Estimating the Area of Applicability (AOA) can be computationally intensive, depending on the amount of training data used for a model as well as the amount of new data the AOA has to be computed. This vignette goes over the possibility to (partly) compute the AOA in parallel. We will use the same data setup as the vignette “Area of applicability of spatial prediction models”. Please have a look there for a general introduction to the AOA and the details about the example data generation.
library(CAST)
library(caret)
library(terra)
#library(sp)
library(sf)
library(viridis)
library(latticeExtra)
library(gridExtra)
<- function(raster, predictornames =
generate_random_response names(raster), seed = sample(seq(1000), 1)){
= c("+", "-", "*", "/")
operands_1 = c("^1","^2")
operands_2
<- paste(as.character(predictornames, sep=""))
expression # assign random power to predictors
set.seed(seed)
<- paste(expression,
expression sample(operands_2, length(predictornames),
replace = TRUE),
sep = "")
# assign random math function between predictors (expect after the last one)
set.seed(seed)
-length(expression)] <- paste(expression[-
expression[length(expression)],
sample(operands_1,
length(predictornames)-1, replace = TRUE),
sep = " ")
print(paste0(expression, collapse = " "))
# collapse
= paste0("raster$", expression, collapse = " ")
e
= eval(parse(text = e))
response names(response) <- "response"
return(response)
}
See the Vignette on the Area of Applicability for more details how the data are generated.
<- rast(system.file("extdata","bioclim.grd",package="CAST"))
predictors <- generate_random_response (predictors, seed = 10) response
## [1] "bio2^1 * bio5^1 + bio10^2 - bio13^2 / bio14^2 / bio19^1"
<- predictors[[1]]
mask values(mask)[!is.na(values(mask))] <- 1
<- st_as_sf(as.polygons(mask))
mask <- st_make_valid(mask)
mask
set.seed(15)
<- clustered_sample(mask,75,15,radius=25000)
samplepoints
<- extract(predictors,samplepoints,na.rm=TRUE)
trainDat $response <- extract(response,samplepoints,na.rm=FALSE)$response
trainDat<- data.frame(trainDat,samplepoints)
trainDat <- na.omit(trainDat) trainDat
set.seed(10)
<- train(trainDat[,names(predictors)],
model_random $response,
trainDatmethod="rf",
importance=TRUE,
trControl = trainControl(method="cv"))
<- predict(predictors,model_random,na.rm=TRUE) prediction_random
For better performances, it is recommended to compute the AOA in two
steps. First, the DI of training data and the resulting DI threshold is
computed from the model or training data with the function
trainDI
. The result from trainDI is usually the first step
of the aoa
function, however it can be skipped by providing
the trainDI object in the function call. This makes it possible to
compute the AOA on multiple raster tiles at once (e.g. on different
cores). This is especially useful for very large prediction areas,
e.g. in global mapping.
= trainDI(model_random)
model_random_trainDI print(model_random_trainDI)
## DI of 75 observation
## Predictors: bio2 bio5 bio10 bio13 bio14 bio19
##
## AOA Threshold: 0.3700483
saveRDS(model_random_trainDI, "path/to/file")
If you have a large raster, you divide it into multiple smaller tiles and apply the trainDI object afterwards to each tile.
= crop(predictors, c(3496791,4073906,2143336,3579086))
r1 = crop(predictors, c(4073906,4651021,2143336,3579086))
r2 = crop(predictors, c(4651021,5228136,2143336,3579086))
r3
plot(r1[[1]],main = "Tile 1")
plot(r2[[1]],main = "Tile 2")
plot(r3[[1]],main = "Tile 3")
Use the trainDI
argument in the aoa
function to specify, that you want to use a previously computed trainDI
object.
= aoa(newdata = r1, trainDI = model_random_trainDI)
aoa_r1
plot(r1[[1]], main = "Tile 1: Predictors")
plot(aoa_r1$DI, main = "Tile 1: DI")
plot(aoa_r1$AOA, main = "Tile 1: AOA")
You can now run the aoa function in parallel on the different tiles!
Of course you can use for favorite parallel backend for this task, here
we use mclapply from the parallel
package.
library(parallel)
= mclapply(list(r1, r2, r3), function(tile){
tiles_aoa aoa(newdata = tile, trainDI = model_random_trainDI)
mc.cores = 3) },
plot(tiles_aoa[[1]]$AOA, main = "Tile 1")
plot(tiles_aoa[[2]]$AOA, main = "Tile 2")
plot(tiles_aoa[[3]]$AOA, main = "Tile 3")
For larger tasks it might be useful to save the tiles to you hard-drive and load them one by one to avoid filling up your RAM.
# Simple Example Code for raster tiles on the hard drive
= list.files("path/to/tiles", full.names = TRUE)
tiles
= mclapply(tiles, function(tile){
tiles_aoa = terra::rast(tile)
current aoa(newdata = current, trainDI = model_random_trainDI)
mc.cores = 3) },