume functions can be specified for each species and plot separately, also limited to specific DBH interval. The factor variables (vol_factor, h_factor and DBH_factor) are used to control the input and output units.

## Usage

df_volume_parameters

## Format

A data frame with 6 rows and 14 variables:
species species name as used in data_NFI. The category REST is used for all species without specific equation
equation equation for selected volume function
vol_factor will be multiplied with the volume
h_factor will be multiplied with tree height
d_factor will be divided with tree DBH
DBH_min lower interval threshold for considered trees
DBH_max upper interval threshold for considered trees
a parameter a for volume equation
b parameter b for volume equation
c parameter c for volume equation
d parameter d for volume equation
e parameter e for volume equation
f parameter f for volume equation
g parameter g for volume equation

## Description

Form factors can be specified per species, plot or per species and plot

## Usage

form_factors

## Format

A data frame with 1199 rows and 3 variables:
plotID a unique identifier for plot
species species name as used in data_NFI
form for factor used to calculate tree volume

```
height_prediction height_prediction
```


## Description

Height model

## Usage

```
    height_prediction(
        df_fit,
        df_predict,
        species_n_threshold = 100,
        height_model = "naslund",
        BRNN_neurons = 3,
        height_pred_level = 0,
        eval_model_height = TRUE,
        blocked_cv = TRUE,
        k = 10
)
```


## Arguments

```
    df_fit data frame with tree heights and basal areas for individual trees
    df_predict data frame which will be used for predictions
    species_n_threshold
```

        a positive integer defining the minimum number of observations required to treat
        a species as an independent group
    height_model character string defining the model to be used for height prediction. If 'brnn',
        then ANN method with Bayesian Regularization is applied. In addition, all 2-
        and 3- parametric H-D models from lmfor R package are available.
    BRNN_neurons positive integer defining the number of neurons to be used in the brnn method.
    height_pred_level
        integer with value 0 or 1 defining the level of prediction for height-diameter
        (H-D) models. The value 1 defines a plot-level prediction, while the value 0
        defines regional-level predictions. Default is 0 . If using 1, make sure to have
        representative plot-level data for each species.
    eval_model_height
                logical, should the height model be evaluated and returned as the output
    blocked_cv logical, should the blocked cross-validation be used in the evaluation phase?
    \(k \quad\) the number of folds to be used in the \(k\) fold cross-validation
    
## Value

a list with four elements:

1. \$data_height_predictions - a data frame with imputed tree heights
2. \$data_height_eval - a data frame with predicted and observed tree heights, or a character string indicating that tree heights were not evaluated
3. \$model_species - the output model for tree heights (species level)
4. \$model_speciesGroups - the output model for tree heights (species group level)

## Examples

```
library(MLFS)
data(data_tree_heights)
data(data_v2)
# A) Example with the BRNN method
h_predictions <- height_prediction(df_fit = data_tree_heights,
                                    df_predict = data_v2,
                                    species_n_threshold = 100,
                                    height_pred_level = 0,
                                    height_model = "brnn",
                                    BRNN_neurons = 3,
                                    eval_model_height = FALSE,
                                    blocked_cv = TRUE, k = 10
)
```

predicted_df <- h_predictions\$data_height_predictions \# df with imputed heights
evaluation_df <- h_predictions\$data_height_eval \# df with evaluation results
ingrowth_parameter_list
An example data of ingrowth_parameter_list

## Description

This is a list with two ingrowth levels: 3 (inner circle) and 15 (outer circle). In each list there are deciles of DBH distributions that are used to simulate DBH for new trees, separately for each ingrowth category

## Usage

ingrowth_parameter_list

## Format

A list with 2 elements:
3 deciles of DBH distribution for ingrowth category 3
15 deciles of DBH distribution for ingrowth category 15
ingrowth_table An example data of ingrowth_table

## Description

Ingrowth table is used within the ingrowth sub model to correctly simulate different ingrowth levels and associated upscale weights

## Usage

ingrowth_table

## Format

A data frame with 2 rows and 4 variables:
code ingrowth codes
DBH_threshold a DBH threshold for particular ingrowth category
DBH_max maximum DBH for a particular ingrowth category
weight the upscale weight for particular measurement category
max_size_data An example of data with maximum allowed BA that is used in the mortality sub model

## Description

This is simulated max_size_data and used for examples in mortality sub model

## Usage

max_size_data

## Format

A data frame with 36 rows and 2 variables:
species species name
BA_max The maximum allowed basal area (BA) for each individual species

```
measurement_thresholds
```

An example of measurement_thresholds table

## Description

An example of measurement_thresholds table resulting from concentric plots as used in Slovenian NFI

## Usage

measurement_thresholds

## Format

A data frame with 2 rows and 2 variables:
DBH_threshold a DBH threshold for particular measurement category
weight the upscale weight for particular measurement category

## Description

Machine Learning Forest Simulator

## Usage

```
MLFS(
data_NFI,
data_site,
data_tariffs = NULL,
data_climate = NULL,
df_volumeF_parameters = NULL,
thinning_weights_species = NULL,
final_cut_weights_species = NULL,
thinning_weights_plot = NULL,
final_cut_weights_plot = NULL,
form_factors = NULL,
form_factors_level = "species_plot",
uniform_form_factor = 0.42,
sim_steps,
volume_calculation = "volume_functions",
merchantable_whole_tree = "merchantable",
sim_harvesting = TRUE,
sim_mortality = TRUE,
sim_ingrowth = TRUE,
sim_crownHeight = TRUE,
harvesting_sum = NULL,
forest_area_ha = NULL,
harvest_sum_level = NULL,
plot_upscale_type = NULL,
plot_upscale_factor = NULL,
mortality_share = NA,
mortality_share_type = "volume",
mortality_model = "glm",
ingrowth_model = "ZIF_poiss",
BAI_rf_mtry = NULL,
ingrowth_rf_mtry = NULL,
mortality_rf_mtry = NULL,
nb_laplace = 0,
harvesting_type = "final_cut",
share_thinning = 0.8,
final_cut_weight = 10,
thinning_small_weight = 1,
species_n_threshold = 100,
```

```
    height_model = "brnn",
    crownHeight_model = "brnn",
    BRNN_neurons_crownHeight = 1,
    BRNN_neurons_height = 3,
    height_pred_level = 0,
    include_climate = FALSE,
    select_months_climate = c(1, 12),
    set_eval_mortality = TRUE,
    set_eval_crownHeight = TRUE,
    set_eval_height = TRUE,
    set_eval_ingrowth = TRUE,
    set_eval_BAI = TRUE,
    k = 10,
    blocked_cv = TRUE,
    max_size = NULL,
    max_size_increase_factor = 1,
    ingrowth_codes = c(3),
    ingrowth_max_DBH_percentile = 0.9,
    measurement_thresholds = NULL,
    area_correction = NULL,
    export_csv = FALSE,
    sim_export_mode = TRUE,
    include_mortality_BAI = TRUE,
    intermediate_print = FALSE
)
```


## Arguments

| data_NFI |
| :--- |
| data_site | | data frame with individual tree variables |
| :--- |
| data frame with site descriptors. This data is related to data_NFI based on the |
| 'plotID' column |

data_tariffs | optional, but mandatory if volume is calculated using the one-parametric tariff |
| :--- |
| functions. Data frame with plotID, species and V45. See details. |
| data_climate |
| data frame with climate data, covering the initial calibration period and all the |
| years which will be included in the simulation |

df_volumeF_parameters
optional, data frame with species-specific volume function parameters
thinning_weights_species
data frame with thinning weights for each species. The first column represents
species code, each next column consists of species-specific thinning weights
applied in each simulation step

```
final_cut_weights_plot
    data frame with harvesting weights related to plot IDs, used for final cut
form_factors optional, data frame with species-specific form factors
form_factors_level
    character, the level of specified form factors. It can be 'species', 'plot' or
    'species_plot'
uniform_form_factor
    numeric, uniform form factor to be used for all species and plots. Only if
    form_factors are not provided
sim_steps The number of simulation steps
volume_calculation
    character string defining the method for volume calculation: 'tariffs', 'volume_functions',
    'form_factors' or 'slo_2p_volume_functions'
merchantable_whole_tree
    character, 'merchantable' or 'whole_tree'. It indicates which type of volume
    functions will be used. This parameter is used only for volume calculation using
    the 'slo_2p_volume_functions'.
sim_harvesting logical, should harvesting be simulated?
sim_mortality logical, should mortality be simulated?
sim_ingrowth logical, should ingrowth be simulated?
sim_crownHeight
    logical, should crown heights be simulated? If TRUE, a crownHeight column is
    expected in data_NFI
harvesting_sum a value, or a vector of values defining the harvesting sums through the simulation
    stage. If a single value, then it is used in all simulation steps. If a vector of
    values, the first value is used in the first step, the second in the second step, etc.
forest_area_ha the total area of all forest which are subject of the simulation
harvest_sum_level
    integer with value 0 or 1 defining the level of specified harvesting sum: 0 for
    plot level and 1 for regional level
plot_upscale_type
    character defining the upscale method of plot level values. It can be 'area' or
    'upscale factor'. If 'area', provide the forest area represented by all plots in
    hectares (forest_area_ha argument). If 'factor', provide the fixed factor to up-
    scale the area of all plots. Please note: forest_area_ha/plot_upscale_factor =
    number of unique plots. This argument is important when harvesting sum is
    defined on regional level.
plot_upscale_factor
    numeric value to be used to upscale area of each plot
mortality_share
    a value, or a vector of values defining the proportion of the volume which is to
    be the subject of mortality. If a single value, then it is used in all simulation
    steps. If a vector of values, the first value is used in the first step, the second in
    the second step, and so on.
```

```
mortality_share_type
    character, it can be 'volume' or 'n_trees'. If 'volume' then the mortality share
    relates to total standing volume, if 'n_trees' then mortality share relates to the
    total number of standing trees
mortality_model
    model to be used for mortality prediction: 'glm' for generalized linear models;
    'rf' for random forest algorithm; 'naiveBayes' for Naive Bayes algorithm
ingrowth_model model to be used for ingrowth predictions. 'glm' for generalized linear models
    (Poisson regression), 'ZIF_poiss' for zero inflated Poisson regression and 'rf'
    for random forest
BAI_rf_mtry a number of variables randomly sampled as candidates at each split of a ran-
    dom forest model for predicting basal area increments (BAI). If NULL, default
    settings are applied.
ingrowth_rf_mtry
    a number of variables randomly sampled as candidates at each split of a random
    forest model for predicting ingrowth. If NULL, default settings are applied
mortality_rf_mtry
    a number of variables randomly sampled as candidates at each split of a random
    forest model for predicting mortality. If NULL, default settings are applied
nb_laplace value used for Laplace smoothing (additive smoothing) in naive Bayes algo-
    rithm. Defaults to 0 (no Laplace smoothing)
harvesting_type
    character, it could be 'random', 'final_cut', 'thinning' or 'combined'. The latter
    combines 'final_cut' and 'thinning' options, where the share of each is specified
    with the argument 'share_thinning'
share_thinning numeric, a number or a vector of numbers between 0 and 1 that specifies the
    share of thinning in comparison to final_cut. Only used if harvesting_type is
    'combined'
final_cut_weight
    numeric value affecting the probability distribution of harvested trees. Greater
    value increases the share of harvested trees having larger DBH. Default is 10.
thinning_small_weight
    numeric value affecting the probability distribution of harvested trees. Greater
    value increases the share of harvested trees having smaller DBH. Default is 1.
species_n_threshold
    a positive integer defining the minimum number of observations required to treat
    a species as an independent group
height_model character string defining the model to be used for height prediction. If brnn, then
    ANN method with Bayesian Regularization is applied.
crownHeight_model
    character string defining the model to be used for crown heights. Available are
    ANN with Bayesian regularization (brnn) or linear regression (lm)
BRNN_neurons_crownHeight
    a positive integer defining the number of neurons to be used in the brnn method
    for predicting crown heights
```

BRNN_neurons_height
a positive integer defining the number of neurons to be used in the brnn method for predicting tree heights
height_pred_level
integer with value 0 or 1 defining the level of prediction for height-diameter (H-D) models. The value 1 defines a plot-level prediction, while the value 0 defines regional-level predictions. Default is 0 . If using 1, make sure to have representative plot-level data for each species.
include_climate
logical, should climate variables be included as predictors
select_months_climate
vector of subset months to be considered. Default is $\mathrm{c}(1,12)$, which uses all months.
set_eval_mortality
logical, should the mortality model be evaluated and returned as the output
set_eval_crownHeight
logical, should the crownHeight model be evaluated and returned as the output
logical, should the height model be evaluated and returned as the output
set_eval_ingrowth
logical, should the the ingrowth model be evaluated and returned as the output
set_eval_BAI logical, should the the BAI model be evaluated and returned as the output
$k \quad$ the number of folds to be used in the k fold cross-validation
blocked_cv logical, should the blocked cross-validation be used in the evaluation phase?
max_size a data frame with the maximum values of DBH for each species. If a tree exceeds this value, it dies. If not provided, the maximum is estimated from the input data. Two columns must be present, i.e. 'species' and 'DBH_max'
max_size_increase_factor
numeric value, which will be used to increase the max DBH for each species, when the maximum is estimated from the input data. If the argument 'max_size' is provided, the 'max_size_increase_factor' is ignored. Default is 1 . To increase maximum for 10 percent, use 1.1.
ingrowth_codes numeric value or a vector of codes which refer to ingrowth trees
ingrowth_max_DBH_percentile
which percentile should be used to estimate the maximum simulated value of ingrowth trees?
measurement_thresholds
data frame with two variables: 1) DBH_threshold and 2) weight. This information is used to assign the correct weights in BAI and increment sub-model; and to upscale plot-level data to hectares.
area_correction
optional data frame with three variables: 1) plotID and 2) DBH_threshold and 3) the correction factor to be multiplied by weight for this particular category.
export_csv logical, if TRUE, at each simulation step, the results are saved in the current working directory as csv file

```
sim_export_mode
```

logical, if FALSE, the results of the individual simulation steps are not merged into the final export table. Therefore, output element 1 (\$sim_results) will be empty. This was introduced to allow simulations when using larger data sets and long term simulations that might exceed the available RAM. In such cases, we recommend setting the argument export_csv = TRUE, which will export each simulation step to the current working directory.
include_mortality_BAI
logical, should basal area increments (BAI) be used as independent variable for predicting individual tree morality?
intermediate_print
logical, if TRUE intermediate steps will be printed while MLFS is running

## Value

a list of class mlfs with at least 15 elements:

1. \$sim_results - a data frame with the simulation results
2. \$height_eval - a data frame with predicted and observed tree heights, or a character string indicating that tree heights were not evaluated
3. \$crownHeight_eval - a data frame with predicted and observed crown heights, or character string indicating that crown heights were not evaluated
4. \$mortality_eval - a data frame with predicted and observed probabilities of dying for all individual trees, or character string indicating that mortality sub-model was not evaluated
5. \$ingrowth_eval - a data frame with predicted and observed number of new ingrowth trees, separately for each ingrowth level, or character string indicating that ingrowth model was not evaluated
6. \$BAI_eval - a data frame with predicted and observed basal area increments (BAI), or character string indicating that BAI model was not evaluated
7. \$height_model_species - the output model for tree heights (species level)
8. \$height_model_speciesGroups - the output model for tree heights (species group level)
9. \$crownHeight_model_species - the output model for crown heights (species level)
10. \$crownHeight_model_speciesGroups - the output model for crown heights (species group level)
11. \$mortality_model - the output model for mortality
12. \$BAI_model_species - the output model for basal area increments (species level)
13. \$BAI_model_speciesGroups - the output model for basal area increments (species group level)
14. \$max_size - a data frame with maximum allowed diameter at breast height (DBH) for each species
15. \$ingrowth_model_3 - the output model for ingrowth (level 1) - the output name depends on ingrowth codes
16. \$ingrowth_model_15-the output model for ingrowth (level 2) - optional and the output name depends on ingrowth codes

## Examples

```
library(MLFS)
# open example data
data(data_NFI)
data(data_site)
data(data_climate)
data(df_volume_parameters)
data(measurement_thresholds)
test_simulation <- MLFS(data_NFI = data_NFI,
    data_site = data_site,
    data_climate = data_climate,
    df_volumeF_parameters = df_volume_parameters,
    form_factors = volume_functions,
    sim_steps = 2,
    sim_harvesting = TRUE,
    harvesting_sum = 100000,
    harvest_sum_level = 1,
    plot_upscale_type = "factor",
    plot_upscale_factor = 1600,
    measurement_thresholds = measurement_thresholds,
    ingrowth_codes = c(3,15),
    volume_calculation = "volume_functions",
    select_months_climate = seq(6,8),
    intermediate_print = FALSE
)
```

predict_ingrowth predict_ingrowth

## Description

ingrowth model for predicting new trees within the MLFS

## Usage

```
predict_ingrowth(
    df_fit,
    df_predict,
    site_vars = site_vars,
    include_climate = include_climate,
    eval_model_ingrowth = TRUE,
    k = 10,
    blocked_cv = TRUE,
    ingrowth_model = "glm",
    rf_mtry = NULL,
```

```
        ingrowth_table = NULL,
        DBH_distribution_parameters = NULL
    )
```


## Arguments

df_fit a plot-level data with plotID, stand variables and site descriptors, and the two target variables describing the number of ingrowth trees for inner (ingrowth_3) and outer (ingrowth_15) circles
df_predict data frame which will be used for ingrowth predictions
site_vars a character vector of variable names which are used as site descriptors include_climate
logical, should climate variables be included as predictors
eval_model_ingrowth
logical, should the the ingrowth model be evaluated and returned as the output
$\mathrm{k} \quad$ the number of folds to be used in the k fold cross-validation
blocked_cv logical, should the blocked cross-validation be used in the evaluation phase?
ingrowth_model model to be used for ingrowth predictions. 'glm' for generalized linear models (Poisson regression), 'ZIF_poiss' for zero inflated Poisson regression and 'rf' for random forest
$r f$ _mtry a number of variables randomly sampled as candidates at each split of a random forest model for predicting ingrowth. If NULL, default settings are applied.
ingrowth_table a data frame with 4 variables: (ingrowth) code, DBH_threshold, DBH_max and weight. Ingrowth table is used within the ingrowth sub model to correctly simulate different ingrowth levels and associated upscale weights
DBH_distribution_parameters
A list with deciles of DBH distributions that are used to simulate DBH for new trees, separately for each ingrowth category

## Value

a list with four elements:

1. \$predicted_ingrowth - a data frame with newly added trees based on the ingrowth predictions
2. \$eval_ingrowth - a data frame with predicted and observed number of new trees, separately for each ingrowth level, or character string indicating that ingrowth model was not evaluated
3. \$mod_ing_3 - the output model for predicting the ingrowth of trees with code 3
4. \$mod_ing_15 - the output model for predicting the ingrowth of trees with code 15 (the output name depends on the code used for this particular ingrowth level)

## Examples

```
library(MLFS)
```

data(data_v6)

```
data(data_ingrowth)
data(ingrowth_table)
data(ingrowth_parameter_list)
ingrowth_outputs <- predict_ingrowth(
    df_fit = data_ingrowth,
    df_predict = data_v6,
    site_vars = c("slope", "elevation", "northness", "siteIndex"),
    include_climate = TRUE,
    eval_model_ingrowth = FALSE,
    rf_mtry = 3,
    k = 10, blocked_cv = TRUE,
    ingrowth_model = 'rf',
    ingrowth_table = ingrowth_table,
    DBH_distribution_parameters = ingrowth_parameter_list)
```

```
predict_mortality predict_mortality
```


## Description

This sub model first fits a binary model to derive the effects of individual tree, site and climate variables on mortality; and afterwards predict the probability of dying for each tree from df_predict

## Usage

```
predict_mortality(
    df_fit,
    df_predict,
    df_climate,
    mortality_share = NA,
    mortality_share_type = "volume",
    include_climate,
    site_vars,
    select_months_climate = c(6, 8),
    mortality_model = "rf",
    nb_laplace = 0,
    sim_crownHeight = FALSE,
    k = 10,
    eval_model_mortality = TRUE,
    blocked_cv = TRUE,
    sim_mortality = TRUE,
    sim_step_years = 5,
    rf_mtry = NULL,
    df_max_size = NULL,
    ingrowth_codes = 3,
    include_mortality_BAI = TRUE,
```

```
        intermediate_print = FALSE
)
```


## Arguments

| df_fit | a data frame with individual tree data and site descriptors where code is used to <br> specify a status of each tree |
| :--- | :--- |
| df_predict | data frame which will be used for mortality predictions |
| df_climate | data frame with monthly climate data |
| mortality_share |  |

a value defining the proportion of the volume which is to be the subject of mortality
mortality_share_type
character, it can be 'volume' or 'n_trees'. If 'volume' then the mortality share relates to total standing volume, if 'n_trees' then mortality share relates to the total number of standing trees
include_climate
logical, should climate variables be included as predictors
site_vars a character vector of variable names which are used as site descriptors select_months_climate
vector of subset months to be considered. Default is $\mathrm{c}(1,12)$, which uses all months.
mortality_model
logical, should the mortality model be evaluated and returned as the output
nb_laplace value used for Laplace smoothing (additive smoothing) in naive Bayes algorithm. Defaults to 0 (no Laplace smoothing).
sim_crownHeight
logical, should crown heights be considered as a predictor variable? If TRUE, a crownHeight column is expected in data_NFI
$k \quad$ the number of folds to be used in the $k$ fold cross-validation
eval_model_mortality
logical, should the mortality model be evaluated and returned as the output
blocked_cv logical, should the blocked cross-validation be used in the evaluation phase?
sim_mortality logical, should mortality be simulated?
sim_step_years the simulation step in years
rf_mtry number of variables randomly sampled as candidates at each split of a random forest model. If NULL, default settings are applied.
df_max_size a data frame with the maximum BA values for each species. If a tree exceeds this value, it dies.
ingrowth_codes numeric value or a vector of codes which refer to ingrowth trees
include_mortality_BAI
logical, should basal area increments (BAI) be used as independent variable for predicting individual tree morality?
intermediate_print
logical, if TRUE intermediate steps will be printed while the mortality sub model is running

## Value

a list with three elements:

1. \$predicted_mortality - a data frame with updated tree status (code) based on the predicted mortality
2. \$eval_mortality - a data frame with predicted and observed probabilities of dying for all individual trees, or character string indicating that mortality sub-model was not evaluated
3. \$model_output - the output model for mortality

## Examples

```
data("data_v4")
data("data_mortality")
data("max_size_data")
mortality_outputs <- predict_mortality(
    df_fit = data_mortality,
    df_predict = data_v4,
    mortality_share_type = 'volume',
    df_climate = data_climate,
    site_vars = c("slope", "elevation", "northness", "siteIndex"),
    sim_mortality = TRUE,
    mortality_model = 'naiveBayes',
    nb_laplace = 0,
    sim_crownHeight = TRUE,
    mortality_share = 0.02,
    include_climate = TRUE,
    select_months_climate = c(6,7,8),
    eval_model_mortality = TRUE,
    k = 10, blocked_cv = TRUE,
    sim_step_years = 6,
    df_max_size = max_size_data,
    ingrowth_codes = c(3,15),
    include_mortality_BAI = TRUE)
    df_predicted <- mortality_outputs$predicted_mortality
    df_evaluation <- mortality_outputs$eval_mortality
    # confusion matrix
    table(df_evaluation$mortality, round(df_evaluation$mortality_pred, 0))
```

simulate_harvesting A sub model to simulate harvesting within the MLFS

## Description

Harvesting is based on probability sampling, which depends on the selected parameters and the seize of a tree. Bigger trees have higher probability of being harvested when final cut is applied, while smaller trees have higher probability of being sampled in the case of thinning.

## Usage

```
simulate_harvesting(
    df,
    harvesting_sum,
    df_thinning_weights_species = NULL,
    df_final_cut_weights_species = NULL,
    df_thinning_weights_plot = NULL,
    df_final_cut_weights_plot = NULL,
    harvesting_type = "random",
    share_thinning = 0.8,
    final_cut_weight = 1e+07,
    thinning_small_weight = 1e+05,
    harvest_sum_level = 1,
    plot_upscale_type,
    plot_upscale_factor,
    forest_area_ha
)
```


## Arguments

df
a data frame with individual tree data, which include basal areas in the middle of a simulation step, species name and code
harvesting_sum a value, or a vector of values defining the harvesting sums through the simulation stage. If a single value, then it is used in all simulation steps. If a vector of values, the first value is used in the first step, the second in the second step, etc.
df_thinning_weights_species
data frame with thinning weights for each species. The first column represents species code, each next column consists of species-specific thinning weights
df_final_cut_weights_species
data frame with final cut weights for each species. The first column represents species code, each next column consists of species-specific final cut weights
df_thinning_weights_plot
data frame with harvesting weights related to plot IDs, used for thinning
df_final_cut_weights_plot
data frame with harvesting weights related to plot IDs, used for final cut
harvesting_type
character, it could be 'random', 'final_cut', 'thinning' or 'combined'. The latter combines 'final_cut' and 'thinning' options, where the share of each is specified with the argument 'share_thinning'
share_thinning numeric, a number between 0 and 1 that specifies the share of thinning in comparison to final_cut. Only used if harvesting_type is 'combined'
final_cut_weight
numeric value affecting the probability distribution of harvested trees. Greater value increases the share of harvested trees having larger DBH. Default is 10 .
thinning_small_weight
numeric value affecting the probability distribution of harvested trees. Greater value increases the share of harvested trees having smaller DBH. Default is 1 .

```
harvest_sum_level
```

integer with value 0 or 1 defining the level of specified harvesting sum: 0 for plot level and 1 for regional level
plot_upscale_type
character defining the upscale method of plot level values. It can be 'area' or 'upscale factor'. If 'area', provide the forest area represented by all plots in hectares (forest_area_ha argument). If 'factor', provide the fixed factor to upscale the area of all plots. Please note: forest_area_ha/plot_upscale_factor = number of unique plots. This argument is important when harvesting sum is defined on regional level.
plot_upscale_factor
numeric value to be used to upscale area of each plot
forest_area_ha the total area of all forest which are subject of the simulation

## Value

a data frame with updated status (code) of all individual trees based on the simulation of harvesting

## Examples

```
library(MLFS)
data(data_v5)
data_v5 <- simulate_harvesting(df = data_v5,
    harvesting_sum = 5500000,
    harvesting_type = "combined",
    share_thinning = 0.50,
    harvest_sum_level = 1,
    plot_upscale_type = "factor",
    plot_upscale_factor = 1600,
    final_cut_weight = 5,
    thinning_small_weight = 1)
```

volume_form_factors volume_form_factors

## Description

The calculation of individual tree volume using form factors, which can be defined per species, per plot, or per species and per plot

## Usage

volume_form_factors( df, form_factors $=$ NULL,

```
    form_factors_level = "species",
    uniform_form_factor = 0.42
)
```


## Arguments

```
    df
    data frame with tree heights and basal areas for individual trees
    form_factors data frame with for factors for species, plot or both
    form_factors_level
        character, the level of specified form factors. It can be 'species', 'plot' or
        'species_plot'
uniform_form_factor
    a uniform form factor to be applied to all trees. If specified, it overwrites the
    argument 'form_factors'
```


## Value

a data frame with calculated volume for all trees

## Examples

```
library(MLFS)
data(data_v3)
data(form_factors)
data_v3 <- volume_form_factors(df = data_v3, form_factors = form_factors,
        form_factors_level = "species_plot")
    summary(data_v3)
```

```
volume_functions volume_functions
```


## Description

The calculation of individual tree volume using the n-parameter volume functions for the MLFS

## Usage

volume_functions(df, df_volumeF_parameters = NULL)

## Arguments

df data frame with tree heights and basal areas for individual trees
df_volumeF_parameters
data frame with equations and parameters for n-parametric volume functions

## Value

a data frame with calculated volume for all trees

## Examples

```
library(MLFS)
data(data_v3)
data(df_volume_parameters)
data_v3 <- volume_functions(df = data_v3,
    df_volumeF_parameters = df_volume_parameters)
```

```
    volume_tariffs volume_tariffs
```


## Description

One-parameter volume functions (tariffs) for the MLFS.

## Usage

volume_tariffs(df, data_tariffs)

## Arguments

$\begin{array}{ll}\text { df } & \text { data frame with tree heights and basal areas for individual trees } \\ \text { data_tariffs } & \begin{array}{l}\text { data frame with plot- and species-specific parameters for the calculations of tree } \\ \text { volume }\end{array}\end{array}$

Value
a data frame with calculated volume for all trees

## Examples

```
data(data_v3)
data(data_tariffs)
data_v3 <- volume_tariffs(df = data_v3, data_tariffs = data_tariffs)
```


## Index

```
* datasets
    data_BAI, }
    data_climate,8
    data_final_cut_weights,9
    data_ingrowth, }
    data_mortality,10
    data_NFI, 11
    data_site, 12
    data_tariffs, 12
    data_thinning_weights, 13
    data_tree_heights, 13
    data_v1, 14
    data_v2,15
    data_v3,16
    data_v4,17
    data_v5,18
    data_v6,18
    df_volume_parameters,20
    form_factors,21
    ingrowth_parameter_list,23
    ingrowth_table, 23
    max_size_data, 24
    measurement_thresholds, 24
add_stand_variables,2
BAI_prediction,3
calculate_BAL,5
crownHeight_prediction,5
data_BAI, }
data_climate,8
data_final_cut_weights,9
data_ingrowth,9
data_mortality,10
data_NFI, 11
data_site, 12
data_tariffs, 12
data_thinning_weights, 13
```

data_tree_heights, 13
data_v1, 14
data_v2, 15
data_v3, 16
data_v4, 17
data_v5, 18
data_v6, 18
df_volume_parameters, 20
form_factors, 21
height_prediction, 21
ingrowth_parameter_list, 23
ingrowth_table, 23
max_size_data, 24
measurement_thresholds, 24
MLFS, 25
predict_ingrowth, 31
predict_mortality, 33
simulate_harvesting, 35
volume_form_factors, 37
volume_functions, 38
volume_tariffs, 39

