Package 'Bivariate.Pareto'

October 12, 2022
Type Package
Title Bivariate Pareto Models
Version 1.0.3
Date 2019-12-11
Author Jia-Han Shih, Wei Lee
Maintainer Jia-Han Shih tommy355097@gmail.com
Description Perform competing risks analysis under bivariate Pareto mod-els. See Shih et al. (2019) doi:10.1080/03610926.2018.1425450 for details.
Depends compound.Cox, methods
License GPL-2
Encoding UTF-8
LazyData true
RoxygenNote 7.0.0
Repository CRAN
NeedsCompilation no
Date/Publication 2019-12-11 16:00:02 UTC
R topics documented:
Bivariate.Pareto-package 2
Frank.Pareto 2
Kendall.SNBP 3
MLE.Frank.Pareto 4
MLE.Frank.Pareto.com 7
MLE.SN.Pareto 10
SN.Pareto 13
Index 15

```
Bivariate.Pareto-package
```

 Bivariate Pareto Models

Description

Perform competing risks analysis under bivariate Pareto models. See Shih et al. (2018) for details.

Details

The functions in this package are based on latent failure time models with competing risks in Shih et al. (2018). However, they can be adapted to dependent censoring models in Emura and Chen (2018). See MLE. SN. Pareto for example.

Author(s)

Jia-Han Shih, Wei Lee
Maintainer: Jia-Han Shih tommy355097@gmail.com

References

Shih J-H, Lee W, Sun L-H, Emura T (2018), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, doi: 10.1080/03610926.2018.1425450.
Emura T, Chen Y-H (2018) Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches, JSS Research Series in Statistics, Springer, in press.

Frank.Pareto

Generate samples from the Frank copula with the Pareto margins

Description

Generate samples from the Frank copula with the Pareto margins.

Usage

Frank.Pareto(n, Theta, Alpha1, Alpha2, Gamma1, Gamma2)

Arguments

n	Sample size.
Theta	Copula parameter θ.
Alpha1	Positive scale parameter α_{1} for the Pareto margin.
Alpha2	Positive scale parameter α_{2} for the Pareto margin.
Gamma1	Positive shape parameter γ_{1} for the Pareto margin.
Gamma2	Positive shape parameter γ_{2} for the Pareto margin.

Value

$\mathrm{X} \quad \mathrm{X}$ is asscoiated with the parameters Alpha1 and Gamma1.
$\mathrm{Y} \quad \mathrm{Y}$ is asscoiated with the parameters Alpha2 and Gamma2.

References

Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.

Examples

library(Bivariate.Pareto)
Frank.Pareto(5,5, 1, 1, 1, 1)

Kendall. SNBP Kendall's tau under the SNBP distribution

Description

Compute Kendall's tau under the Sankaran and Nair bivairate Pareto (SNBP) distribution (Sankaran and Nair, 1993) by numerical integration.

Usage

Kendall.SNBP(Alpha0, Alpha1, Alpha2, Gamma)

Arguments

Alpha0 Copula parameter α_{0} with restricted range.
Alpha1 Positive scale parameter α_{1} for the Pareto margin.
Alpha2 Positive scale parameter α_{2} for the Pareto margin.
Gamma Common positive shape parameter γ for the Pareto margins.

Details

The admissible range of Alpha0 $\left(\alpha_{0}\right)$ is $0 \leq \alpha_{0} \leq(\gamma+1) \alpha_{1} \alpha_{2}$.

Value

tau Kendall's tau.

References

Sankaran PG, Nair NU (1993), A bivariate Pareto model and its applications to reliability, Naval Research Logistics, 40:1013-1020.
Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.

Examples

library (Bivariate.Pareto)
Kendall.SNBP(7e-5, 0.0036, 0.0075,1.8277)

MLE.Frank. Pareto | Maximum likelihood estimation for bivariate dependent competing |
| :--- |
| risks data under the Frank copula with the Pareto margins and fixed θ |

Description

Maximum likelihood estimation for bivariate dependent competing risks data under the Frank copula with the Pareto margins and fixed θ.

Usage

```
    MLE.Frank.Pareto(
        t.event,
        event1,
        event2,
        Theta,
        Alpha1.0 = 1,
        Alpha2.0 = 1,
        Gamma1.0 = 1,
        Gamma2.0 = 1,
        epsilon = 1e-05,
        d = exp(10),
        r. }1=6
        r.2 = 6,
        r. 3 = 6,
        r.4=6
    )
```


Arguments

t.event	Vector of the observed failure times.
event1	Vector of the indicators for the failure cause 1.
event2	Vector of the indicators for the failure cause 2.
Theta	Copula parameter θ.
Alpha1.0	Initial guess for the scale parameter α_{1} with default value 1.
Alpha2.0	Initial guess for the scale parameter α_{2} with default value 1.
Gamma1.0	Initial guess for the shape parameter γ_{1} with default value 1.
Gamma2.0	Initial guess for the shape parameter γ_{2} with default value 1.
epsilon	Positive tunning parameter in the NR algorithm with default value 10^{-5}.
d	Positive tunning parameter in the NR algorithm with default value e^{10}.

r. 1 Positive tunning parameter in the NR algorithm with default value 1.
r. 2 Positive tunning parameter in the NR algorithm with default value 1.
r. 3 Positive tunning parameter in the NR algorithm with default value 1.
r. 4 Positive tunning parameter in the NR algorithm with default value 1.

Value

n Sample size.
count Iteration number.
random Randomization number.
Alpha1 Positive scale parameter for the Pareto margin (failure cause 1).
Alpha2 Positive scale parameter for the Pareto margin (failure cause 2).
Gamma1 Positive shape parameter for the Pareto margin (failure cause 1).
Gamma2 Positive shape parameter for the Pareto margin (failure cause 2).
MedX Median lifetime due to failure cause 1.
MedY Median lifetime due to failure cause 2.
MeanX \quad Mean lifetime due to failure cause 1.
MeanY Mean lifetime due to failure cause 2.
$\log L \quad$ Log-likelihood value under the fitted model.
AIC AIC value under the fitted model.
BIC BIC value under the fitted model.

References

Shih J-H, Lee W, Sun L-H, Emura T (2018), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, doi: 10.1080/03610926.2018.1425450.

Examples

$$
\begin{aligned}
\text { t.event }= & c \\
& 72,40,20,65,24,46,62,61,60,60,59,59,49,20,3,58,29,26,52,20, \\
& 51,51,31,42,38,69,39,33,8,13,33,9,21,66,5,27,2,20,19,60, \\
& 32,53,53,43,21,74,72,14,33,8,10,51,7,33,3,43,37,5,6,2, \\
& 5,64,1,21,16,21,12,75,74,54,73,36,59,6,58,16,19,39,26,60, \\
& 43,7,9,67,62,17,25,0,5,34,59,31,58,30,57,5,55,55,52,0, \\
& 51,17,70,74,74,20,2,8,27,23,1,52,51,6,0,26,65,26,6,6, \\
& 68,33,67,23,6,11,6,57,57,29,9,53,51,8,0,21,27,22,12,68, \\
& 21,68,0,2,14,18,5,60,40,51,50,46,65,9,21,27,54,52,75,30, \\
& 70,14,0,42,12,40,2,12,53,11,18,13,45,8,28,67,67,24,64,26, \\
& 57,32,42,20,71,54,64,51,1,2,0,54,69,68,67,66,64,63,35,62, \\
& 7,35,24,57,1,4,74,0,51,36,16,32,68,17,66,65,19,41,28,0, \\
& 46,63,60,59,46,63,8,74,18,33,12,1,66,28,30,57,50,39,40,24, \\
& 6,30,58,68,24,33,65,2,64,19,15,10,12,53,51,1,40,40,66,2, \\
& 21,35,29,54,37,10,29,71,12,13,27,66,28,31,12,9,21,19,51,71, \\
& 76,46,47,75,75,49,75,75,31,69,74,25,72,28,36,8,71,60,14,22, \\
& 67,62,68,68,27,68,68,67,67,3,49,12,30,67,5,65,24,66,36,66, \\
& 40,13,40,0,14,45,64,13,24,15,26,5,63,35,61,61,50,57,21,26,
\end{aligned}
$$

$11,59,42,27,50,57,57,0,1,54,53,23,8,51,27,52,52,52,45,48$, $18,2,2,35,75,75,9,39,0,26,17,43,53,47,11,65,16,21,64,7$, $38,55,5,28,38,20,24,27,31,9,9,11,56,36,56,15,51,33,70,32$, $5,23,63,30,53,12,58,54,36,20,74,34,70,25,65,4,10,58,37,56$, $6,0,70,70,28,40,67,36,23,23,62,62,62,2,34,4,12,56,1,7$, $4,70,65,7,30,40,13,22,0,18,64,13,26,1,16,33,22,30,53,53$, $7,61,40,9,59,7,12,46,50,0,52,19,52,51,51,14,27,51,5,0$, $41,53,19$)

event2 $=c(0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,1$, $0,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0$, $0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0$, $0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1$, $1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,1$, $0,1,1,0,0,1,0,0,1,1,1,0,0,0,0,1,1,0,1,1$, $0,1,0,0,1,1,0,0,0,1,1,0,0,1,1,1,0,1,0,0$, $1,0,1,0,0,1,0,0,1,0,1,1,0,1,1,1,0,0,0,1$, $0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,0,1$, $0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0$, $1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,1$, $0,0,0,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,1,1$, $1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1$, $0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0$, $0,0,1,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1$, $1,1,0,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0$, $1,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,0$, $1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,1$,

$$
\begin{aligned}
& 0,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0 \\
& 0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,1 \\
& 1,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0 \\
& 0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1 \text {, } \\
& 0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,1,0 \text {, } \\
& 0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1 \text {, } \\
& 1,0,0)
\end{aligned}
$$

```
library(Bivariate.Pareto)
set.seed(10)
MLE.Frank.Pareto(t.event,event1,event2,Theta = -5)
```


MLE.Frank.Pareto.com Maximum likelihood estimation for bivariate dependent competing risks data under the Frank copula with the common Pareto margins

Description

Maximum likelihood estimation for bivariate dependent competing risks data under the Frank copula with the common Pareto margins.

Usage

```
MLE.Frank.Pareto.com(
    t.event,
    event1,
    event2,
    Theta.0 = 1,
    Alpha.0 = 1,
    Gamma.0 = 1,
    epsilon = 1e-05,
    r.1 = 13,
    r. 2 = 3,
    r. 3 = 3,
    bootstrap = FALSE,
    B = 200
)
```


Arguments

t.event Vector of the observed failure times.
event1 Vector of the indicators for the failure cause 1.
event2 Vector of the indicators for the failure cause 2.
Theta. $0 \quad$ Initial guess for the copula parameter θ.
Alpha. $0 \quad$ Initial guess for the common scale parameter α with default value 1.
Gamma. $0 \quad$ Initial guess for the common shape parameter γ with default value 1.

$$
\begin{array}{ll}
\text { epsilon } & \text { Positive tunning parameter in the NR algorithm with default value } 10^{-5} . \\
\text { r. } 1 & \text { Positive tunning parameter in the NR algorithm with default value } 1 . \\
\text { r. } 2 & \text { Positive tunning parameter in the NR algorithm with default value } 1 . \\
\text { r. } 3 & \text { Positive tunning parameter in the NR algorithm with default value } 1 . \\
\text { bootstrap } & \text { Perform parametric bootstrap if TRUE. } \\
\text { B } & \text { Number of bootstrap replications. }
\end{array}
$$

Details

The parametric bootstrap method requires the assumption of the uniform censoring distribution. One must notice that such assumption is not always true in real data analysis.

Value

n	Sample size.
count	Iteration number.
random	Randomization number.
Theta	Copula parameter.
Theta.B	Copula parameter (SE and CI are calculated by parametric bootstrap method).
Alpha	Common positive scale parameter for the Pareto margin.
Alpha.B	Common positive scale parameter for the Pareto margin (SE and CI are calcu- lated by parametric bootstrap method).
Gamma	Common positive shape parameter for the Pareto margin.
Gamma.B	Common positive shape parameter for the Pareto margin (SE and CI are calcu- lated by parametric bootstrap method).
logL	Log-likelihood value under the fitted model.
AIC	AIC value under the fitted model.
BIC	BIC value under the fitted model.

References

Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.

Examples

$$
\begin{aligned}
\text { t.event }= & c \\
& (72,40,20,65,24,46,62,61,60,60,59,59,49,20,3,58,29,26,52,20, \\
& 51,51,31,42,38,69,39,33,8,13,33,9,21,66,5,27,2,20,19,60 \\
& 32,53,53,43,21,74,72,14,33,8,10,51,7,33,3,43,37,5,6,2, \\
& 5,64,1,21,16,21,12,75,74,54,73,36,59,6,58,16,19,39,26,60 \\
& 43,7,9,67,62,17,25,0,5,34,59,31,58,30,57,5,55,55,52,0 \\
& 51,17,70,74,74,20,2,8,27,23,1,52,51,6,0,26,65,26,6,6 \\
& 68,33,67,23,6,11,6,57,57,29,9,53,51,8,0,21,27,22,12,68 \\
& 21,68,0,2,14,18,5,60,40,51,50,46,65,9,21,27,54,52,75,30 \\
& 70,14,0,42,12,40,2,12,53,11,18,13,45,8,28,67,67,24,64,26
\end{aligned}
$$

$$
\begin{aligned}
& 57,32,42,20,71,54,64,51,1,2,0,54,69,68,67,66,64,63,35,62 \text {, } \\
& 7,35,24,57,1,4,74,0,51,36,16,32,68,17,66,65,19,41,28,0 \text {, } \\
& 46,63,60,59,46,63,8,74,18,33,12,1,66,28,30,57,50,39,40,24 \text {, } \\
& 6,30,58,68,24,33,65,2,64,19,15,10,12,53,51,1,40,40,66,2 \text {, } \\
& 21,35,29,54,37,10,29,71,12,13,27,66,28,31,12,9,21,19,51,71 \text {, } \\
& 76,46,47,75,75,49,75,75,31,69,74,25,72,28,36,8,71,60,14,22 \text {, } \\
& 67,62,68,68,27,68,68,67,67,3,49,12,30,67,5,65,24,66,36,66 \text {, } \\
& 40,13,40,0,14,45,64,13,24,15,26,5,63,35,61,61,50,57,21,26 \text {, } \\
& 11,59,42,27,50,57,57,0,1,54,53,23,8,51,27,52,52,52,45,48 \text {, } \\
& 18,2,2,35,75,75,9,39,0,26,17,43,53,47,11,65,16,21,64,7 \text {, } \\
& 38,55,5,28,38,20,24,27,31,9,9,11,56,36,56,15,51,33,70,32 \text {, } \\
& 5,23,63,30,53,12,58,54,36,20,74,34,70,25,65,4,10,58,37,56 \text {, } \\
& 6,0,70,70,28,40,67,36,23,23,62,62,62,2,34,4,12,56,1,7, \\
& 4,70,65,7,30,40,13,22,0,18,64,13,26,1,16,33,22,30,53,53, \\
& 7,61,40,9,59,7,12,46,50,0,52,19,52,51,51,14,27,51,5,0, \\
& 41,53,19)
\end{aligned}
$$

event1 $=c(0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0$,
$0,0,1,0,0,0,1,0,1,1,0,1,1,1,1,0,0,1,1,0$,
$1,0,0,1,1,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1$,
$1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,0$,
$0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0$,
$0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0$,
$1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0$,
$1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0$,
$0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,0,1,1,0,0$,
$1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1$,
$0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0$,
$0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$,
$0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1$,
$0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0$,
$1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1$,
$1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0$,
$0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1,1,0,1,0$,
$1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0$,
$1,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1$,
$1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0$,
$0,0,1)$
event2 $=c(0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,1$,
$0,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0$,
$0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0$,
$0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1$,
$1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,1$,
$0,1,1,0,0,1,0,0,1,1,1,0,0,0,0,1,1,0,1,1$,
$0,1,0,0,1,1,0,0,0,1,1,0,0,1,1,1,0,1,0,0$,
$1,0,1,0,0,1,0,0,1,0,1,1,0,1,1,1,0,0,0,1$,
$0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,0,1$,
$0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0$,

$$
\begin{aligned}
& 1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,1, \\
& 0,0,0,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,1,1, \\
& 1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1 \text {, } \\
& 0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0 \text {, } \\
& 0,0,1,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1 \text {, } \\
& 1,1,0,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0 \text {, } \\
& 1,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,0 \text {, } \\
& 1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,1 \text {, } \\
& 0,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0 \text {, } \\
& 0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,1 \text {, } \\
& 1,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0 \text {, } \\
& 0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1 \text {, } \\
& 0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,1,0 \text {, } \\
& 0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1 \text {, } \\
& 1,0,0)
\end{aligned}
$$

```
library(Bivariate.Pareto)
set.seed(10)
MLE.Frank.Pareto.com(t.event,event1,event2,bootstrap = FALSE)
``` risks data under the SNBP distribution

\section*{Description}

Maximum likelihood estimation for bivariate dependent competing risks data under the SNBP distribution (Sankaran and Nair, 1993).

\section*{Usage}
```

MLE.SN.Pareto(
t.event,
event1,
event2,
Alpha0,
Alpha1.0 = 1,
Alpha2.0 = 1,
Gamma.0 = 1,
epsilon = 1e-05,
d = exp(10),
r.1 = 6,
r.2 = 6,
r. 3 = 6
)

```

\section*{Arguments}
\begin{tabular}{ll}
t.event & Vector of the observed failure times. \\
event1 & Vector of the indicators for the failure cause 1. \\
event2 & Vector of the indicators for the failure cause 2. \\
Alpha0 & Copula parameter \(\alpha_{0}\) with restricted range. \\
Alpha1.0 & Initial guess for the scale parameter \(\alpha_{1}\) with default value 1. \\
Alpha2.0 & Initial guess for the scale parameter \(\alpha_{2}\) with default value 1. \\
Gamma.0 & Initial guess for the common shape parameter \(\gamma\) with default value 1. \\
epsilon & Positive tunning parameter in the NR algorithm with default value \(10^{-5}\). \\
d & Positive tunning parameter in the NR algorithm with default value \(e^{10}\). \\
r. 1 & Positive tunning parameter in the NR algorithm with default value 1. \\
r. 2 & Positive tunning parameter in the NR algorithm with default value 1. \\
r. 3 & Positive tunning parameter in the NR algorithm with default value 1.
\end{tabular}

\section*{Details}

The admissible range of Alpha0 \(\left(\alpha_{0}\right)\) is \(0 \leq \alpha_{0} \leq(\gamma+1) \alpha_{1} \alpha_{2}\).
To adapt our functions to dependent censoring models in Emura and Chen (2018), one can simply set event2 \(=1\)-event 1 .

\section*{Value}
\begin{tabular}{ll}
n & Sample size. \\
count & Iteration number. \\
random & Randomization number. \\
Alpha1 & Positive scale parameter for the Pareto margin (failure cause 1). \\
Alpha2 & Positive scale parameter for the Pareto margin (failure cause 2). \\
Gamma & Common positive shape parameter for the Pareto margins. \\
MedX & Median lifetime due to failure cause 1. \\
MedY & Median lifetime due to failure cause 2. \\
MeanX & Mean lifetime due to failure cause 1. \\
MeanY & Mean lifetime due to failure cause 2. \\
logL & Log-likelihood value under the fitted model. \\
AIC & AIC value under the fitted model. \\
BIC & BIC value under the fitted model.
\end{tabular}

\section*{References}

Sankaran PG, Nair NU (1993), A bivariate Pareto model and its applications to reliability, Naval Research Logistics, 40(7): 1013-1020.
Emura T, Chen Y-H (2018) Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches, JSS Research Series in Statistics, Springer, Singapore.
Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.

\section*{Examples}

> t.event \(=c(72,40,20,65,24,46,62,61,60,60,59,59,49,20,3,58,29,26,52,20\), \(51,51,31,42,38,69,39,33,8,13,33,9,21,66,5,27,2,20,19,60\), \(32,53,53,43,21,74,72,14,33,8,10,51,7,33,3,43,37,5,6,2\), \(5,64,1,21,16,21,12,75,74,54,73,36,59,6,58,16,19,39,26,60\), \(43,7,9,67,62,17,25,0,5,34,59,31,58,30,57,5,55,55,52,0\), \(51,17,70,74,74,20,2,8,27,23,1,52,51,6,0,26,65,26,6,6\), \(68,33,67,23,6,11,6,57,57,29,9,53,51,8,0,21,27,22,12,68\), \(21,68,0,2,14,18,5,60,40,51,50,46,65,9,21,27,54,52,75,30\), \(70,14,0,42,12,40,2,12,53,11,18,13,45,8,28,67,67,24,64,26\), \(57,32,42,20,71,54,64,51,1,2,0,54,69,68,67,66,64,63,35,62\), \(7,35,24,57,1,4,74,0,51,36,16,32,68,17,66,65,19,41,28,0\), \(46,63,60,59,46,63,8,74,18,33,12,1,66,28,30,57,50,39,40,24\), \(6,30,58,68,24,33,65,2,64,19,15,10,12,53,51,1,40,40,66,2\), \(21,35,29,54,37,10,29,71,12,13,27,66,28,31,12,9,21,19,51,71\), \(76,46,47,75,75,49,75,75,31,69,74,25,72,28,36,8,71,60,14,22\), \(67,62,68,68,27,68,68,67,67,3,49,12,30,67,5,65,24,66,36,66\), \(40,13,40,0,14,45,64,13,24,15,26,5,63,35,61,61,50,57,21,26\), \(11,59,42,27,50,57,57,0,1,54,53,23,8,51,27,52,52,52,45,48\), \(18,2,2,35,75,75,9,39,0,26,17,43,53,47,11,65,16,21,64,7\), \(38,55,5,28,38,20,24,27,31,9,9,11,56,36,56,15,51,33,70,32\), \(5,23,63,30,53,12,58,54,36,20,74,34,70,25,65,4,10,58,37,56\), \(6,0,70,70,28,40,67,36,23,23,62,62,62,2,34,4,12,56,1,7\), \(4,70,65,7,30,40,13,22,0,18,64,13,26,1,16,33,22,30,53,53\), \(7,61,40,9,59,7,12,46,50,0,52,19,52,51,51,14,27,51,5,0\), \(41,53,19)\)

> event1 \(=c(0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0\), \(0,0,1,0,0,0,1,0,1,1,0,1,1,1,1,0,0,1,1,0\), \(1,0,0,1,1,0,0,1,0,0,0,1,0,1,0,0,1,0,1,1\), \(1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0\), \(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\), \(0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,1,0,0\), \(0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0\), \(0,0,0,1,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0\), \(0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,0,0,0,0\), \(1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0\), \(0,0,0,0,0,0,0,1,0,0,1,1,0,1,0,0,1,1,0,0\), \(1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0\), \(0,0,1,0,1,0,0,0,0,1,1,1,1,0,0,0,1,1,0,0\), \(1,1,1,1,0,0,1,0,1,1,1,1,1,1,1,0,1,1,0,1\), \(0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0\), \(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\), \(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1\), \(0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0\), \(1,0,0,0,0,0,0,1,0,0,0,0,1,0,1,0,1,0,0,1\), \(1,1,0,1,1,1,1,1,1,1,1,0,1,1,0,0,0,0,0,0\), \(0,0,0,1,0,0,0,0,1,0,0,1,0,1,0,1,1,0,1,0\), \(1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0\), \(1,0,0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,1\), \(1,1,1,0,0,0,1,0,0,0,0,0,0,0,0,1,1,0,0,0\), \(0,0,1)\)
```

event2 $=c(0,1,1,0,0,1,0,0,0,0,0,0,0,1,1,0,1,1,0,1$,
$0,0,0,1,1,0,0,1,0,0,1,0,0,0,0,1,1,0,0,0$,
$0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,1,0,1,0,0$,
$0,0,1,0,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1,1$,
$1,1,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,0,1$,
$0,1,1,0,0,1,0,0,1,1,1,0,0,0,0,1,1,0,1,1$,
$0,1,0,0,1,1,0,0,0,1,1,0,0,1,1,1,0,1,0,0$,
$1,0,1,0,0,1,0,0,1,0,1,1,0,1,1,1,0,0,0,1$,
$0,1,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,1,0,1$,
$0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,0,0,0,1,0$,
$1,1,1,0,1,1,1,0,1,1,0,0,0,0,0,0,0,0,1,1$,
$0,0,0,0,1,0,1,0,1,1,1,1,0,1,1,1,0,1,1,1$,
$1,1,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1$,
$0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0$,
$0,0,1,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1$,
$1,1,0,0,1,0,0,0,0,1,1,1,1,0,1,1,1,0,1,0$,
$1,1,1,1,1,1,0,1,1,1,1,0,0,1,0,0,1,1,1,0$,
$1,0,0,1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,1,1$,
$0,1,1,1,0,0,1,0,1,1,1,1,0,1,0,0,0,1,0,0$,
$0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,1$,
$1,1,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0$,
$0,1,0,0,1,1,0,1,1,1,0,0,0,1,0,1,0,0,1,1$,
$0,0,0,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,1,0$,
$0,0,0,1,0,1,0,1,0,1,0,1,0,0,0,0,0,0,1,1$,
$1,0,0)$

```
library (Bivariate.Pareto)
set. seed(10)
MLE.SN.Pareto(t.event, event1, event2,Alpha0 \(=7 e-5\))

\section*{Description}

Generate samples from the Sankaran and Nair bivairate Pareto (SNBP) distribution (Sankaran and Nair, 1993).

\section*{Usage}

SN.Pareto(n, Alpha0, Alpha1, Alpha2, Gamma)

\section*{Arguments}
n
Sample size.
Alpha0
Copula parameter \(\alpha_{0}\) with restricted range.
Alpha1 Positive scale parameter \(\alpha_{1}\) for the Pareto margin.
Alpha2 Positive scale parameter \(\alpha_{2}\) for the Pareto margin.
Gamma Common positive shape parameter \(\gamma\) for the Pareto margins.

\section*{Details}

The admissible range of Alpha0 \(\left(\alpha_{0}\right)\) is \(0 \leq \alpha_{0} \leq(\gamma+1) \alpha_{1} \alpha_{2}\).

\section*{Value}
\(\mathrm{X} \quad \mathrm{X}\) is asscoiated with the parameters Alpha1 and Gamma.
\(Y \quad Y\) is asscoiated with the parameters Alpha2 and Gamma.

\section*{References}

Sankaran PG, Nair NU (1993), A bivariate Pareto model and its applications to reliability, Naval Research Logistics, 40(7): 1013-1020.
Shih J-H, Lee W, Sun L-H, Emura T (2019), Fitting competing risks data to bivariate Pareto models, Communications in Statistics - Theory and Methods, 48:1193-1220.

\section*{Examples}
library(Bivariate.Pareto)
SN. Pareto(5, 2, 1, 1, 1)

\section*{Index}

Bivariate.Pareto-package, 2
Frank.Pareto, 2
Kendall.SNBP, 3

MLE.Frank.Pareto, 4
MLE.Frank. Pareto. com, 7
MLE.SN.Pareto, 10
SN.Pareto, 13```

