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HiddenMarkov-package Overview of Package HiddenMarkov

Description

In this topic we give an overview of the package.

Classes of Hidden Markov Models Analysed

The classes of models currently fitted by the package are listed below. Each are defined within an
object that contains the data, current parameter values, and other model characteristics.

Discrete Time Hidden Markov Model: is described under the topic dthmm. This model can be
simulated or fitted to data by defining the required model structure within an object of class
"dthmm".

Markov Modulated Generalised Linear Model: is described under the topic mmglm1.
Markov Modulated Generalised Linear Longitudinal Model: is described under the topic mmglmlong1.
Markov Modulated Poisson Process: is described under the topic mmpp. This model can be simu-

lated or fitted to data by defining the required model structure within an object of class "mmpp".

Main Tasks Performed by the Package

The main tasks performed by the package are listed below. These can be achieved by calling the
appropriate generic function.

Simulation of HMMs: can be performed by the function simulate.
Parameter Estimation: can be performed by the functions BaumWelch (EM algorithm), or neglogLik

together with nlm or optim (Newton type methods or grid searches).
Model Residuals: can be extracted with the function residuals.
Model Summary: can be extracted with the function summary.
Log-Likelihood: can be calculated with the function logLik.
Prediction of the Markov States: can be performed by the function Viterbi.

All other functions in the package are called from within the above generic functions, and only need
to be used if their output is specifically required. We have referred to some of these other functions
as “2nd level” functions, for example see the topic mmpp-2nd-level-functions.
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Organisation of Topics in the Package

Cited References: anywhere in the manual are only listed within this topic.

General Documentation: topics summarising general structure are indexed under the keyword
“documentation” in the Index.

Acknowledgement

Many of the functions contained in the package are based on those of Walter Zucchini (2005).
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BaumWelch Estimation Using Baum-Welch Algorithm

Description

Estimates the parameters of a hidden Markov model. The Baum-Welch algorithm (Baum et al,
1970) referred to in the HMM literature is a version of the EM algorithm (Dempster et al, 1977).
See Hartley (1958) for an earlier application of the EM methodology, though not referred to as such.

Usage

BaumWelch(object, control, ...)
## S3 method for class 'dthmm'
BaumWelch(object, control = bwcontrol(), ...)
## S3 method for class 'mmglm0'
BaumWelch(object, control = bwcontrol(), ...)
## S3 method for class 'mmglm1'
BaumWelch(object, control = bwcontrol(), ...)
## S3 method for class 'mmglmlong1'
BaumWelch(object, control = bwcontrol(), PSOCKcluster=NULL,

tmpfile=NULL, ...)
## S3 method for class 'mmpp'
BaumWelch(object, control = bwcontrol(), ...)

Arguments

object an object of class "dthmm", "mmglm0", "mmglm1", "mmglmlong1", or "mmpp".

control a list of control settings for the iterative process. These can be changed by using
the function bwcontrol.

PSOCKcluster see section below called “Parallel Processing”.

tmpfile name of a file (.Rda) into which estimates are written at each 10th iteration. The
model object is called object. If NULL (default), no file is created.

... other arguments.

Details

The initial parameter values used by the EM algorithm are those that are contained within the input
object.

The code for the methods "dthmm", "mmglm0", "mmglm1","mmglmlong1" and "mmpp" can be viewed
by appending BaumWelch.dthmm, BaumWelch.mmglm0, BaumWelch.mmglm1, BaumWelch.mmglmlong1
or BaumWelch.mmpp, respectively, to HiddenMarkov:::, on the R command line; e.g. HiddenMarkov:::dthmm.
The three colons are needed because these method functions are not in the exported NAMESPACE.
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Value

The output object (a list) with have the same class as the input, and will have the same compo-
nents. The parameter values will be replaced by those estimated by this function. The object will
also contain additional components.

An object of class "dthmm" will also contain

u an n×m matrix containing estimates of the conditional expectations. See “De-
tails” in Estep.

v an n ×m ×m array containing estimates of the conditional expectations. See
“Details” in Estep.

LL value of log-likelihood at the end.

iter number of iterations performed.

diff difference between final and previous log-likelihood.

Parallel Processing

In longitudinal models, the forward and backward equations need to be calculated for each indi-
vidual subject. These can be done independently, the results being concatenated to be used in the
E-step. If the argument PSOCKcluster is set, subjects are divided equally between each node in the
cluster for the calculation of the forward and backward equations. This division is very basic, and
assumes that all nodes run at a roughly comparable speed.

If the communication between nodes is slow and the dataset is small, then the time taken to allocate
the work to the various nodes may in fact take more time than simply using one processor to perform
all of the calculations.

The required steps in initiating parallel processing are as follows.

# load the "parallel" package
library(parallel)

# define the SNOW cluster object, e.g. a SOCK cluster
# where each node has the same R installation.
cl <- makePSOCKcluster(c("localhost", "horoeka.localdomain",

"horoeka.localdomain", "localhost"))

# A more general setup: Totara is Fedora, Rimu is Debian:
# Use 2 processors on Totara, 1 on Rimu:
totara <- list(host="localhost",

rscript="/usr/lib/R/bin/Rscript",
snowlib="/usr/lib/R/library")

rimu <- list(host="rimu.localdomain",
rscript="/usr/lib/R/bin/Rscript",
snowlib="/usr/local/lib/R/site-library")

cl <- makeCluster(list(totara, totara, rimu), type="SOCK")

# then define the required model object
# say the model object is called x
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BaumWelch(x, PSOCKcluster=cl)

# stop the R jobs on the slave machines
stopCluster(cl)

Note that the communication method does not need to be SOCKS; see the parallel package docu-
mentation, topic makeCluster, for other options. Further, if some nodes are on other machines, the
firewalls may need to be tweaked. The master machine initiates the R jobs on the slave machines
by communicating through port 22 (use of security keys are needed rather than passwords), and
subsequent communications through port 10187. Again, these details can be tweaked in the options
settings within the parallel package.

References

Cited references are listed on the HiddenMarkov manual page.

See Also

logLik, residuals, simulate, summary, neglogLik

bwcontrol Control Parameters for Baum Welch Algorithm

Description

Creates a list of parameters that control the operation of BaumWelch.

Usage

bwcontrol(maxiter = 500, tol = 1e-05, prt = TRUE, posdiff = TRUE,
converge = expression(diff < tol))

Arguments

maxiter is the maximum number of iterations, default is 500.
tol is the convergence criterion, default is 0.00001.
prt is logical, and determines whether information is printed at each iteration; de-

fault is TRUE.
posdiff is logical, and determines whether the iterative process stops if a negative log-

likelihood difference occurs, default is TRUE.
converge is an expression giving the convergence criterion. The default is the difference

between successive values of the log-likelihood.

Examples

# Increase the maximum number of iterations to 1000.
# All other components will retain their default values.
a <- bwcontrol(maxiter=1000)
print(a)
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Change Log Changes Made to Package HiddenMarkov

Description

This page contains a listing of recent changes made to the package.

Details

1. Since we have included different classes of HMMs (see dthmm, mmglm0 and mmpp), it is much
tidier to use an object orientated approach. This ensures that the functions across all models
follow a more consistent naming convention, and also the argument list for the different model
functions are more simple and consistent (see HiddenMarkov). (14 Sep 2007)

2. The main tasks (model fitting, residuals, simulation, Viterbi, etc) can now be called by generic
functions (see topic HiddenMarkov). The package documentation has been rearranged so that
these generic functions contain the documentation for all model types (e.g. see BaumWelch).
(14 Sep 2007)

3. There are a number of functions, still contained in the package, that are obsolete. This is either
because they do not easily fit into the current naming convention used to implement the more
object orientated approach, or their argument list is slightly complicated. These functions have
been grouped in the topics dthmm.obsolete and mmpp.obsolete. (14 Sep 2007)

4. There are various second level functions. For example, the model fitting is achieved by the
generic BaumWelch function. However, this will call functions to do the E-step, M-step, for-
ward and backward probabilities, and so on. At the moment, these second level functions have
not been modified into an object orientated approach. It is not clear at this point whether this
would be advantageous. If one went down this route, then one would probably group all of
the E-step functions (for all models) under the same topic. If not, then it may be best to group
all second level functions for each model under the same topic (e.g. forwardback, probhmm
and Estep would be grouped together, being the second level functions for the dthmm model).
(14 Sep 2007)

5. The original function called Viterbi has been renamed to Viterbihmm, and Viterbi is now
a generic function. (14 Sep 2007)

6. Programming code that uses old versions of the functions should still work with this revised
version of the package. However, you will get warning messages stating that certain func-
tions are deprecated, and suggesting a possible alternative. To get a quick overview of the
programming style, have a look at the examples in topic dthmm. (09 Nov 2007)

7. forwardback: for loops replaced by Fortran code; much faster. The corresponding R code
is still contained within the function in case the Fortran has incompatibility issues. (23 Nov
2007)

8. forwardback.mmpp: for loops replaced by Fortran code. The corresponding R code is still
contained within the function in case the Fortran has incompatibility issues. (24 Nov 2007)

9. Estep.mmpp: for loops replaced by Fortran code. Cuts time considerably. These loops in
R used far more time than the forward and backward equations. The corresponding R code
is still contained within the function in case the Fortran has incompatibility issues. (27 Nov
2007)
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10. forwardback.mmpp, forwardback and Estep.mmpp: argument fortran added. (3 Dec 2007)

11. forwardback, forwardback.mmpp and Estep.mmpp: inclusion of all variable sized arrays in
the Fortran subroutine call to be compatible with non gfortran compilers (3 Dec 2007); more
added for calls to Fortran subroutines multi1 and multi2. (6 Dec 2007)

12. Estep.mmpp: error in Fortran code of loop 6; j1=0 to j1=1. (5 Dec 2007)

13. BaumWelch.mmpp: if (diff < 0) stop ... to if (diff < 0 & control$posdiff) stop ...,
consistent with BaumWelch.dthmm. (11 Dec 2007)

14. logLik.dthmm, logLik.mmglm0, logLik.mmpp: for loop replaced by Fortran code. (15 Feb
2008)

15. dthmm: argument discrete set automatically for known distributions, stops if not set for
unknown distributions. (15 Feb 2008)

16. neglogLik, Pi2vector, vector2Pi, Q2vector, vector2Q: new functions providing an alter-
native means of calculating maximum likelihood parameter estimates. (18 Feb 2008)

17. dthmm: argument nonstat was not set correctly. (21 Jun 2008)

18. Hyperlinks on package vignettes page. (22 Jun 2008)

19. mmpp: argument nonstat was not set correctly. (23 Jun 2008)

20. The manual pages HiddenMarkov-dthmm-deprecated and HiddenMarkov-mmpp-deprecated
have been given a keyword of “internal”. This hides them from the listing of package func-
tions. (3 Jul 2008)

21. All cited references are now only listed in the topic HiddenMarkov. (3 Jul 2008)

22. neglogLik: argument updatep has been renamed to pmap. (9 Jul 2008)

23. neglogLik: format of this function changed to be consistent with that in package PtProcess.
Argument p renamed as params. (07 Aug 2008)

24. mmglm0: remove some LaTeX specific formatting to be compatible with R 2.9.0. (26 Jan 2009)

25. Viterbi: Correct hyperlink to base function which.max. (10 Oct 2009)

26. Tidied HTML representation of equations in manual pages. (15 Dec 2009)

27. mmglm: Renamed to mmglm0, new version mmglm1. See manual page for more details. (5 Jan
2010)

28. mmglmlong1: new function for longitudinal data. (18 Jan 2010)

29. dthmm: clarify argument distn on manual page, and nature of parameter estimates when the
Markov chain is stationary. (04 Feb 2010)

30. BaumWelch.mmglmlong1: new argument tmpfile added. (13 Feb 2010)

31. Viterbi: Methods added for objects of class "mmglm1" and "mmglmlong1". (29 Jul 2010)

32. logLik: Method added for object of class "mmglmlong1". (30 Jul 2010)

33. forwardback.dthmm, forwardback.mmpp: New argument "fwd.only". (30 Jul 2010)

34. logLik.dthmm: Calls forwardback.dthmm to perform calculations. (30 Jul 2010)

35. logLik.mmpp: Calls forwardback.mmpp to perform calculations. (30 Jul 2010)

36. Viterbi: Now generates an error message when applied to objects of class "mmpp". Method
not currently available. (03 Aug 2010)

37. "Viterbi.mmglm1": Fixed bug with number of Bernoulli trials specification when using a
binomial family. (05 Aug 2010)



Change Log 9

38. residuals.dthmm, probhmm: Modify for greater efficiency and generality to accommodate
more general models. Arguments of probhmm have also been changed. (05 Aug 2010)

39. residualshmm: Made defunct, incompatible with revised probhmm. (05 Aug 2010)
40. residuals: Methods added for objects of class "mmglm1" and "mmglmlong1". Generates an

error message when applied to objects of class "mmpp", currently no method available. (05
Aug 2010)

41. Add CITATION file. (24 Sep 2010)
42. makedistn: Change eval(parse(text=paste(x, " list(log=log)))", sep=""))) to

eval(parse(text=paste(x, " list(log.p=log)))", sep=""))). (19 Dec 2010)
43. pglm, pmmglm: Change all log arguments to log.p. (19 Dec 2010)
44. Revise examples in /tests directory. (02 May 2011)
45. Implement very basic NAMESPACE and remove file /R/zzz.R. (5 Nov 2011)
46. List functions explicitly in NAMESPACE. (19 Dec 2011)
47. mmglm and neglogLik: Restrict the number of iterations in examples on manual pages to

minimise time during package checks. (19 Dec 2011)
48. modify.func: New function to allow the user to modify package functions in the NAMES-

PACE set-up. This function violates the CRAN policy as users are not supposed to change
the NAMESPACE on such packages. Some examples where it is required to modify package
functions will not work, for example, the second example in Mstep. (7 Mar 2012)

49. modify.func: Function removed. See the second example in Mstep for a work-around when
package functions need to be modified. (14 Apr 2012)

50. Mstep: Revised documentation about distribution requirements and ways to include other
distributions into the software framework. (14 Apr 2012)

51. The package snow has been superseded by parallel, changed where needed. In BaumWelch.mmglmlong1
arguments makeSOCKcluster and SNOWcluster renamed to makePSOCKcluster and PSOCKcluster,
respectively. Functions dmmglm and pmmglm added to exported namespace (required for paral-
lel processing). (13 Aug 2014)

52. BaumWelch.mmglmlong1: Call to clusterApply and clusterExport changed to parallel::clusterApply
and parallel::clusterExport, respectively. (25 Sep 2014)

53. Fix error in inst/CITATION file. (21 Jan 2015)
54. Added to NAMESPACE: functions imported from stats. (06 Jul 2015)
55. HiddenMarkov: Add DOI to some references, rename topic to appear first in table of contents.

(16 Oct 2015)
56. Fortran warning: in file src/extract.f, integer definitions should precede double precision

definitions. (29 Aug 2016)
57. Fix NOTES in R CMD check --as-cran: Found no calls to: 'R_registerRoutines', 'R_useDynamicSymbols'

(17 Jun 2017)
58. simulate.mchain: Change if (sum(object$delta)!=1) to if (!isTRUE(all.equal(sum(object$delta),

1))). (21 Oct 2017)
59. simulate.mmpp: Change if (sum(object$delta)!=1) to if (!isTRUE(all.equal(sum(object$delta),

1))). (27 Oct 2017)
60. Clarify various points in documentation. (27 Oct 2017)
61. HiddenMarkov: Hyperlink update to Harte (2019); others updated to https where possible. (27

Apr 2021)
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Future Development

1. The functions Viterbi and residuals need methods for objects of class mmpp.
2. A number of the original functions have names that are too general. For example forwardback

calculates the forward-backward probabilities, but only for the model dthmm. The correspond-
ing function for the mmpp model is forwardback.mmpp. It would be more consistent to attach
to these original functions a dthmm suffix.

3. The demonstration examples are all for dthmm. Also need some for mmglm1, mmglmlong1 and
mmpp.

compdelta Marginal Distribution of Stationary Markov Chain

Description

Computes the marginal distribution of a stationary Markov chain with transition probability matrix
Π. The m discrete states of the Markov chain are denoted by 1, · · · ,m.

Usage

compdelta(Pi)

Arguments

Pi is the m×m transition probability matrix of the Markov chain.

Details

If the Markov chain is stationary, then the marginal distribution δ satisfies

δ = δΠ .

Obviously,
m∑
j

δj = 1.

Value

A numeric vector of length m containing the marginal probabilities.

Examples

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
1/3, 1/3, 1/3, 0, 0,

0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)

print(compdelta(Pi))
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Demonstration Demonstration Examples

Description

Demonstration examples can be run by executing the code below.

Examples

# Model with class "dthmm" with the Beta distribution
demo("beta", package="HiddenMarkov")

# Model with class "dthmm" with the Gamma distribution
demo("gamma", package="HiddenMarkov")

# Model with class "dthmm" with the Log Normal distribution
demo("lnorm", package="HiddenMarkov")

# Model with class "dthmm" with the Logistic distribution
demo("logis", package="HiddenMarkov")

# Model with class "dthmm" with the Gaussian distribution
demo("norm", package="HiddenMarkov")

dthmm Discrete Time HMM Object (DTHMM)

Description

Creates a discrete time hidden Markov model object with class "dthmm". The observed process is
univariate.

Usage

dthmm(x, Pi, delta, distn, pm, pn = NULL, discrete = NULL,
nonstat = TRUE)

Arguments

x is a vector of length n containing the univariate observed process. Alternatively,
x could be specified as NULL, meaning that the data will be added later (e.g.
simulated).

Pi is the m ×m transition probability matrix of the homogeneous hidden Markov
chain.

delta is the marginal probability distribution of the m hidden states at the first time
point.
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distn is a character string with the abbreviated distribution name. Distributions pro-
vided by the package are Beta ("beta"), Binomial ("binom"), Exponential
("exp"), GammaDist ("gamma"), Lognormal ("lnorm"), Logistic ("logis"),
Normal ("norm"), and Poisson ("pois"). See topic Mstep, Section “Modifica-
tions and Extensions”, to extend to other distributions.

pm is a list object containing the (Markov dependent) parameter values associated
with the distribution of the observed process (see below).

pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see below).

discrete is logical, and is TRUE if distn is a discrete distribution. Set automatically for
distributions already contained in the package.

nonstat is logical, TRUE if the homogeneous Markov chain is assumed to be non-stationary,
default. See section “Stationarity” below.

Value

A list object with class "dthmm", containing the above arguments as named components.

Notation

1. MacDonald & Zucchini (1997) use t to denote the time, where t = 1, · · · , T . To avoid confu-
sion with other uses of t and T in R, we use i = 1, · · · , n.

2. We denote the observed sequence as {Xi}, i = 1, · · · , n; and the hidden Markov chain as
{Ci}, i = 1, · · · , n.

3. The history of the observed process up to time i is denoted by X(i), i.e.

X(i) = (X1, · · · , Xi)

where i = 1, · · · , n. Similarly for C(i).

4. The hidden Markov chain has m states denoted by 1, · · · ,m.

5. The Markov chain transition probability matrix is denoted by Π, where the (j, k)th element is

πjk = Pr{Ci+1 = k |Ci = j}

for all i (i.e. all time points), and j, k = 1, · · · ,m.

6. The Markov chain is assumed to be homogeneous, i.e. for each j and k, πjk is constant over
time.

7. The Markov chain is said to be stationary if the marginal distribution is the same over time,
i.e. for each j, δj = Pr{Ci = j} is constant for all i. The marginal distribution is denoted by
δ = (δ1, · · · , δm).

List Object pm

The list object pm contains parameter values for the probability distribution of the observed process
that are dependent on the hidden Markov state. These parameters are generally required to be
estimated. See “Modifications” in topic Mstep when some do not require estimation.
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Assume that the hidden Markov chain has m states, and that there are ` parameters that are depen-
dent on the hidden Markov state. Then the list object pm should contain ` named vector components
each of length m. The names are determined by the required probability distribution.

For example, if distn == "norm", the arguments names must coincide with those used by the func-
tions dnorm or rnorm, which are mean and sd. Each must be specified in either pm or pn. If they
both vary according to the hidden Markov state then pm should have the named components mean
and sd. These are both vectors of length m containing the means and standard deviations of the
observed process when the hidden Markov chain is in each of the m states. If, for example, sd was
“time” dependent, then sd would be contained in pn (see below).

If distn == "pois", then pm should have one component named lambda, being the parameter name
in the function dpois. Even if there is only one parameter, the vector component should still be
within a list and named.

List Object pn

The list object pn contains parameter values of the probability distribution for the observed process
that are dependent on the observation number or “time”. These parameters are assumed to be known.

Assume that the observed process is of length n, and that there are ` parameters that are depen-
dent on the observation number or time. Then the list object pn should contain ` named vector
components each of length n. The names, as in pm, are determined by the required probability
distribution.

For example, in the observed process we may count the number of successes in a known number of
Bernoulli trials, i.e. the number of Bernoulli trials is known at each time point, but the probability
of success varies according to a hidden Markov state. The prob parameter of rbinom (or dbinom)
would be specified in pm and the size parameter would specified in pn.

One could also have a situation where the observed process was Gaussian, with the means varying
according to the hidden Markov state, but the variances varying non-randomly according to the
observation number (or vice versa). Here mean would be specified within pm and sd within pn.
Note that a given parameter can only occur within one of pm or pn.

Complete Data Likelihood

The “complete data likelihood”, Lc, is

Lc = Pr{X1 = x1, · · · , Xn = xn, C1 = c1, · · · , Cn = cn} .

This can be shown to be

Pr{X1 = x1 |C1 = c1}Pr{C1 = c1}
n∏

i=2

Pr{Xi = xi |Ci = ci}Pr{Ci = ci |Ci−1 = ci−1} ,

and hence, substituting model parameters, we get

Lc = δc1πc1c2πc2c3 · · ·πcn−1cn

n∏
i=1

Pr{Xi = xi |Ci = ci} ,

and so

logLc = log δc1 +

n∑
i=2

log πci−1ci +

n∑
i=1

log Pr{Xi = xi |Ci = ci} .
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Hence the “complete data likelihood” is split into three terms: the first relates to parameters of the
marginal distribution (Markov chain), the second to the transition probabilities, and the third to the
distribution parameters of the observed random variable. When the Markov chain is non-stationary,
each term can be maximised separately.

Stationarity

When the hidden Markov chain is assumed to be non-stationary, the complete data likelihood has
a neat structure, in that δ only occurs in the first term, Π only occurs in the second term, and
the parameters associated with the observed probabilities only occur in the third term. Hence, the
likelihood can easily be maximised by maximising each term individually. In this situation, the
estimated parameters using BaumWelch will be the “exact” maximum likelihood estimates.

When the hidden Markov chain is assumed to be stationary, δ = Π′δ (see topic compdelta), and
then the first two terms of the complete data likelihood determine the transition probabilities Π.
This raises more complicated numerical problems, as the first term is effectively a constraint. In our
implementation of the EM algorithm, we deal with this in a slightly ad-hoc manner by effectively
disregarding the first term, which is assumed to be relatively small. In the M-step, the transition
matrix is determined by the second term, then δ is estimated using the relation δ = δΠ. Hence,
using the BaumWelch function will only provide approximate maximum likelihood estimates. Exact
solutions can be calculated by directly maximising the likelihood function, see first example in
neglogLik.

References

Cited references are listed on the HiddenMarkov manual page.

Examples

#----- Test Gaussian Distribution -----

Pi <- matrix(c(1/2, 1/2, 0,
1/3, 1/3, 1/3,

0, 1/2, 1/2),
byrow=TRUE, nrow=3)

delta <- c(0, 1, 0)

x <- dthmm(NULL, Pi, delta, "norm",
list(mean=c(1, 6, 3), sd=c(0.5, 1, 0.5)))

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
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print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Poisson Distribution -----

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0, 1)

x <- dthmm(NULL, Pi, delta, "pois", list(lambda=c(4, 0.1)),
discrete = TRUE)

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Exponential Distribution -----

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0, 1)

x <- dthmm(NULL, Pi, delta, "exp", list(rate=c(2, 0.1)))

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Beta Distribution -----
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Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0, 1)

x <- dthmm(NULL, Pi, delta, "beta", list(shape1=c(2, 6), shape2=c(6, 2)))

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Binomial Distribution -----

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0, 1)

# vector of "fixed & known" number of Bernoulli trials
pn <- list(size=rpois(1000, 10)+1)

x <- dthmm(NULL, Pi, delta, "binom", list(prob=c(0.2, 0.8)), pn,
discrete=TRUE)

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Gamma Distribution -----
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Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0, 1)

pm <- list(rate=c(4, 0.5), shape=c(3, 3))

x <- seq(0.01, 10, 0.01)
plot(x, dgamma(x, rate=pm$rate[1], shape=pm$shape[1]),

type="l", col="blue", ylab="Density")
points(x, dgamma(x, rate=pm$rate[2], shape=pm$shape[2]),

type="l", col="red")

x <- dthmm(NULL, Pi, delta, "gamma", pm)

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

Estep E-Step of EM Algorithm for DTHMM

Description

Performs the expectation step of the EM algorithm for a dthmm process. This function is called by
the BaumWelch function. The Baum-Welch algorithm referred to in the HMM literature is a version
of the EM algorithm.

Usage

Estep(x, Pi, delta, distn, pm, pn = NULL)

Arguments

x is a vector of length n containing the observed process.
Pi is the current estimate of the m×m transition probability matrix of the hidden

Markov chain.
distn is a character string with the distribution name, e.g. "norm" or "pois". If the

distribution is specified as "wxyz" then a probability (or density) function called
"dwxyz" should be available, in the standard R format (e.g. dnorm or dpois).
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pm is a list object containing the current (Markov dependent) parameter estimates
associated with the distribution of the observed process (see dthmm).

pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see dthmm).

delta is the current estimate of the marginal probability distribution of the m hidden
states.

Details

Let uij be one if Ci = j and zero otherwise. Further, let vijk be one if Ci−1 = j and Ci = k, and
zero otherwise. Let X(n) contain the complete observed process. Then, given the current model
parameter estimates, the returned value u[i,j] is

ûij = E[uij |X(n)] = Pr{Ci = j |X(n) = x(n)} ,

and v[i,j,k] is

v̂ijk = E[vijk |X(n)] = Pr{Ci−1 = j, Ci = k |X(n) = x(n)} ,

where j, k = 1, · · · ,m and i = 1, · · · , n.

Value

A list object is returned with the following components.

u an n×m matrix containing estimates of the conditional expectations. See “De-
tails”.

v an n ×m ×m array containing estimates of the conditional expectations. See
“Details”.

LL the current value of the log-likelihood.

Author(s)

The algorithm has been taken from Zucchini (2005).

References

Cited references are listed on the HiddenMarkov manual page.

See Also

BaumWelch, Mstep



forwardback 19

forwardback Forward and Backward Probabilities of DTHMM

Description

These functions calculate the forward and backward probabilities for a dthmm process, as defined in
MacDonald & Zucchini (1997, Page 60).

Usage

backward(x, Pi, distn, pm, pn = NULL)
forward(x, Pi, delta, distn, pm, pn = NULL)
forwardback(x, Pi, delta, distn, pm, pn = NULL, fortran = TRUE)
forwardback.dthmm(Pi, delta, prob, fortran = TRUE, fwd.only = FALSE)

Arguments

x is a vector of length n containing the observed process.

Pi is the m×m transition probability matrix of the hidden Markov chain.

delta is the marginal probability distribution of the m hidden states.

distn is a character string with the distribution name, e.g. "norm" or "pois". If the
distribution is specified as "wxyz" then a probability (or density) function called
"dwxyz" should be available, in the standard R format (e.g. dnorm or dpois).

pm is a list object containing the current (Markov dependent) parameter estimates
associated with the distribution of the observed process (see dthmm).

pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see dthmm).

prob an n×m matrix containing the observation probabilities or densities (rows) by
Markov state (columns).

fortran logical, if TRUE (default) use the Fortran code, else use the R code.

fwd.only logical, if FALSE (default) calculate both forward and backward probabilities;
else calculate and return only forward probabilities and log-likelihood.

Details

Denote the n×m matrices containing the forward and backward probabilities as A and B, respec-
tively. Then the (i, j)th elements are

αij = Pr{X1 = x1, · · · , Xi = xi, Ci = j}

and
βij = Pr{Xi+1 = xi+1, · · · , Xn = xn |Ci = j} .

Further, the diagonal elements of the product matrix AB′ are all the same, taking the value of the
log-likelihood.
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Value

The function forwardback returns a list with two matrices containing the forward and backward
(log) probabilities, logalpha and logbeta, respectively, and the log-likelihood (LL).

The functions backward and forward return a matrix containing the forward and backward (log)
probabilities, logalpha and logbeta, respectively.

Author(s)

The algorithm has been taken from Zucchini (2005).

References

Cited references are listed on the HiddenMarkov manual page.

See Also

logLik

Examples

# Set Parameter Values

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
1/3, 1/3, 1/3, 0, 0,

0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)

p <- c(1, 4, 2, 5, 3)
delta <- c(0, 1, 0, 0, 0)

#------ Poisson HMM ------

x <- dthmm(NULL, Pi, delta, "pois", list(lambda=p), discrete=TRUE)

x <- simulate(x, nsim=10)

y <- forwardback(x$x, Pi, delta, "pois", list(lambda=p))

# below should be same as LL for all time points
print(log(diag(exp(y$logalpha) %*% t(exp(y$logbeta)))))
print(y$LL)

#------ Gaussian HMM ------

x <- dthmm(NULL, Pi, delta, "norm", list(mean=p, sd=p/3))

x <- simulate(x, nsim=10)

y <- forwardback(x$x, Pi, delta, "norm", list(mean=p, sd=p/3))
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# below should be same as LL for all time points
print(log(diag(exp(y$logalpha) %*% t(exp(y$logbeta)))))
print(y$LL)

logLik Log Likelihood of Hidden Markov Model

Description

Provides methods for the generic function logLik.

Usage

## S3 method for class 'dthmm'
logLik(object, fortran=TRUE, ...)
## S3 method for class 'mmglm0'
logLik(object, fortran=TRUE, ...)
## S3 method for class 'mmglm1'
logLik(object, fortran=TRUE, ...)
## S3 method for class 'mmglmlong1'
logLik(object, fortran=TRUE, ...)
## S3 method for class 'mmpp'
logLik(object, fortran=TRUE, ...)

Arguments

object an object with class "dthmm", "mmglm0", "mmglm1", "mmglmlong1" or "mmpp".

fortran logical, if TRUE (default) use the Fortran code, else use the R code.

... other arguments.

Details

The methods provided here will always recalculate the log-likelihood even if it is already contained
within the object. This enables the user to change parameter or data values within the object and
recalculate the log-likelihood for the revised configuration.

The code for the methods "dthmm", "mmglm0", "mmglm1","mmglmlong1" and "mmpp" can be viewed
by appending logLik.dthmm, logLik.mmglm0, logLik.mmglm1, logLik.mmglmlong1 or logLik.mmpp,
respectively, to HiddenMarkov:::, on the R command line; e.g. HiddenMarkov:::dthmm. The
three colons are needed because these method functions are not in the exported NAMESPACE.

Value

Returns the value of the log-likelihood.
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Examples

Pi <- matrix(c(1/2, 1/2, 0,
1/3, 1/3, 1/3,

0, 1/2, 1/2),
byrow=TRUE, nrow=3)

x <- dthmm(NULL, Pi, c(0,1,0), "norm",
list(mean=c(1, 6, 3), sd=c(1, 0.5, 1)))

x <- simulate(x, nsim=100)

print(logLik(x))

mchain Markov Chain Object

Description

Creates a Markov chain object with class "mchain". It does not simulate data.

Usage

mchain(x, Pi, delta, nonstat = TRUE)

Arguments

x is a vector of length n containing the observed process, else it is specified as
NULL. This is used when there are no data and a process is to be simulated.

Pi is the m×m transition probability matrix of the Markov chain.

delta is the marginal probability distribution of the m state Markov chain at the first
time point.

nonstat is logical, TRUE if the homogeneous Markov chain is assumed to be non-stationary,
default. See “Details” below.

Value

A list object with class "mchain", containing the above arguments as named components.

Examples

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

# Create a Markov chain object with no data (NULL)
x <- mchain(NULL, Pi, c(0,1))

# Simulate some data
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x <- simulate(x, nsim=2000)

# estimate transition probabilities
estPi <- table(x$mc[-length(x$mc)], x$mc[-1])
rowtotal <- estPi %*% matrix(1, nrow=nrow(Pi), ncol=1)
estPi <- diag(as.vector(1/rowtotal)) %*% estPi
print(estPi)

mmglm Markov Modulated GLM Object

Description

These functions create Markov modulated generalised linear model objects. These functions are
in development and may change, see “Under Development” below.

Usage

mmglm0(x, Pi, delta, family, link, beta, glmformula = formula(y~x1),
sigma = NA, nonstat = TRUE, msg = TRUE)

mmglm1(y, Pi, delta, glmfamily, beta, Xdesign,
sigma = NA, nonstat = TRUE, size = NA, msg = TRUE)

mmglmlong1(y, Pi, delta, glmfamily, beta, Xdesign, longitude,
sigma = NA, nonstat = TRUE, size = NA, msg = TRUE)

Arguments

x a dataframe containing the observed variable (i.e. the response variable in the
generalised linear model) and the covariate. The function mmglm0 requires that
the response variable be named y and the covariate x1. Alternatively, x could be
specified as NULL, meaning that the data will be added later (e.g. simulated). See
Details below for the binomial case. The functions mmglm1 and mmglmlong1 do
not have these naming restrictions.

y numeric vector, response variable. In the case of binomial, it is the number of
successes (see argument size).

Pi is the m×m transition probability matrix of the hidden Markov chain.

delta is the marginal probability distribution of the m hidden states at the first time
point.

family character string, the GLM family, one of "gaussian", "poisson", "Gamma" or
"binomial".

link character string, the link function. If family == "binomial", then one of "logit",
"probit" or "cloglog"; else one of "identity", "inverse" or "log".

glmfamily a family object defining the glm family and link function. It is currently re-
stricted to Gaussian, Poisson, Binomial or Gamma models with the standard
link functions provided by glm.
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Xdesign a nN × p design matrix, where p is the number of parameters in the linear
predictor, N is the number of subjects (N = 1 in mmglm1), and n is the number
of observations for each subject (assumed to be the same).

beta a p ×m matrix containing parameter values, used as initial values during esti-
mation. In the case of the simple regression model of mmglm0, p = 2. In the
case of mmglm1 and mmglmlong1, p is the number of columns of Xdesign.

glmformula the only model formula for mmglm0 is y~x1. Note that the functions mmglm1
and mmglmlong1 do not have this restriction, however, in those cases, the model
formula is currently implicitly defined through Xdesign.

sigma if family == "gaussian", then it is the variance; if family == "Gamma", then it
is 1/sqrt(shape). It is of length m for each Markov state.

nonstat is logical, TRUE if the homogeneous Markov chain is assumed to be non-stationary,
default.

longitude a vector the same length as y identifying the subject for each observation. The
observations must be grouped by subject, and ordered by “time” within subject.

size is number of Bernoulli trials in each observation when the glm family is bino-
mial. It is the same length as y.

msg is logical, suppress messages about developmental status.

Details

This family of models is similar in nature to those of the class dthmm, in that both classes have the
distribution of the observed variable being “modulated” by the changing hidden Markov state. They
differ slightly in the mechanism. This family assumes that the mean of the observation distribution
can be expressed as a linear model of other known variables, but it is the parameters in the linear
predictor that are being modulated by the hidden Markov process, thus causing the changes in the
observed means. The linear model is assumed to be a generalised linear model as described by
McCullagh & Nelder (1989).

The function mmglm0 is a very simple trivial case where the linear predictor is of the form β0 +
β1x1. The version mmglm1 does not have this limitation. The model formula for mmglm1 is defined
implicitly through the structure of the specified design matrix. The model mmglmlong1 is similar
to mmglm1 but can be applied to longitudinal observations. Models of the form given by mmglm1
are assumed to have one time series, and from a theoretical perspective, one would be interested
in the asymptotic properties of the parameter estimates as the series length gets very large. In the
longitudinal case (mmglmlong1), the series of observations per individual is probably very small
(< 10), and hence interest is in the asymptotic properties as the number of individuals becomes
large. Note that in the longitudinal case, the number of observations per individual is assumed to be
the same. The responses are assumed to be conditionally independent given the value of the Markov
chain and the explanatory variables in the linear predictor.

If family == "binomial" then the response variable y is interpreted as the number of successes.
The dataframe x must also contain a variable called size being the number of Bernoulli trials. This
is different to the format used by the function glm where y would be a matrix with two columns
containing the number of successes and failures, respectively. The different format here allows one
to specify the number of Bernoulli trials only so that the number of successes or failures can be
simulated later.
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When the density function of the response variable is from the exponential family (Charnes et al,
1976, Eq. 2.1), the likelihood function (Charnes et al, 1976, Eq. 2.4) can be maximised by using
iterative weighted least squares (Charnes et al, 1976, Eq. 1.1 and 1.2). This is the method used by
the R function glm. In this Markov modulated version of the model, the third term of the complete
data log-likelihood, as given in Harte (2006, Sec. 2.3), needs to be maximised. This is simply the
sum of the individual log-likelihood contributions of the response variable weighted by the Markov
state probabilities calculated in the E-step. This can also be maximised using iterative least squares
by passing these additional weights (Markov state probabilities) into the glm function.

Value

A list object with class "mmglm0", containing the above arguments as named components.

Under Development

These functions are still being developed. In previous releases of the package (< 1.3), there was
only one function called mmglm. This has been renamed to mmglm0. The most recent version is
mmglm1 along with mmglmlong1 which has flexibility to include longitudinal data. Further develop-
ment versions will be numbered sequentially. The name mmglm has been reserved for the final stable
version, at which point the numbered versions will become deprecated.

References

Cited references are listed on the HiddenMarkov manual page.

Examples

#--------------------------------------------------------
# Gaussian with identity link function
# using mmglm0

delta <- c(0,1)

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

beta <- matrix(c(0.1, -0.1,
1.0, 5.0),

byrow=TRUE, nrow=2)

x <- mmglm0(NULL, Pi, delta, family="gaussian", link="identity",
beta=beta, sigma=c(1, 2))

n <- 1000
x <- simulate(x, nsim=n, seed=10)

# Increase maxiter below to achieve convergence
# Has been restricted to minimise time of package checks
y <- BaumWelch(x, bwcontrol(maxiter=2))
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w <- hist(residuals(y))
z <- seq(-3, 3, 0.01)
points(z, dnorm(z)*n*(w$breaks[2]-w$breaks[1]), col="red", type="l")
box()

print(summary(y))
print(logLik(y))

#--------------------------------------------------------
# Gaussian with log link function
# using mmglm1

n <- 1000

# the range of x needs changing according to the glmfamily
x <- seq(-0.9, 1.5, length.out=n)

colour <- c("blue", "green", "red")
colnum <- rep(1:3, n/3+1)[1:n] - 1

data <- data.frame(x=x, colour=colour[colnum+1])

# will simulate response variable, not required in formula
# design matrix only depends on RHS of formula
glmformula <- formula( ~ x + I(x^2) + colour)
glmfamily <- gaussian(link="log")
Xdesign <- model.matrix(glmformula, data=data)

# --- Parameter Values and Simulation ---

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(1, 0)

sd <- c(1.2, 1)

beta <- matrix(c(-1, -1.2,
-2, -1.8,
3, 2.8,
1, 0.8,
2, 2.2),

ncol=ncol(Pi), nrow=ncol(Xdesign), byrow=TRUE)

y <- mmglm1(NULL, Pi, delta, glmfamily, beta, Xdesign, sigma=sd)

y <- simulate(y, seed=5)

# --- Estimation ---

# Increase maxiter below to achieve convergence
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# Has been restricted to minimise time of package checks
tmp <- BaumWelch(y, bwcontrol(posdiff=FALSE, maxiter=2))
print(summary(tmp))

#-------------------------------------------------
# Binomial with logit link function
# using mmglm1

# n = series length
n <- 1000

# the range of x need changing according to the glmfamily
x <- seq(-1, 1.5, length.out=n)

colour <- c("blue", "green", "red")
colnum <- rep(1:3, n/3+1)[1:n] - 1

data <- data.frame(x=x, colour=colour[colnum+1])

glmformula <- formula( ~ x + I(x^2) + colour)
glmfamily <- binomial(link="logit")
Xdesign <- model.matrix(glmformula, data=data)

# --- Parameter Values and Simulation ---

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(1, 0)

beta <- matrix(c(-1, -1.2,
-2, -1.8,
3, 2.8,
1, 0.8,
2, 2.2),

ncol=ncol(Pi), nrow=ncol(Xdesign), byrow=TRUE)

y <- mmglm1(NULL, Pi, delta, glmfamily, beta, Xdesign, sigma=sd,
size=rep(100, n))

# each element of y$y is the number of successes in 100 Bernoulli trials
y <- simulate(y, seed=5)

# --- Estimation ---

# Increase maxiter below to achieve convergence
# Has been restricted to minimise time of package checks
tmp <- BaumWelch(y, bwcontrol(posdiff=FALSE, maxiter=2))
print(summary(tmp))
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#-------------------------------------------------
# Gaussian with log link function, longitudinal data
# using mmglmlong1

# n = series length for each subject
# N = number of subjects
n <- 5
N <- 1000

# the range of x need changing according to the glmfamily
x <- seq(-0.9, 1.5, length.out=n)

colour <- c("blue", "green", "red")
colnum <- rep(1:3, n/3+1)[1:n] - 1

data <- data.frame(x=x, colour=colour[colnum+1])

# will simulate response variable, not required in formula
# design matrix only depends on RHS of formula
glmformula <- formula( ~ x + I(x^2) + colour)
glmfamily <- gaussian(link="log")
Xdesign0 <- model.matrix(glmformula, data=data)

# multiple subjects
Xdesign <- NULL
for (i in 1:N) Xdesign <- rbind(Xdesign, Xdesign0)

# --- Parameter Values and Simulation ---

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0.5, 0.5)

sd <- c(1.2, 1)

beta <- matrix(c(-1, -1.2,
-2, -1.8,
3, 2.8,
1, 0.8,
2, 2.2),

ncol=ncol(Pi), nrow=ncol(Xdesign), byrow=TRUE)

y <- mmglmlong1(NULL, Pi, delta, glmfamily, beta, Xdesign, sigma=sd,
longitude=rep(1:N, each=n))

y <- simulate(y, seed=5)

# --- Estimation ---

# Note: the "Not run" blocks below are not run during package checks
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# as the makePSOCKcluster definition is specific to my network,
# modify accordingly if you want parallel processing.

cl <- NULL
## Not run:
if (require(parallel)){

cl <- makePSOCKcluster(c("localhost", "horoeka.localdomain",
"horoeka.localdomain", "localhost"))

}
## End(Not run)

# Increase maxiter below to achieve convergence
# Has been restricted to minimise time of package checks
tmp <- BaumWelch(y, bwcontrol(posdiff=FALSE, maxiter=2),

PSOCKcluster=cl)

## Not run:
if (!is.null(cl)){

stopCluster(cl)
rm(cl)

}
## End(Not run)

print(summary(tmp))

#-------------------------------------------------
# Binomial with logit link function, longitudinal data
# using mmglmlong1

# n = series length for each subject
# N = number of subjects
n <- 10
N <- 100

# the range of x need changing according to the glmfamily
x <- seq(-1, 1.5, length.out=n)

colour <- c("blue", "green", "red")
colnum <- rep(1:3, n/3+1)[1:n] - 1

data <- data.frame(x=x, colour=colour[colnum+1])

glmformula <- formula( ~ x + I(x^2) + colour)
glmfamily <- binomial(link="logit")
Xdesign0 <- model.matrix(glmformula, data=data)

# multiple subjects
Xdesign <- NULL
for (i in 1:N) Xdesign <- rbind(Xdesign, Xdesign0)

# --- Parameter Values and Simulation ---
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Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0.5, 0.5)

beta <- matrix(c(-1, -1.2,
-2, -1.8,
3, 2.8,
1, 0.8,
2, 2.2),

ncol=ncol(Pi), nrow=ncol(Xdesign), byrow=TRUE)

y <- mmglmlong1(NULL, Pi, delta, glmfamily, beta, Xdesign, sigma=sd,
longitude=rep(1:N, each=n), size=rep(200, N*n))

y <- simulate(y, seed=5)

# --- Estimation ---

# Increase maxiter below to achieve convergence
# Has been restricted to minimise time of package checks
tmp <- BaumWelch(y, bwcontrol(posdiff=FALSE, maxiter=1))
print(summary(tmp))

mmglm-2nd-level-functions

Markov Modulated Generalised Linear Model - 2nd Level Functions

Description

These functions will generally not be called directly by the user.

Usage

Estep.mmglm1(object, fortran=TRUE)
Mstep.mmglm1(object, u)

Arguments

object an object with class "mmglm" or "mmglmlong"

u a matrix of weights by Markov state and observation used in fitting the gener-
alised linear model.

fortran logical, if TRUE (default) use the Fortran code in the forward-backward equa-
tions, else use the R code.
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mmpp Markov Modulated Poisson Process Object

Description

Creates a Markov modulated Poisson process model object with class "mmpp".

Usage

mmpp(tau, Q, delta, lambda, nonstat = TRUE)

Arguments

tau vector containing the event times. Note that the first event is at time zero. Al-
ternatively, tau could be specified as NULL, meaning that the data will be added
later (e.g. simulated).

Q the infinitesimal generator matrix of the Markov process.

delta is the marginal probability distribution of the m hidden states at time zero.

lambda a vector containing the Poisson rates.

nonstat is logical, TRUE if the homogeneous Markov process is assumed to be non-
stationary, default.

Details

The Markov modulated Poisson process is based on a hidden Markov process in continuous time.
The initial state probabilities (at time zero) are specified by delta and the transition rates by the
Q matrix. The rate parameter of the Poisson process (lambda) is determined by the current state
of the hidden Markov process. Within each state, the Poisson process is homogeneous (constant
rate parameter). A Poisson event is assumed to occur at time zero and at the end of the observation
period, however, state transitions of the Markov process do not necessarily coincide with Poisson
events. For more details, see Ryden (1996).

Value

A list object with class "mmpp", containing the above arguments as named components.

References

Cited references are listed on the HiddenMarkov manual page.

Examples

Q <- matrix(c(-2, 2,
1, -1),

byrow=TRUE, nrow=2)/10

# NULL indicates that we have no data at this point
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x <- mmpp(NULL, Q, delta=c(0, 1), lambda=c(5, 1))

x <- simulate(x, nsim=5000, seed=5)

y <- BaumWelch(x)

print(summary(y))

# log-likelihood using initial parameter values
print(logLik(x))

# log-likelihood using estimated parameter values
print(logLik(y))

mmpp-2nd-level-functions

Markov Modulated Poisson Process - 2nd Level Functions

Description

These functions have not been put into a generic format, but are called by generic functions.

Usage

forwardback.mmpp(tau, Q, delta, lambda, fortran = TRUE, fwd.only = FALSE)
Estep.mmpp(tau, Q, delta, lambda, fortran = TRUE)

Arguments

tau vector containing the interevent times. Note that the first event is at time zero.

Q the infinitesimal generator matrix of the Markov process.

lambda a vector containing the Poisson rates.

delta is the marginal probability distribution of the m hidden states at time zero.

fortran logical, if TRUE (default) use the Fortran code, else use the R code.

fwd.only logical, if FALSE (default) calculate both forward and backward probabilities;
else calculate and return only forward probabilities and log-likelihood.

Details

These functions use the algorithm given by Ryden (1996) based on eigenvalue decompositions.

References

Cited references are listed on the HiddenMarkov manual page.



Mstep 33

Mstep M-Step of EM Algorithm for DTHMM

Description

Performs the maximisation step of the EM algorithm for a dthmm process. This function is called
by the BaumWelch function. The Baum-Welch algorithm used in the HMM literature is a version of
the EM algorithm.

Usage

Mstep.beta(x, cond, pm, pn, maxiter = 200)
Mstep.binom(x, cond, pm, pn)
Mstep.exp(x, cond, pm, pn)
Mstep.gamma(x, cond, pm, pn, maxiter = 200)
Mstep.glm(x, cond, pm, pn, family, link)
Mstep.lnorm(x, cond, pm, pn)
Mstep.logis(x, cond, pm, pn, maxiter = 200)
Mstep.norm(x, cond, pm, pn)
Mstep.pois(x, cond, pm, pn)

Arguments

x is a vector of length n containing the observed process.

cond is an object created by Estep.

family character string, the GLM family, one of "gaussian", "poisson", "Gamma" or
"binomial".

link character string, the link function. If family == "Binomial", then one of "logit",
"probit" or "cloglog"; else one of "identity", "inverse" or "log".

pm is a list object containing the current (Markov dependent) parameter estimates
associated with the distribution of the observed process (see dthmm). These are
only used as initial values if the algorithm within the Mstep is iterative.

pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see dthmm).

maxiter maximum number of Newton-Raphson iterations.

Details

The functions Mstep.beta, Mstep.binom, Mstep.exp, Mstep.gamma, Mstep.lnorm, Mstep.logis,
Mstep.norm and Mstep.pois perform the maximisation step for the Beta, Binomial, Exponential,
Gamma, Log Normal, Logistic, Normal and Poisson distributions, respectively. Each function has
the same argument list, even if specific arguments are redundant, because the functions are called
from within other functions in a generic like manner. Specific notes for some follow.
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Mstep.beta The R functions for the Beta Distribution have arguments shape1, shape2 and ncp.
We only use shape1 and shape2, i.e. ncp is assumed to be zero. Different combinations of
"shape1" and "shape2" can be “time” dependent (specified in pn) and Markov dependent
(specified in pm). However, each should only be specified in one (see topic dthmm).

Mstep.binom The R functions for the Binomial Distribution have arguments size and prob. The
size argument of the Binomial Distribution should always be specified in the pn argument
(see topic dthmm).

Mstep.gamma The R functions for the GammaDist have arguments shape, rate and scale. Since
scale is redundant, we only use shape and rate. Different combinations of "shape" and
"rate" can be “time” dependent (specified in pn) and Markov dependent (specified in pm).
However, each should only be specified in one (see topic dthmm).

Mstep.lnorm The R functions for the Lognormal Distribution have arguments meanlog and sdlog.
Different combinations of "meanlog" and "sdlog" can be “time” dependent (specified in pn)
and Markov dependent (specified in pm). However, each should only be specified in one (see
topic dthmm).

Mstep.logis The R functions for the Logistic Distribution have arguments location and scale.
Different combinations of "location" and "scale" can be “time” dependent (specified in pn)
and Markov dependent (specified in pm). However, each should only be specified in one (see
topic dthmm).

Mstep.norm The R functions for the Normal Distribution have arguments mean and sd. Different
combinations of "mean" and "sd" can be “time” dependent (specified in pn) and Markov
dependent (specified in pm). However, each should only be specified in one (see topic dthmm).

Value

A list object with the same structure as pm (see topic dthmm).

Modifications and Extensions

The HiddenMarkov package calls the associated functions belonging to the specified probability
distribution in a generic way. For example, if the argument distn in dthmm is "xyz", it will expect to
find functions pxyz, dxyz, and Mstep.xyz. And if simulations are to be performed, it will require
rxyz. In this section we describe the required format for the distribution related functions pxyz,
dxyz, and rxyz; and for the function Mstep.xyz required for the M-step in the EM algorithm.

Consider the examples below of distribution related functions and their arguments. Note that the
probability functions all have a first argument of q, and the last two arguments are all the same,
with the same default values. Similarly, the density functions have a first argument of x, and the
last argument is the same, with the same defaults. The arguments in the middle are peculiar to the
given distribution, one argument for each distribution parameter. Note that the observed process x
is univariate.

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
pbeta(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)

dnorm(x, mean = 0, sd = 1, log = FALSE)
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dbeta(x, shape1, shape2, ncp = 0, log = FALSE)
dpois(x, lambda, log = FALSE)
dbinom(x, size, prob, log = FALSE)

rnorm(n, mean = 0, sd = 1)
rbeta(n, shape1, shape2, ncp = 0)
rpois(n, lambda)
rbinom(n, size, prob)

The functions pxyz (distribution function), dxyz (density) and rxyz (random number generator)
must be consistent with the conventions used in the above examples. The software will deduce the
distribution argument names from what is specified in pm and pn, and it will call these functions
assuming that their argument list is consistent with those described above. The functions pxyz and
dxyz are used in the forward and backward equations.

The functions dxyz, pxyz and rxyz must also behave in the same vectorised way as dnorm. For ex-
ample, if x is a vector, and mean and sd are scalars, then dnorm(x, mean, sd) calculates the density
for each element in x using the scalar values of mean and sd; thus the returned value is the same
length as x. Alternatively, if x is a scalar and mean and sd are vectors, both of the same length, then
the returned value is the same length as mean and is the density of x evaluated at the corresponding
pairs of values of mean and sd. The third possibility is that x and one of the distribution parameters,
say sd, are vectors of the same length, and mu is a scalar. Then the returned vector will be of the
same length as x, where the ith value is the density at x[i] with mean mean and standard deviation
sd[i]. Note that the functions for the Multinomial distribution do not have this behaviour. Here
the vector x contains the counts for one multinomial experiment, so the vector is used to characterise
the multivariate character of the random variable rather than multiple univariate realisations. Fur-
ther, the distribution parameters (i.e. category probabilities) are characterised as one vector rather
than a sequence of separate function arguments.

The other calculation, that is specific to the chosen distribution, is the maximisation in the M-step.
If we have distn="xyz", then there should be a function called Mstep.xyz. Further, it should
have arguments (x, cond, pm, pn); see for example Mstep.norm. The parameters that are esti-
mated within this function are named in a consistent way with those that are defined within the
dthmm arguments pm and pn. Notice that the estimates of mean and sd in Mstep.norm are weighted
by cond$u. The calculations for cond$u are performed in the E-step, and utilise the distribution
related functions "dxyz" and "pxyz". The values of cond$u are essentially probabilities that the
process belongs to the given Markov state, hence, when we calculate the distributional parameters
(like mu and sd in Mstep.norm) we calculate weighted sums using the probabilities cond$u. This
procedure can be shown to give the maximum likelihood estimates of mu and sd, and hence a sim-
ilar weighting should be used for the distribution "xyz" (see Harte, 2006, for further mathematical
detail). One needs to take a little more care when dealing with a distributions like the beta, where
the cross derivatives of the log likelihood between the parameters, i.e. ∂2 logL/(∂α1∂α2) are non-
zero. See Mstep.beta for further details.

Now consider a situation where we want to modify the way in which a normal distribution is fitted.
Say we know the Markov dependent means, and we only want to estimate the standard deviations.
Since both parameters are Markov dependent, they both need to be specified in the pm argument of
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dthmm. The estimation of the distribution specific parameters takes place in the M-step, in this case
Mstep.norm. To achieve what we want, we need to modify this function. In this case it is relatively
easy (see code in “Examples” below). From the function Mstep.norm, take the code under the
section if (all(nms==c("mean", "sd"))), i.e. both of the parameters are Markov dependent.
However, replace the line where the mean is estimated to mean <- pm$mean, i.e. leave it as was
initially specified. Unfortunately, one cannot easily modify the functions in a package namespace.
The simple work-around here is to define a new distribution, say "xyz", then define a new function
with the above changes called Mstep.xyz. However, the distribution related functions are just the
same as those for the normal distribution, hence, define them as follows:

rxyz <- rnorm
dxyz <- dnorm
pxyz <- pnorm
qxyz <- qnorm

See the 2nd example below for full details.

Note

The Mstep functions can be used to estimate the maximum likelihood parameters from a simple
sample. See the example below where this is done for the logistic distribution.

See Also

BaumWelch, Estep

Examples

# Fit logistic distribution to a simple single sample

# Simulate data
n <- 20000
location <- -2
scale <- 1.5

x <- rlogis(n, location, scale)

# give each datum equal weight
cond <- NULL
cond$u <- matrix(rep(1/n, n), ncol=1)

# calculate maximum likelihood parameter estimates
# start iterations at values used to simulate
print(Mstep.logis(x, cond,

pm=list(location=location,
scale=scale)))

#-----------------------------------------------------
# Example with Gaussian Observations
# Assume that both mean and sd are Markov dependent, but the means
# are known and sd requires estimation (See "Modifications" above).
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# One way is to define a new distribution called "xyz", say.

Mstep.xyz <- function(x, cond, pm, pn){
# this function is a modified version of Mstep.norm
# here the mean is fixed to the values specified in pm$mean
nms <- sort(names(pm))
n <- length(x)
m <- ncol(cond$u)
if (all(nms==c("mean", "sd"))){

mean <- pm$mean
sd <- sqrt(apply((matrix(x, nrow=n, ncol=m) -

matrix(mean,
nrow=n, ncol=m, byrow=TRUE))^2 * cond$u, MARGIN=2,
FUN=sum)/apply(cond$u, MARGIN=2, FUN=sum))

return(list(mean=mean, sd=sd))
}

}

# define the distribution related functions for "xyz"
# they are the same as those for the Normal distribution
rxyz <- rnorm
dxyz <- dnorm
pxyz <- pnorm
qxyz <- qnorm

Pi <- matrix(c(1/2, 1/2, 0,
1/3, 1/3, 1/3,

0, 1/2, 1/2),
byrow=TRUE, nrow=3)

p1 <- c(1, 6, 3)
p2 <- c(0.5, 1, 0.5)
n <- 1000

pm <- list(mean=p1, sd=p2)

x <- dthmm(NULL, Pi, c(0, 1, 0), "xyz", pm, discrete=FALSE)

x <- simulate(x, n, seed=5)

# use above parameter values as initial values
y <- BaumWelch(x)

print(y$delta)
print(y$pm)
print(y$Pi)

neglogLik Negative Log-Likelihood
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Description

Calculates the log-likelihood multiplied by negative one. It is in a format that can be used with
the functions nlm and optim, providing an alternative to the BaumWelch algorithm for maximum
likelihood parameter estimation.

Usage

neglogLik(params, object, pmap)

Arguments

params a vector of revised parameter values.

object an object of class "dthmm", "mmglm0", or "mmpp".

pmap a user provided function mapping the revised (or restricted) parameter values p
into the appropriate locations in object.

Details

This function is in a format that can be used with the two functions nlm and optim (see Examples
below). This provides alternative methods of estimating the maximum likelihood parameter values,
to that of the EM algorithm provided by BaumWelch, including Newton type methods and grid
searches. It can also be used to restrict estimation to a subset of parameters.

The EM algorithm is relatively stable when starting from poor initial values but convergence is very
slow in close proximity to the solution. Newton type methods are very sensitive to initial conditions
but converge much more quickly in close proximity to the solution. This suggests initially using the
EM algorithm and then switching to Newton type methods (see Examples below).

The maximisation of the model likelihood function can be restricted to be over a subset of the model
parameters. Other parameters will then be fixed at the values stored in the model object. Let Θ
denote the model parameter space, and let Ψ denote the parameter sub-space (Ψ ⊆ Θ) over which
the likelihood function is to be maximised. The argument params contains values in Ψ, and pmap
is assigned a function that maps these values into the model parameter space Θ. See “Examples”
below.

The mapping function assigned to pmap can also be made to impose restrictions on the domain of
the parameter space Ψ so that the minimiser cannot jump to values such that Ψ 6⊆ Θ. For example,
if a particular parameter must be positive, one can work with a transformed parameter that can
take any value on the real line, with the model parameter being the exponential of this transformed
parameter. Similarly a modified logit like transform can be used to ensure that parameter values
remain within a fixed interval with finite boundaries. Examples of these situations can be found in
the “Examples” below.

Some functions are provided in the topic Transform-Parameters that may provide useful compo-
nents within the user provided function assigned to pmap.

Value

Value of the log-likelihood times negative one.
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See Also

nlm, optim, Transform-Parameters, BaumWelch

Examples

# Example where the Markov chain is assumed to be stationary

Pi <- matrix(c(0.8, 0.1, 0.1,
0.1, 0.6, 0.3,
0.2, 0.3, 0.5),

byrow=TRUE, nrow=3)

# start simulation in state 2
delta <- c(0, 1, 0)

x <- dthmm(NULL, Pi, delta, "exp", list(rate=c(5, 2, 0.2)), nonstat=FALSE)
x <- simulate(x, nsim=5000, seed=5)

# Approximate solution using BaumWelch
x1 <- BaumWelch(x, control=bwcontrol(maxiter=10, tol=1e-5))

# Exact solution using nlm

allmap <- function(y, p){
# maps vector back to delta, Pi and rate
m <- sqrt(length(p))
y$Pi <- vector2Pi(p[1:(m*(m-1))])
y$pm$rate <- exp(p[(m^2-m+1):(m^2)])
y$delta <- compdelta(Pi)
return(y)

}

p <- c(Pi2vector(x$Pi), log(x$pm$rate))
# Increase iterlim below to achieve convergence
# Has been restricted to minimise time of package checks
z <- nlm(neglogLik, p, object=x, pmap=allmap,

print.level=2, gradtol=0.000001, iterlim=2)
x2 <- allmap(x, z$estimate)

# compare parameter estimates
print(summary(x))
print(summary(x1))
print(summary(x2))

#--------------------------------------------------------
# Estimate only the off diagonal elements in the matrix Pi
# Hold all others as in the simulation

# This function maps the changeable parameters into the
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# dthmm object - done within the function neglogLik
# The logit-like transform removes boundaries

Pi <- matrix(c(0.8, 0.1, 0.1,
0.1, 0.6, 0.3,
0.2, 0.3, 0.5),

byrow=TRUE, nrow=3)

delta <- c(0, 1, 0)

x <- dthmm(NULL, Pi, delta, "exp", list(rate=c(5, 3, 1)))
x <- simulate(x, nsim=5000, seed=5)

offdiagmap <- function(y, p){
# rows must sum to one
invlogit <- function(eta)

exp(eta)/(1+exp(eta))
y$Pi[1,2] <- (1-y$Pi[1,1])*invlogit(p[1])
y$Pi[1,3] <- 1-y$Pi[1,1]-y$Pi[1,2]
y$Pi[2,1] <- (1-y$Pi[2,2])*invlogit(p[2])
y$Pi[2,3] <- 1-y$Pi[2,1]-y$Pi[2,2]
y$Pi[3,1] <- (1-y$Pi[3,3])*invlogit(p[3])
y$Pi[3,2] <- 1-y$Pi[3,1]-y$Pi[3,3]
return(y)

}

z <- nlm(neglogLik, c(0, 0, 0), object=x, pmap=offdiagmap,
print.level=2, gradtol=0.000001)

# x1 contains revised parameter estimates
x1 <- offdiagmap(x, z$estimate)

# print revised values of Pi
print(x1$Pi)

# print log-likelihood using original and revised values
print(logLik(x))
print(logLik(x1))

#--------------------------------------------------------
# Fully estimate both Q and lambda for an MMPP Process

Q <- matrix(c(-8, 5, 3,
1, -4, 3,
2, 5, -7),

byrow=TRUE, nrow=3)/25
lambda <- c(5, 3, 1)
delta <- c(0, 1, 0)

# simulate some data
x <- mmpp(NULL, Q, delta, lambda)
x <- simulate(x, nsim=5000, seed=5)
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allmap <- function(y, p){
# maps vector back to Pi and rate
m <- sqrt(length(p))
y$Q <- vector2Q(p[1:(m*(m-1))])
y$lambda <- exp(p[(m^2-m+1):(m^2)])
return(y)

}

# Start by using the EM algorithm
x1 <- BaumWelch(x, control=bwcontrol(maxiter=10, tol=0.01))

# use above as initial values for the nlm function
# map parameters to a single vector, fixed delta
p <- c(Q2vector(x1$Q), log(x1$lambda))

# Complete estimation using nlm
# Increase iterlim below to achieve convergence
# Has been restricted to minimise time of package checks
z <- nlm(neglogLik, p, object=x, pmap=allmap,

print.level=2, gradtol=0.000001, iterlim=5)

# mmpp object with estimated parameter values from nlm
x2 <- allmap(x, z$estimate)

# compare log-likelihoods
print(logLik(x))
print(logLik(x1))
print(logLik(x2))

# print final parameter estimates
print(summary(x2))

probhmm Conditional Distribution Function of DTHMM

Description

Calculates the distribution function at each point for a dthmm process given the complete observed
process except the given point.

Usage

probhmm(logalpha, logbeta, Pi, delta, cumprob)

Arguments

logalpha an n×m matrix containing the logarithm of the forward probabilities.

logbeta an n×m matrix containing the logarithm of the backward probabilities.

Pi is the m×m transition probability matrix of the hidden Markov chain.
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delta is the marginal probability distribution of the m hidden states at the first time
point.

cumprob an n×m matrix where the (i, k)th element is Pr{Xi ≤ xi |Ck = ck}.

Details

Let X(−i) denote the entire process, except with the point Xi removed. The distribution function
at the point Xi is

Pr{Xi ≤ xi |X(−i) = x(−i)} .

This R function calculates the distribution function for each point Xi for i = 1, · · · , n. This is done
by using the forward and backward probabilities before and after the ith point, respectively.

In the programming code, note the subtraction of the mean. This is to stop underflow when the
exponential is taken. Removal of the mean is automatically compensated for by the fact that the
same factor is removed in both the numerator and denominator.

Value

A vector containing the probability.

See Also

residuals

residuals Residuals of Hidden Markov Model

Description

Provides methods for the generic function residuals. There is currently no method for objects of
class "mmpp".

Usage

## S3 method for class 'dthmm'
residuals(object, ...)
## S3 method for class 'mmglm0'
residuals(object, ...)
## S3 method for class 'mmglm1'
residuals(object, ...)
## S3 method for class 'mmglmlong1'
residuals(object, ...)

Arguments

object an object with class dthmm, mmglm0, mmglm1 or mmglmlong1.

... other arguments.
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Details

The calculated residuals are pseudo residuals. Under satisfactory conditions they have an approxi-
mate standard normal distribution. Initially the function probhmm is called. If the model fits satis-
factorily, the returned values should be approximately uniformly distributed. Hence by applying the
function qnorm, the resultant “residuals” should have an approximate standard normal distribution.

A continuity adjustment is made when the observed distribution is discrete. In the case of count
distributions (e.g. binomial and Poisson) where the observed count is close to or on the boundary of
the domain (e.g. binomial or Poisson count is zero, or binomial count is “n”), the pseudo residuals
will give a very poor indication of the models goodness of fit; see the Poisson example below.

The code for the methods "dthmm", "mmglm0", "mmglm1" and "mmglmlong1" can be viewed by ap-
pending residuals.dthmm, residuals.mmglm0, residuals.mmglm1 or residuals.mmglmlong1,
respectively, to HiddenMarkov:::, on the R command line; e.g. HiddenMarkov:::dthmm. The
three colons are needed because these method functions are not in the exported NAMESPACE.

Value

A vector containing the pseudo residuals.

Examples

# Example Using Beta Distribution

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

n <- 2000

x <- dthmm(NULL, Pi, c(0,1), "beta",
list(shape1=c(2, 6), shape2=c(6, 2)))

x <- simulate(x, nsim=n, seed=5)

y <- residuals(x)

w <- hist(y, main="Beta HMM: Pseudo Residuals")
z <- seq(-3, 3, 0.01)
points(z, dnorm(z)*n*(w$breaks[2]-w$breaks[1]), col="red", type="l")
box()

qqnorm(y, main="Beta HMM: Q-Q Plot of Pseudo Residuals")
abline(a=0, b=1, lty=3)
abline(h=seq(-2, 2, 1), lty=3)
abline(v=seq(-2, 2, 1), lty=3)

#-----------------------------------------------
# Example Using Gaussian Distribution

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
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1/3, 1/3, 1/3, 0, 0,
0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)

x <- dthmm(NULL, Pi, c(0, 1, 0, 0, 0), "norm",
list(mean=c(1, 4, 2, 5, 3), sd=c(0.5, 1, 1, 0.5, 0.1)))

n <- 2000
x <- simulate(x, nsim=n, seed=5)

y <- residuals(x)

w <- hist(y, main="Gaussian HMM: Pseudo Residuals")
z <- seq(-3, 3, 0.01)
points(z, dnorm(z)*n*(w$breaks[2]-w$breaks[1]), col="red", type="l")
box()

qqnorm(y, main="Gaussian HMM: Q-Q Plot of Pseudo Residuals")
abline(a=0, b=1, lty=3)
abline(h=seq(-2, 2, 1), lty=3)
abline(v=seq(-2, 2, 1), lty=3)

#-----------------------------------------------
# Example Using Poisson Distribution

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

x <- dthmm(NULL, Pi, c(0, 1), "pois",
list(lambda=c(1, 5)), discrete=TRUE)

n <- 2000
x <- simulate(x, nsim=n, seed=5)

y <- residuals(x)

w <- hist(y, main="Poisson HMM: Pseudo Residuals")
z <- seq(-3, 3, 0.01)
points(z, dnorm(z)*n*(w$breaks[2]-w$breaks[1]), col="red", type="l")
box()

qqnorm(y, main="Poisson HMM: Q-Q Plot of Pseudo Residuals")
abline(a=0, b=1, lty=3)
abline(h=seq(-2, 2, 1), lty=3)
abline(v=seq(-2, 2, 1), lty=3)

simulate Simulate Hidden Markov Process
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Description

These functions provide methods for the generic function simulate.

Usage

## S3 method for class 'dthmm'
simulate(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'mchain'
simulate(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'mmglm0'
simulate(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'mmglm1'
simulate(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'mmglmlong1'
simulate(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'mmpp'
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

object an object with class "dthmm", "mchain", "mmglm0", "mmglm1", "mmglmlong1"
or "mmpp".

nsim number of points to simulate.

seed seed for the random number generator.

... other arguments.

Details

Below details about particular methods are given where necessary.

simulate.mmglm0 If the covariate x1 is NULL, then uniform (0,1) variables are generated as the
values for x1. When the family is "binomial" and size is NULL (i.e. the number of Bernoulli
trials are not specified), then they are simulated as 100+rpois(nsim, lambda=5).

The code for the methods "dthmm", "mchain", "mmglm0", "mmglm1","mmglmlong1" and "mmpp"
can be viewed by appending simulate.dthmm, simulate.mchain, simulate.mmglm0, simulate.mmglm1,
simulate.mmglmlong1 or simulate.mmpp, respectively, to HiddenMarkov:::, on the R command
line; e.g. HiddenMarkov:::dthmm. The three colons are needed because these method functions
are not in the exported NAMESPACE.

Value

The returned object has the same class as the input object and contains the components that were in
the input object. Additional components depend on the class as below:

"dthmm": it will also have a vector x containing the simulated values;

"mmglm0": it will also contain a dataframe x about the glm; and

"mmpp": tau contains times of the simulated Poisson events (plus time 0), ys is a vector of states at
the time of each event, y is the sequence of states visited, and x is the time spent in each state.
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Examples

# The hidden Markov chain has 5 states with transition matrix:

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
1/3, 1/3, 1/3, 0, 0,

0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)

#--------------------------------------------
# simulate a Poisson HMM

x <- dthmm(NULL, Pi, c(0, 1, 0, 0, 0), "pois",
list(lambda=c(1, 4, 2, 5, 3)), discrete = TRUE)

x <- simulate(x, nsim=2000)

# check Poisson means
for (i in 1:5) print(mean(x$x[x$y==i]))

#--------------------------------------------
# simulate a Gaussian HMM

x <- dthmm(NULL, Pi, c(0, 1, 0, 0, 0), "norm",
list(mean=c(1, 4, 2, 5, 3), sd=c(0.5, 1, 1, 0.5, 0.1)))

x <- simulate(x, nsim=2000)

# check means and standard deviations
for (i in 1:5) print(mean(x$x[x$y==i]))
for (i in 1:5) print(sd(x$x[x$y==i]))

summary Summary of Hidden Markov Model

Description

Provides methods for the generic function summary.

Usage

## S3 method for class 'dthmm'
summary(object, ...)
## S3 method for class 'mmglm0'
summary(object, ...)
## S3 method for class 'mmglm1'
summary(object, ...)
## S3 method for class 'mmglmlong1'
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summary(object, ...)
## S3 method for class 'mmpp'
summary(object, ...)

Arguments

object an object with class "dthmm", "mmglm0", "mmglm1", "mmglmlong1" or "mmpp".

... other arguments.

Details

The code for the methods "dthmm", "mmglm0", "mmglm1","mmglmlong1" and "mmpp" can be viewed
by appending summary.dthmm, summary.mmglm0, summary.mmglm1, summary.mmglmlong1 or summary.mmpp,
respectively, to HiddenMarkov:::, on the R command line; e.g. HiddenMarkov:::dthmm. The
three colons are needed because these method functions are not in the exported NAMESPACE.

Value

A list object with a reduced number of components, mainly the parameter values.

Examples

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

x <- dthmm(NULL, Pi, c(0, 1), "beta",
list(shape1=c(2, 6), shape2=c(6, 2)))

x <- simulate(x, nsim=2000)

print(summary(x))

Transform-Parameters Transform Transition or Rate Matrices to Vector

Description

These functions transformm×m transition probability matrices orQmatrices to a vector of length
m(m− 1), and back. See Details.

Usage

Pi2vector(Pi)
vector2Pi(p)

Q2vector(Q)
vector2Q(p)
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Arguments

Pi an m by m transition probability matrix.

Q an m by m rate matrix.

p a vector of length m(m− 1).

Details

The function Pi2vector maps the m by m transition probability matrix of a discrete time HMM
to a vector of length m(m − 1), and vector2Pi has the reverse effect. They use a logit like
transformation so that the parameter space is on the whole real line thus avoiding hard boundaries
which cause problems for many optimisation procedures (see neglogLik).

Similarly, the function Q2vector maps the m by m rate matrix Q of an MMPP process to a vector
of length m(m− 1), and vector2Q has the reverse effect. They use a log transformation so that the
parameter space is on the whole real line thus avoiding hard boundaries which cause problems for
many optimisation procedures (see neglogLik).

Value

The functions Pi2vector and Q2vector return a vector of lengthm(m−1), the function vector2Pi
returns an m by m transition probability matrix, and vector2Q returns an m×m rate matrix Q.

See Also

neglogLik

Examples

Pi <- matrix(c(0.8, 0.1, 0.1,
0.1, 0.6, 0.3,
0.2, 0.3, 0.5),

byrow=TRUE, nrow=3)

print(vector2Pi(Pi2vector(Pi)))

#------------------------------------------------

Q <- matrix(c(-8, 5, 3,
1, -4, 3,
2, 5, -7),

byrow=TRUE, nrow=3)

print(vector2Q(Q2vector(Q)))
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Viterbi Viterbi Algorithm for Hidden Markov Model

Description

Provides methods for the generic function Viterbi. This predicts the most likely sequence of
Markov states given the observed dataset. There is currently no method for objects of class "mmpp".

Usage

## S3 method for class 'dthmm'
Viterbi(object, ...)
## S3 method for class 'mmglm0'
Viterbi(object, ...)
## S3 method for class 'mmglm1'
Viterbi(object, ...)
## S3 method for class 'mmglmlong1'
Viterbi(object, ...)

Arguments

object an object with class "dthmm", "mmglm0", "mmglm1" or "mmglmlong1".

... other arguments.

Details

The purpose of the Viterbi algorithm is to globally decode the underlying hidden Markov state at
each time point. It does this by determining the sequence of states (k∗1 , · · · , k∗n) which maximises
the joint distribution of the hidden states given the entire observed process, i.e.

(k∗1 , · · · , k∗n) = argmax
k1,···,kn∈{1,2,···,m}

Pr{C1 = k1, · · · , Cn = kn |X(n) = x(n)} .

The algorithm has been taken from Zucchini (2005), however, we calculate sums of the logarithms
of probabilities rather than products of probabilities. This lessens the chance of numerical under-
flow. Given that the logarithmic function is monotonically increasing, the argmax will still be the
same. Note that argmax can be evaluated with the R function which.max.

Determining the a posteriori most probable state at time i is referred to as local decoding, i.e.

k∗i = argmax
k∈{1,2,···,m}

Pr{Ci = k |X(n) = x(n)} .

Note that the above probabilities are calculated by the function Estep, and are contained in u[i,j]
(output from Estep), i.e. k∗i is simply which.max(u[i,]).

The code for the methods "dthmm", "mmglm0", "mmglm1" and "mmglmlong1" can be viewed by
appending Viterbi.dthmm, Viterbi.mmglm0, Viterbi.mmglm1 or Viterbi.mmglmlong1, respec-
tively, to HiddenMarkov:::, on the R command line; e.g. HiddenMarkov:::dthmm. The three
colons are needed because these method functions are not in the exported NAMESPACE.
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Value

A vector of length n containing integers (1, · · · ,m) representing the hidden Markov states for each
node of the chain.

References

Cited references are listed on the HiddenMarkov manual page.

Examples

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
1/3, 1/3, 1/3, 0, 0,

0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)
delta <- c(0, 1, 0, 0, 0)
lambda <- c(1, 4, 2, 5, 3)
m <- nrow(Pi)

x <- dthmm(NULL, Pi, delta, "pois", list(lambda=lambda), discrete=TRUE)
x <- simulate(x, nsim=2000)

#------ Global Decoding ------

states <- Viterbi(x)
states <- factor(states, levels=1:m)

# Compare predicted states with true states
# p[j,k] = Pr{Viterbi predicts state k | true state is j}
p <- matrix(NA, nrow=m, ncol=m)
for (j in 1:m){

a <- (x$y==j)
p[j,] <- table(states[a])/sum(a)

}
print(p)

#------ Local Decoding ------

# locally decode at i=100

print(which.max(Estep(x$x, Pi, delta, "pois", list(lambda=lambda))$u[100,]))

#---------------------------------------------------
# simulate a beta HMM

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)
delta <- c(0, 1)

y <- seq(0.01, 0.99, 0.01)
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plot(y, dbeta(y, 2, 6), type="l", ylab="Density", col="blue")
points(y, dbeta(y, 6, 2), type="l", col="red")

n <- 100
x <- dthmm(NULL, Pi, delta, "beta",

list(shape1=c(2, 6), shape2=c(6, 2)))
x <- simulate(x, nsim=n)

# colour denotes actual hidden Markov state
plot(1:n, x$x, type="l", xlab="Time", ylab="Observed Process")
points((1:n)[x$y==1], x$x[x$y==1], col="blue", pch=15)
points((1:n)[x$y==2], x$x[x$y==2], col="red", pch=15)

states <- Viterbi(x)
# mark the wrongly predicted states
wrong <- (states != x$y)
points((1:n)[wrong], x$x[wrong], pch=1, cex=2.5, lwd=2)
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