Package ‘Jaya’

October 12, 2022

Type Package

Title Jaya, a Gradient-Free Optimization Algorithm
Version 0.1.9

Maintainer Neeraj Bokde <neerajdhanraj@gmail.com>

Description Maximization or Minimization of a fitness function using Jaya Algorithm (JA).
A population based method which repeatedly modifies a population of individual solutions.
Capable of solving both constrained and unconstrained optimization problems.
It does not contain any hyperparameters.
For further details: R.V. Rao (2016) <doi:10.5267/j.ijiec.2015.8.004> .

License GPL (>=2)

Suggests knitr, rmarkdown, evaluate, testthat
Imports GA

VignetteBuilder knitr

Encoding UTF-8

LazyData true

RoxygenNote 6.1.1

NeedsCompilation no

Author Mayur Shende [aut],
Neeraj Bokde [aut, cre] (<https://orcid.org/0000-0002-3493-9302>)

Repository CRAN
Date/Publication 2019-11-12 11:20:02 UTC

R topics documented:

JAYA .
plotjaya L e e e e

SUMMATY.JAYA .+ o v v v v v e

Index

https://doi.org/10.5267/j.ijiec.2015.8.004
https://orcid.org/0000-0002-3493-9302

2 jaya

jaya Jaya Algorithm, a gradient-free optimization algorithm. Maximization
of a function using Jaya Algorithm (JA). A population based method
which repeatedly modifies a population of individual solutions. Capa-
ble of solving both constrained and unconstrained optimization prob-
lems. Does not contain any hyperparameters.

Description

Jaya Algorithm, a gradient-free optimization algorithm. Maximization of a function using Jaya
Algorithm (JA). A population based method which repeatedly modifies a population of individual
solutions. Capable of solving both constrained and unconstrained optimization problems. Does not
contain any hyperparameters.

Usage
jaya(fun, lower, upper, popSize = 50, maxiter, n_var, seed = NULL,
suggestions = data.frame(), opt = "minimize")
Arguments
fun as a function to be optimized
lower as a vector of lower bounds for the vaiables in the function
upper as a vector of upper bounds for the vaiables in the function
popSize as population size
maxiter as number of iterations to run for finding optimum solution
n_var as number of variables used in the function to optimize
seed as an integer vector containing the random number generator state
suggestions as a data frame of solutions string to be included in the initial population
opt as a string either "maximize" or "minimize" the function
Examples

Test Function to minimize
square <- function(x){return((x[1]1*2)+(x[2]*2))}
jaya(fun = square, lower = c(-100,-100), upper = c(100,100), maxiter = 10, n_var = 2)

plot.jaya 3

plot. jaya #’ Function to plot the ’best value’ VS 'no. of iterations’

Description

Function to plot the ’best value’ VS "no. of iterations’

Usage
S3 method for class 'jaya'
plot(x, ...)
Arguments
X as an output object from ’jaya’ function
as Additional graphical parameters given to plot function
Value

Returns plot showing "best value’ VS ’no. of iterations’

summary. jaya Function to summarize the Jaya function

Description

Function to summarize the Jaya function

Usage
S3 method for class 'jaya'
summary(object, ...)
Arguments
object as an output object from ’jaya’ function

Additional parameters given to the function

Value

returns the summary of output object from ’jaya’ function

Examples

Test Function to minimize

square <- function(x){return((x[1]1*2)+(x[2]1*2))}

a <- jaya(fun = square, lower = c(-100,-100), upper = c(100,100), maxiter = 10, n_var = 2)
summary(a)

Index

* optimization
jaya, 2

jaya, 2
plot.jaya, 3

summary. jaya, 3

	jaya
	plot.jaya
	summary.jaya
	Index

