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add_cv_number Assign a k-fold cross-validation number

Description

Randomly assigns a k-fold cross-validation number to each individual in a dataset.

Usage

add_cv_number(data_long, individual_id, k, seed = 1)

Arguments

data_long Data frame in long format i.e. there may be more than one row per individual

individual_id Character string specifying the column name in data_long which contains the
individual identifiers

k Integer specifying the number of folds for cross-validation. An alternative to set-
ting parameter cross_validation_df for performing cross-validation; if both
are missing no cross-validation is used.

seed The value of the seed (default is 1)

Details

This function randomly divides the n individual IDs into k groups, each with n/k members (or as
close to this number as possible).
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Value

Data frame data_long updated to contain a new column cross_validation_number indicating
the fold to which the individual has been assigned.

Author(s)

Isobel Barrott <isobel.barrott@gmail.com>

Examples

data(data_repeat_outcomes)
data_repeat_outcomes <- add_cv_number(data_long = data_repeat_outcomes,

individual_id = "id",
k = 10)

data_repeat_outcomes Simulated repeat measurement and time-to-event data

Description

A simulated dataset which is a combination of longitudinal (repeat measurement) data and time-to-
event data.This dataset contains simulated data from 3000 patients.

The longitudinal (repeat measurement) data is formed using an LME model, whose parameters were
based on CVD risk assessments recorded at primary care practices in New Zealand.

A LME model was fitted to this dataset and values of sbp_stnd and tchdl_stnd were estimated
at landmark age 60. These values (along with the other baseline covariates) were used to simulate
time-to-event data from a cause specific model with parameters based on CVD events of patients at
primary care practices in New Zealand.

Usage

data_repeat_outcomes

Format

A dataset with 9048 rows and 14 columns:

id Patient ID

smoking Smoking status, 0 indicates the patient has never smoked, 1 indicates the patient has quit
smoking, and 2 indicates the patient is a current smoker

diabetes Diabetes status, 0 indicates the patient is not diagnosed with diabetes, and 1 indicates the
patient is diagnosed with diabetes

ethnicity Ethnicity, one of five ethnicities

deprivation Deprivation score, quintiles

index An index indicating assessment number for a patient



4 fit_LME_landmark

sbp_stnd Standardised systolic blood pressure

tchdl_stnd Standardised total cholesterol to HDL ratio

end_of_study_age Age that individual left the study, either the age at event (CVD or death) or age
at end of study (1st Jan 2010)

response_time_tchdl_stnd Age that total cholesterol to HDL ratio was recorded

response_time_sbp_stnd Age that systolic blood pressure was recorded, this is the same as the
date that the fixed measures were recorded

start_time Age the individual entered follow-up

event_status Event status, 0 indicates censoring, 1 indicates CVD event, and 2 indicates death
from other causes

event_time Event time

fit_LME_landmark Fit a landmarking model using a linear mixed effects (LME) model for
the longitudinal submodel

Description

This function performs the two-stage landmarking analysis.

Usage

fit_LME_landmark(
data_long,
x_L,
x_hor,
fixed_effects,
random_effects,
fixed_effects_time,
random_effects_time,
individual_id,
k,
cross_validation_df,
random_slope_in_LME = TRUE,
random_slope_as_covariate = TRUE,
standardise_time = FALSE,
lme_control = nlme::lmeControl(),
event_time,
event_status,
survival_submodel = c("standard_cox", "cause_specific", "fine_gray"),
b

)
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Arguments

data_long Data frame or list of data frames each corresponding to a landmark age x_L
(each element of the list must be named the value of x_L it corresponds to).
Each data frame contains repeat measurements data and time-to-event data in
long format.

x_L Numeric specifying the landmark time(s)

x_hor Numeric specifying the horizon time(s)

fixed_effects Vector of character strings specifying the column names in data_long which
correspond to the fixed effects

random_effects Vector of character strings specifying the column names in data_long which
correspond to the random effects

fixed_effects_time

Character string specifying the column name in data_long which contains the
time at which the fixed effects were recorded

random_effects_time

Vector of character strings specifying the column names in data_long which
contain the times at which repeat measures were recorded. This should either be
length 1 or the same length as random_effects. In the latter case the order of
elements must correspond to the order of elements in random_effects.

individual_id Character string specifying the column name in data_long which contains the
individual identifiers

k Integer specifying the number of folds for cross-validation. An alternative to set-
ting parameter cross_validation_df for performing cross-validation; if both
are missing no cross-validation is used.

cross_validation_df

List of data frames containing the cross-validation fold each individual is as-
signed to. Each data frame in the list should be named according to the landmark
time x_L that they correspond. Each data frame should contain the columns
individual_id and a column cross_validation_number which contains the
cross-validation fold of the individual. An alternative to setting parameter k for
performing cross-validation; if both are missing no cross-validation is used.

random_slope_in_LME

Boolean indicating whether to include a random slope in the LME model
random_slope_as_covariate

Boolean indicating whether to include the random slope estimate from the LME
model as a covariate in the survival submodel.

standardise_time

Boolean indicating whether to standardise the time variables (fixed_effects_time
and random_effects_time) by subtracting the mean and dividing by the stan-
dard deviation (see Details section for more information)

lme_control Object created using nlme::lmeControl(), which will be passed to the control
argument of the lme function

event_time Character string specifying the column name in data_long which contains the
event time
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event_status Character string specifying the column name in data_long which contains the
event status (where 0=censoring, 1=event of interest, if there are competing
events these are labelled 2 or above).

survival_submodel

Character string specifying which survival submodel to use. Three options: the
standard Cox model i.e. no competing risks ("standard_cox"), the cause-
specific regression model ("cause_specific"), or the Fine Gray regression
model ("fine_gray")

b Integer specifying the number of bootstrap samples to take when calcluating
standard error of c-index and Brier score

Details

Firstly, this function selects the individuals in the risk set at the landmark time x_L. Specifically, the
individuals in the risk set are those that have entered the study before the landmark age (there is at
least one observation for each of the fixed_effects andrandom_effects on or before x_L) and
exited the study on after the landmark age (event_time is greater than x_L).

Secondly, if the option to use cross validation is selected (using either parameter k or cross_validation_df),
then an extra column cross_validation_number is added with the cross-validation folds. If pa-
rameter k is used, then the function add_cv_number randomly assigns these folds. For more details
on this function see ?add_cv_number. If the parameter cross_validation_df is used, then the
folds specified in this data frame are added. If cross-validation is not selected then the landmark
model is fit to the entire group of individuals in the risk set (this is both the training and test dataset).

Thirdly, the landmark model is then fit to each of the training data. There are two parts to fitting the
landmark model: using the longitudinal data and using the survival data. Using the longitudinal data
is the first stage and is performed using fit_LME_longitudinal. See ?fit_LME_longitudinal
more for information about this function. Using the survival data is the second stage and is per-
formed using fit_survival_model. See ?fit_survival_model more for information about this
function.

Fourthly, the performance of the model is then assessed on the set of predictions from the entire
set of individuals in the risk set by calculating Brier score and C-index. This is performed using
get_model_assessment. See ?get_model_assessment more for information about this function.

Value

List containing containing information about the landmark model at each of the landmark times.
Each element of this list is named the corresponding landmark time, and is itself a list containing ele-
ments: data, model_longitudinal, model_LME, model_LME_standardise_time, model_survival,
and prediction_error.

data has one row for each individual in the risk set at x_L and contains the value of the fixed_effects
using the LOCF approach and predicted values of the random_effects using the LME model at the
landmark time x_L. It also includes the predicted probability that the event of interest has occurred
by time x_hor, labelled as "event_prediction". There is one row for each individual.

model_longitudinal indicates that the longitudinal approach is LME.

model_LME contains the output from the lme function from package nlme. For a model using
cross-validation, model_LME contains a list of outputs with each element in the list corresponds to a
different cross-validation fold. prediction_error contains a list indicating the c-index and Brier
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score at time x_hor and their standard errors if parameter b is used. For more information on how
the prediction error is calculated please see ?get_model_assessment which is the function used to
do this within fit_LME_landmark.

model_LME_standardise_time contains a list of two objects mean_response_time and sd_response_time
if the parameter standardise_time=TRUE is used. This is the mean and standard deviation use to
normalise times when fitting the LME model.

model_survival contains the outputs from the survival submodel functions, including the esti-
mated parameters of the model. For a model using cross-validation, model_survival will contain
a list of outputs with each element in the list corresponding to a different cross-validation fold.
model_survival contains the outputs from the function used to fit the survival submodel, includ-
ing the estimated parameters of the model. For a model using cross-validation, model_survival
contains a list of outputs with each element in the list corresponding to a different cross-validation
fold. For more information on how the survival model is fitted please see ?fit_survival_model
which is the function used to do this within fit_LME_landmark.

prediction_error contains a list indicating the c-index and Brier score at time x_hor and their
standard errors if parameter b is used.

Author(s)

Isobel Barrott <isobel.barrott@gmail.com>

Examples

library(Landmarking)
data(data_repeat_outcomes)
data_model_landmark_LME <-

fit_LME_landmark(
data_long = data_repeat_outcomes,
x_L = c(60, 61),
x_hor = c(65, 66),
k = 10,
fixed_effects = c("ethnicity", "smoking", "diabetes"),
fixed_effects_time = "response_time_sbp_stnd",
random_effects = c("sbp_stnd", "tchdl_stnd"),
random_effects_time = c("response_time_sbp_stnd", "response_time_tchdl_stnd"),
individual_id = "id",
standardise_time = TRUE,
lme_control = nlme::lmeControl(maxIter = 100, msMaxIter = 100),
event_time = "event_time",
event_status = "event_status",
survival_submodel = "cause_specific"

)
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fit_LME_longitudinal Fit a landmarking model using a linear mixed effects (LME) model for
the longitudinal submodel

Description

This function is a helper function for fit_LME_landmark.

Usage

fit_LME_longitudinal(
data_long,
x_L,
fixed_effects,
random_effects,
fixed_effects_time,
random_effects_time,
standardise_time = FALSE,
random_slope_in_LME = TRUE,
random_slope_as_covariate = FALSE,
cv_name = NA,
individual_id,
lme_control = nlme::lmeControl()

)

Arguments

data_long Data frame containing repeat measurement data and time-to-event data in long
format.

x_L Numeric specifying the landmark time(s)

fixed_effects Vector of character strings specifying the column names in data_long which
correspond to the fixed effects

random_effects Vector of character strings specifying the column names in data_long which
correspond to the random effects

fixed_effects_time

Character string specifying the column name in data_long which contains the
time at which the fixed effects were recorded

random_effects_time

Vector of character strings specifying the column names in data_long which
contain the times at which repeat measures were recorded. This should either be
length 1 or the same length as random_effects. In the latter case the order of
elements must correspond to the order of elements in random_effects.

standardise_time

Boolean indicating whether to standardise the time variable by subtracting the
mean and dividing by the standard deviation (see Details section for more infor-
mation)
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random_slope_in_LME

Boolean indicating whether to include a random slope in the LME model
random_slope_as_covariate

Boolean indicating whether to include the random slope estimate from the LME
model as a covariate in the survival submodel.

cv_name Character string specifying the column name in data_long that indicates cross-
validation fold

individual_id Character string specifying the column name in data_long which contains the
individual identifiers

lme_control Object created using nlme::lmeControl(), which will be passed to the control
argument of the lme function

Details

For an individual i, the LME model can be written as

Yi = Xiβ + ZiUi + εi

where

• Yi is the vector of outcomes at different time points for the individual

• Xi is the matrix of covariates for the fixed effects at these time points

• β is the vector of coefficients for the fixed effects

• Zi is the matrix of covariates for the random effects

• Ui is the matrix of coefficients for the random effects

• εi is the error term, typically from N(0, σ)

By using an LME model to fit repeat measures data we can allow measurements from the same
individuals to be more similar than measurements from different individuals. This is done through
the random intercept and/or random slope.

Extending this model to the case where there are multiple random effects, denoted k, we have

Yik = Xikβk + ZikUik + εik

Using this model we can allow a certain covariance structure within the random effects term Uik, for
example a sample from the multivariate normal (MVN) distributionMVN(0,Σu). This covariance
structure means the value of one random effects variable informs about the value of the other random
effects variables, leading to more accurate predictions and allowing there to be missing data in the
random effects variables.

The function fit_LME_landmark uses a unstructured covariance for the random effects when fit-
ting the LME model (i.e. no constraints are imposed on the values). To fit the LME model the
function lme from the package nlme is used. The fixed effects are calculated as the LOCF for
the variables fixed_effects at the landmark age x_L and the random effects are those stated in
random_effects and at times random_effects_time. The random intercept is always included in
the LME model. Additionally, the random slope can be included in the LME model using the param-
eter random_slope_in_LME=TRUE. The model is used to predict the values of the random effects at
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the landmark time x_L, and these are used as predictors in the survival model along with the LOCF
values of the fixed effects. Additionally, the estimated value of the random slope can be included as
predictors in the survival model using the parameter random_slope_as_covariate=TRUE.

It is important to distinguish between the validation set and the development set for fitting the
LME model. The development set includes all the repeat measurements (including those after the
landmark age x_L). Conversely, the validation set only includes the repeat measurements recorded
up until and including the landmark age x_L.

There is an important consideration about fitting the linear mixed effects model. As the variable
random_effects_time gets further from 0, the random effects coefficients get closer to 0. This
causes computational issues as the elements in the covariance matrix of the random effects, Σu, are
constrained to be greater than 0. Using parameter standard_time=TRUE can prevent this issue by
standardising the time variables to ensure that the random_effects_time values are not too close
to 0.

The LOCF values for the fixed effects and the prediction of the random effects at the landmark age
are used as the covariates for the survival submodel, in addition to the estimated random slopes if
option random_effects_as_covariate is selected.

Value

List containing elements: data_longitudinal, model_longitudinal, model_LME, and model_LME_standardise_time.

data_longitudinal has one row for each individual in the risk set at x_L and contains the value
of the covariates at the landmark time x_L of the fixed_effects using the LOCF model and
random_effects using the LME model.

model_longitudinal indicates that the LME approach is used.

model_LME contains the output from the lme function from package nlme. For a model using
cross-validation, model_LME contains a list of outputs with each element in the list corresponds to a
different cross-validation fold.

model_LME_standardise_time contains a list of two objects mean_response_time and sd_response_time
if the parameter standardise_time=TRUE is used. This is the mean and standard deviation used to
normalise times when fitting the LME model.

fit_LOCF_landmark Fit a landmark model using a last observation carried forward
(LOCF) method for the longitudinal data

Description

This function performs the two-stage landmarking analysis. In the first stage, the longitudinal
submodel is fitted using the LOCF method and in the second stage the survival submodel is fitted.
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Usage

fit_LOCF_landmark(
data_long,
x_L,
x_hor,
covariates,
covariates_time,
k,
cross_validation_df,
individual_id,
event_time,
event_status,
survival_submodel = c("standard_cox", "cause_specific", "fine_gray"),
b

)

Arguments

data_long Data frame or list of data frames each corresponding to a landmark age x_L
(each element of the list must be named the value of x_L it corresponds to).
Each data frame contains repeat measurements data and time-to-event data in
long format.

x_L Numeric specifying the landmark time(s)

x_hor Numeric specifying the horizon time(s)

covariates Vector of character strings specifying the column names in data_long which
correspond to the covariates

covariates_time

Vector of character strings specifying the column names in data_long which
contain the times at which covariates were recorded. This should either be
length 1 or the same length as covariates. In the latter case the order of ele-
ments must correspond to the order of elements in covariates.

k Integer specifying the number of folds for cross-validation. An alternative to set-
ting parameter cross_validation_df for performing cross-validation; if both
are missing no cross-validation is used.

cross_validation_df

List of data frames containing the cross-validation fold each individual is as-
signed to. Each data frame in the list should be named according to the landmark
time x_L that they correspond. Each data frame should contain the columns
individual_id and a column cross_validation_number which contains the
cross-validation fold of the individual. An alternative to setting parameter k for
performing cross-validation; if both are missing no cross-validation is used.

individual_id Character string specifying the column name in data_long which contains the
individual identifiers

event_time Character string specifying the column name in data_long which contains the
event time
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event_status Character string specifying the column name in data_long which contains the
event status (where 0=censoring, 1=event of interest, if there are competing
events these are labelled 2 or above).

survival_submodel

Character string specifying which survival submodel to use. Three options: the
standard Cox model i.e. no competing risks ("standard_cox"), the cause-
specific regression model ("cause_specific"), or the Fine Gray regression
model ("fine_gray")

b Integer specifying the number of bootstrap samples to take when calcluating
standard error of c-index and Brier score

Details

Firstly, this function selects the individuals in the risk set at the landmark time x_L. Specifically, the
individuals in the risk set are those that have entered the study before the landmark age (there is at
least one observation for each of the covariates on or before x_L) and exited the study on after
the landmark age (event_time is greater than x_L).

Secondly, if the option to use cross validation is selected (using either parameter k or cross_validation_df),
then an extra column cross_validation_number is added with the cross-validation folds. If pa-
rameter k is used, then the function add_cv_number randomly assigns these folds. For more details
on this function see ?add_cv_number. If the parameter cross_validation_df is used, then the
folds specified in this data frame are added. If cross-validation is not selected then the landmark
model is fit to the entire group of individuals in the risk set (this is both the training and test dataset).

Thirdly, the landmark model is then fit to each of the training data. There are two parts to fitting the
landmark model: using the longitudinal data and using the survival data. Using the longitudinal data
is the first stage and is performed using fit_LOCF_longitudinal. See ?fit_LOCF_longitudinal
more for information about this function. Using the survival data is the second stage and is per-
formed using fit_survival_model. See ?fit_survival_model more for information about this
function.

Fourthly, the performance of the model is then assessed on the set of predictions from the entire
set of individuals in the risk set by calculating Brier score and C-index. This is performed using
get_model_assessment. See ?get_model_assessment more for information about this function.

Value

List containing containing information about the landmark model at each of the landmark times.
Each element of this list is named the corresponding landmark time, and is itself a list containing
elements: data, model_longitudinal, model_survival, and prediction_error.

data has one row for each individual in the risk set at x_L and contains the value of the covariates
at the landmark time x_L using the LOCF approach. It also includes the predicted probability that
the event of interest has occurred by time x_hor, labelled as "event_prediction". There is one
row for each individual.

model_longitudinal indicates that the longitudinal approach is LOCF.

model_survival contains the outputs from the function used to fit the survival submodel, includ-
ing the estimated parameters of the model. For a model using cross-validation, model_survival
contains a list of outputs with each element in the list corresponding to a different cross-validation



fit_LOCF_longitudinal 13

fold. For more information on how the survival model is fitted please see ?fit_survival_model
which is a function used within fit_LOCF_landmark.

prediction_error contains a list indicating the c-index and Brier score at time x_hor and their
standard errors if parameter b is used. For more information on how the prediction error is calculated
please see ?get_model_assessment which is the function used to do this within fit_LOCF_landmark.

Author(s)

Isobel Barrott <isobel.barrott@gmail.com>

Examples

library(Landmarking)
data(data_repeat_outcomes)
data_model_landmark_LOCF <-

fit_LOCF_landmark(
data_long = data_repeat_outcomes,
x_L = c(60, 61),
x_hor = c(65, 66),
covariates =

c("ethnicity", "smoking", "diabetes", "sbp_stnd", "tchdl_stnd"),
covariates_time =

c(rep("response_time_sbp_stnd", 4), "response_time_tchdl_stnd"),
k = 10,
individual_id = "id",
event_time = "event_time",
event_status = "event_status",
survival_submodel = "cause_specific"

)

fit_LOCF_longitudinal Find the last observation carried forward (LOCF) values for covari-
ates in a dataset

Description

This function is a helper function for fit_LOCF_landmark.

Usage

fit_LOCF_longitudinal(
data_long,
x_L,
covariates,
covariates_time,
cv_name = NA,
individual_id

)
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Arguments

data_long Data frame in long format i.e. there may be more than one row per individual

x_L Numeric specifying the landmark time(s)

covariates Vector of character strings specifying the column names in data_long which
correspond to the covariates

covariates_time

Vector of character strings specifying the column names in data_long which
contain the times at which covariates were recorded. This should either be
length 1 or the same length as covariates. In the latter case the order of ele-
ments must correspond to the order of elements in covariates.

cv_name Character string specifying the column name in data_long that indicates cross-
validation fold

individual_id Character string specifying the column name in data_long which contains the
individual identifiers

Details

This function extracts the LOCF value for each of the covariates in data_long up to (and includ-
ing) time x_L.

Value

List containing data_longitudinal, model_longitudinal, and call.

data_longitudinal has one row for each individual in data_long and contains the LOCF value
of covariates at the landmark time x_L.

model_longitudinal indicates that the LOCF approach is used.

call contains the call of the function.

Author(s)

Isobel Barrott <isobel.barrott@gmail.com>

fit_survival_model Fit a survival sub-model

Description

This function is a helper function for fit_LOCF_landmark_model and fit_LME_landmark_model.
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Usage

fit_survival_model(
data,
individual_id,
cv_name = NA,
covariates,
event_time,
event_status,
survival_submodel = c("standard_cox", "cause_specific", "fine_gray"),
x_hor

)

Arguments

data Data frame containing covariates and time-to-event data, one row for each indi-
vidual.

individual_id Character string specifying the column name in data which contains the indi-
vidual identifiers

cv_name Character string specifying the column name in data that indicates cross-validation
fold. If no cross-validation is needed, set this parameter to NA.

covariates Vector of character strings specifying the column names in data_long which
correspond to the covariates

event_time Character string specifying the column name in data which contains the event
time

event_status Character string specifying the column name in data which contains the event
status (where 0=censoring, 1=event of interest, if there are competing events
these are labelled 2 or above). Events at time x_hor should be labelled censored.

survival_submodel

Character string specifying which survival submodel to use. Three options: the
standard Cox model i.e. no competing risks ("standard_cox"), the cause-
specific regression model ("cause_specific"), or the Fine Gray regression
model ("fine_gray")

x_hor Numeric specifying the horizon time(s)

Details

For the survival submodel, there are three choices of model:

• the standard Cox model, this is a wrapper function for coxph from the package survival

• the cause-specific model, this is a wrapper function for CSC from package riskRegression

• the Fine Gray model, this is a wrapper function for FGR from package riskRegression

The latter two models estimate the probability of the event of interest in the presence of competing
events.

For both the c-index and Brier score calculations, inverse probability censoring weighting (IPCW) is
used to create weights which account for the occurrence of censoring. The censoring model assumes
for this function is the Kaplan Meier model, i.e. censoring occurs independently of covariates.
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Value

List containing data_survival and model_survival

data_survival contains the predicted risk of event by the horizon time x_hor.

model_survival contains the outputs from the function used to fit the survival submodel, includ-
ing the estimated parameters of the model. For a model using cross-validation, model_survival
contains a list of outputs with each element in the list corresponding to a different cross-validation
fold.

Author(s)

Isobel Barrott <isobel.barrott@gmail.com>

get_model_assessment Compute C-index and Brier score

Description

Performs model assessment by computing the C-index and Brier score at time x_hor. There is the
option to calculate their standard errors using bootstraping.

Usage

get_model_assessment(
data,
individual_id,
event_prediction,
event_status,
event_time,
x_hor,
b

)

Arguments

data Data frame containing survival outcomes and the event predictions from the
model, there should be one row for each individual

individual_id Character string specifying the column name in data which contains the indi-
vidual identifiers

event_prediction

Character string specifying the column name in data containing the predicted
probability of the event of interest

event_status Character string specifying the column name in data which contains the event
status (where 0=censoring, 1=event of interest, if there are competing events
these are labelled 2 or above). Events at time x_hor should be labelled censored.

event_time Character string specifying the column name in data which contains the event
time.
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x_hor Numeric specifying the horizon time(s)

b Integer specifying the number of bootstrap samples to take when calcluating
standard error of c-index and Brier score

Details

There are two factors in assessing the performance of a prediction model; its discrimination and
its calibration. The c-index is a commonly used metric which assesses discrimination, this refers
to the ability of the model to separate individuals into those that will have an event and those that
will not. The c-index at a horizon time x_hor looks at the pairs of individuals where one individual
has the event at a time T and the other has not had the event at time T. It is calculated as the
proportion of these pairs where their relative risk prediction agrees with the actual outcomes for the
two individuals. This is extended to the competing risks case by comparing individuals where one
had the event of interest at time T and the other individual either did not experience the event before
this time T or experienced a competing event.

The Brier score gives an indication of the calibration of a model (and its discrimination to an ex-
tent), this refers to the agreement between the risk prediction and the outcome. The Brier score is
calculated as the average mean squared error of the predicted risk and the event outcome (where
an event is 1 and not experiencing the event is 0). This is extended to the competing risks case by
including the competing risk events as not experiencing the event.

For both the c-index and Brier score calculations, inverse probability censoring weighting (IPCW) is
used to create weights which account for the occurence of censoring. The censoring model assumes
for this function is the Kaplan Meier model, i.e. censoring occurs independently of covariates.

The c-index is calculated using the cindex function in package pec. The Brier score is calculated
using pec function in package pec.

Value

List containing C-index, Brier score and their standard errors

Author(s)

Isobel Barrott <isobel.barrott@gmail.com>

Examples

## Not run:
library(Landmarking)
data(data_repeat_outcomes)
data_model_landmark_LOCF <-

fit_LOCF_landmark(
data_long = data_repeat_outcomes,
x_L = c(60, 61),
x_hor = c(65, 66),
covariates =

c("ethnicity", "smoking", "diabetes", "sbp_stnd", "tchdl_stnd"),
covariates_time =

c(rep("response_time_sbp_stnd", 4), "response_time_tchdl_stnd"),
k = 10,
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individual_id = "id",
event_time = "event_time",
event_status = "event_status",
survival_submodel = "cause_specific"

)
get_model_assessment(data = data_model_landmark_LOCF[["60"]]$data,

individual_id = "id",
event_prediction = "event_prediction",
event_status = "event_status",
event_time = "event_time",
x_hor = 65,
b = 10)

## End(Not run)

mixoutsamp Calculate point estimates from a linear mixed effects (LME) model for
new data

Description

This function allows the user to make out-of-sample predictions from an LME model.

Usage

mixoutsamp(model, newdata)

Arguments

model Object of class lme containing the fitted LME model

newdata Data frame containing data for which to make predictions. The response variable
should be set to NA for the rows of the data the user wishes to make predictions
for. The columns in the data should have the same names as those used to fit the
model. The variables should also be of the same type as in the data used to fit
the mixed model (numeric, factor etc).

Value

List containing preddata and random. Data frame preddata is a version of newdata updated to
contain columns corresponding to the fixed effects values (fixed), random effects values (random),
and fitted values (fitted). Data frame random contains the values of random effects components
for each individual.

Author(s)

This code was originally written by Ruth Keogh (London School of Hygiene and Tropical Medicine)
which can be viewed at github.com/ruthkeogh/landmark_CF. There have been further contributions
from Jessica Barrett (MRC Biostatistics Unit, University of Cambridge), David Stevens (University
of Liverpool), and Mike Sweeting (University of Leicester).
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plot.landmark Create a calibration plot

Description

Creates a calibration plot for the landmark model fitted by fit_LME_landmark_model or fit_LOCF_landmark_model.
This function plots the observed frequencies of the event of interest against the predicted probabili-
ties of the event of interest.

Usage

## S3 method for class 'landmark'
plot(x, x_L, n, x_lims, y_lims, ...)

Arguments

x Object inheriting the class landmark, this should be the output from either
fit_LME_landmark_model or fit_LOCF_landmark_model. It should contain
a list of landmark models corresponding to different landmark times x_L.

x_L Numeric specifying the landmark time. This indicates which landmark model
in x to use.

n Numeric specifying the number of bins to use.

x_lims Vector of length 2 specifying the limits of the x axes

y_lims Vector of length 2 specifying the limits of the y axes

... Arguments passed to ggplot2::labs to modify axis, legend, and plot labels

Details

This function bins the predicted probabilities of the event of interest into n bins. The event of
interest is the event with event_status=1 when fitting the landmark model. For each of the n sets
of individuals, the Aalen-Johansen estimator is fit to that set and used to calculate the risk of an
event at the horizon time. The predictions (from the landmark model) and the observed frequencies
(from the Aalen-Johansen estimator) are plotted against each other. For a perfect prediction model,
the points will be plotted along the y=x line.

Value

Calibration plot showing the value of predicted probabilities against observed frequencies, with a
y=x line.

Examples

library(Landmarking)
data(data_repeat_outcomes)
data_model_landmark_LOCF <-

fit_LOCF_landmark(
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data_long = data_repeat_outcomes,
x_L = c(60, 61),
x_hor = c(65, 66),
covariates =

c("ethnicity", "smoking", "diabetes", "sbp_stnd", "tchdl_stnd"),
covariates_time =

c(rep("response_time_sbp_stnd", 4), "response_time_tchdl_stnd"),
k = 10,
individual_id = "id",
event_time = "event_time",
event_status = "event_status",
survival_submodel = "cause_specific"

)
plot(x=data_model_landmark_LOCF,x_L=60,n=5)
plot(x=data_model_landmark_LOCF,x_L=61,n=5)

predict.landmark Predict the risk of an event for a new individual using the landmark
model

Description

This function predicts the risk of an event for new data using the landmark model fitted by fit_LME_landmark
or fit_LOCF_landmark. The ’event’ is defined as event for which event_status is 1.

Usage

## S3 method for class 'landmark'
predict(object, x_L, x_hor, newdata, cv_fold = NA, ...)

Arguments

object Object inheriting the class landmark, this should be the output from either
fit_LME_landmark or fit_LOCF_landmark. It should contain a list of land-
mark models corresponding to different landmark times x_L.

x_L Numeric specifying the landmark time. This indicates which landmark model
in object to use.

x_hor Numeric specifying the horizon time. The function assesses the risk of event
before this time.

newdata Data frame containing new data to return the risk prediction of the event of inter-
est. The data should be in in long format and the columns must contain the co-
variates and time variables that are used to fit the model. For the LME model this
the variables fixed_effects, random_effects, fixed_effects_time, and
random_effects_time. For the LOCF model this is covariates and covariates_time.

cv_fold If cross validation is used to fit fit_LME_landmark or fit_LOCF_landmark,
then the cross validation fold to use when making risk predictions needs to be
specified.

... Arguments passed on to riskRegression::predictRisk
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Value

Data frame newdata updated to contained a new column event_prediction

Examples

library(Landmarking)
data(data_repeat_outcomes)
data_model_landmark_LOCF <-

fit_LOCF_landmark(
data_long = data_repeat_outcomes,
x_L = c(60, 61),
x_hor = c(65, 66),
covariates =

c("ethnicity", "smoking", "diabetes", "sbp_stnd", "tchdl_stnd"),
covariates_time =

c(rep("response_time_sbp_stnd", 4), "response_time_tchdl_stnd"),
k = 10,
individual_id = "id",
event_time = "event_time",
event_status = "event_status",
survival_submodel = "cause_specific"

)
newdata <-

rbind(
data.frame(

id = c(3001, 3001, 3001),
response_time_sbp_stnd = c(57, 58, 59),
smoking = c(0, 0, 0),
diabetes = c(0, 0, 0),
ethnicity = c("Indian", "Indian", "Indian"),
sbp_stnd = c(0.45, 0.87, 0.85),
tchdl_stnd = c(-0.7, 0.24, 0.3),
response_time_tchdl_stnd = c(57, 58, 59)

)
)

predict(object=data_model_landmark_LOCF,x_L=60,x_hor=62,newdata=newdata,cv_fold=1)

return_ids_with_LOCF Select individuals in a dataset with a last observation carried forward
(LOCF) at a landmark time

Description

To fit the LOCF model, all individuals must have at least one non-NA entry by landmark time x_L
for all covariates. This function selects these individuals and removes the other rows.
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Usage

return_ids_with_LOCF(
data_long,
individual_id,
x_L,
covariates,
covariates_time

)

Arguments

data_long Data frame with repeated measurements data in long format

individual_id Character string specifying the column name in data_long which contains the
individual identifiers

x_L Numeric specifying the landmark time(s)

covariates Vector of character strings specifying the column names in data_long which
correspond to the covariates

covariates_time

Vector of character strings specifying the column names in data_long which
contain the times at which covariates were recorded. This should either be
length 1 or the same length as covariates. In the latter case the order of ele-
ments must correspond to the order of elements in covariates.

Details

Individuals have a LOCF if there is a non-NA entry for each of the covariates in covariates up until
(not including) time x_L.

Value

List of data frames which correspond to each landmark time x_L. Each data frame is an updated
version of data_long which contains only rows of individuals with a LOCF at age x_L, other rows
are removed.

Author(s)

Isobel Barrott <isobel.barrott@gmail.com>

Examples

library(Landmarking)
data(data_repeat_outcomes)
data_repeat_outcomes <-

return_ids_with_LOCF(
data_long = data_repeat_outcomes,
individual_id = "id",
covariates =

c("ethnicity", "smoking", "diabetes", "sbp_stnd", "tchdl_stnd"),
covariates_time =
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c(rep("response_time_sbp_stnd", 4), "response_time_tchdl_stnd"),
x_L = c(60,61)

)



Index

∗ datasets
data_repeat_outcomes, 3

add_cv_number, 2

data_repeat_outcomes, 3

fit_LME_landmark, 4
fit_LME_longitudinal, 8
fit_LOCF_landmark, 10
fit_LOCF_longitudinal, 13
fit_survival_model, 14

get_model_assessment, 16

mixoutsamp, 18

plot.landmark, 19
predict.landmark, 20

return_ids_with_LOCF, 21

24


	add_cv_number
	data_repeat_outcomes
	fit_LME_landmark
	fit_LME_longitudinal
	fit_LOCF_landmark
	fit_LOCF_longitudinal
	fit_survival_model
	get_model_assessment
	mixoutsamp
	plot.landmark
	predict.landmark
	return_ids_with_LOCF
	Index

