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This document is connected to the R package sn and it represents a technical complement

to its manual. The main purpose of the document is to describe how certain interval-type

objects are derived from an object generated by a call to the function selm. The terminology

adopted here is in agreement with the one of the package documentation; hence refer to

the package manual for any term or concept not explained in this document. If you are

interested in using the package but not so much in its internal working, this document may

be not of key concern to you.

Preliminaries

It is assumed that the function selm has been called to fit a model with a univariate re-

sponse variable and its execution has been successfully completed with a solution not on the

boundary of the parameter space. Such a call generates an object of selm-class, denoted

object in the following. Since version 1.4-0 of the package, one can apply methods confint

and predict to such objects. The main role of this document is to describe the computing

procedures underlying these methods.

In case the selm fitting process has landed on the boundary of the parameter space,

consider refitting the model with estimation method="MPLE" or switching from family="ST"

to family="SN", depending on which side of the parameter space has been hit. This should

lead to a new fit in the interior of the parameter space.

Objects of mselm-class, generated by a call to selm with a multivariate response, are not

handled by confint and predict.

References to supporting theoretical results are made via the monograph by Azzalini &

Capitanio (2014), later denoted ‘the SN book’. This choice is made merely for simplicity, to

avoid a long list of individually focused sources, some of which are quite technical. The book

points to the original publications of the pertaining results where full details are available.

Confidence intervals via "confint"

This section describes the computing schemes involved to obtain the confidence intervals

generated by a call of type confint(object, ...).

In the majority of cases, the distribution of the estimates is approximated by a normal

distribution with covariance matrix given by the inverse matrix of the observed information

matrix. This is possibly adjusted by a penalty term if the option method="MPLE" had been

adopted at the fitting stage; in case the penalty function was user-defined, that function must

still be accessible. This normal-based approximation applies for all families ("SN", "ST",
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"SC") and all forms of parameterization (CP, DP, pseudo-CP, if admissible for the pertaining

family), with a few exceptions described below.

The special treatment of some cases reflects the qualitatively different nature of the log-

likelihood asymptotics near α = 0 for the SN family and the other families, if the DP para-

meterization is adopted; see § 3.1.1, 4.3.3 and 6.3.1 of the SN book.

In the SN case, a confidence interval for α is obtained from the profile (penalized) log-

likelihood function ℓp (α). More specifically, if q denotes the upper quantile of the χ2
1

distri-

bution at the chosen confidence level, two solutions of the equation for α

2 {ℓp (α̂)−ℓp (α)} = q (1)

are searched for, one on each side of the MLE, α̂. Computation of ℓp is accomplished by

using the function profile.selm.

In principle, results about normal asymptotic distribution of the MLE, leading to confid-

ence intervals derived from (1), hold for the CP parameterization; see § 3.1.4–3.1.6 of the

SN book. However, equivariance of the MLE and of likelihood-based intervals (1) allow to

work equivalently with the DP component, taking into account the one-to-one correspond-

ence between α and γ1. This has the numerical advantage of avoiding boundary values in

the search of the solution and it avoids repeated transformation between CP and DP values,

given the way of working of profile.selm. When the required parameter type is CP, the

confidence interval for α is then mapped on the γ1 scale at the end of the process.

For the scale parameter (ω in the DP set, σ in the CP set, σ̃ in the CP set), a normal ap-

proximation to the asymptotic distribution formally holds. However, to avoid intervals which

include negative values, the normal approximation is applied to the logarithmic transform

of the parameter. This produces a confidence interval of the real axis, which is then back-

transformed into the original parameter space, R+. A similar device is applied to the tail-

weight parameter of the ST family, that is, ν, γ2 or γ̃2, depending on the adopted parameter

set.

For the DP parameterization of a SN family with a non-significant slant parameter, no

confidence interval is constructed for the location parameter ξ in case of a simple sample or,

analogously, for the intercept term of the β parameters in a regression model. The decision

that the slant is not significant is taken by examining whether the confidence interval for α

(or equivalently for γ1), as derived above, includes the point 0 or not.

Prediction intervals via "predict.selm"

Interval type "confidence"

The key fact here is normality of the asymptotic distribution of xT
i
β̂, where xi denotes a vec-

tor of covariates supplied to predict.selm and β̂ are estimates of the regression parameters,

β, obtained either from MLE or MPLE estimation. This asymptotic normality holds in all

cases but one, analogously to what has already been discussed in the previous section.

The one exception occurs with the SN family using the DP parameterization when α

is near zero. Although non-normality of β̂ pertains only to the intercept term, it affects

the overall distribution of xT
i
β̂. Therefore a confidence interval is produced only if α̂ is

significantly non-zero.
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Interval type "prediction"

In all pertaining cases, we are working with a regression model which, for a generic value of

the response variable, y , can be written equivalently in either of the two forms

y = x⊤βDP
+ε (2)

= x⊤βCP
+ (ε−µε) (3)

where βDP,βCP denote the vectors of regression parameters in the DP and CP variant, the

first element of the covariate vector x is 1 and ε has either SN or ST distribution with null

DP-location. The SC case is included within the ST family. For brevity, we not explicitly

write down an analogous expression for pseudo-CP, but this case is incorporated in the

development below, as it will be clear in a moment. For mathematical details, see Sections

3.1.4 and 4.3.4 of the SN book.

Equivalence of expressions (2) and (3) shows the equivalence of the prediction intervals

using either of DP or CP. Thanks to this property, we can base our construction on the form

which is more convenient for the case under consideration.

Once estimates of the parameters have been obtained from a set of data, a ‘prediction’

interval for new observations y∗ involves computation of the distribution of

y∗
= x⊤β̂DP

+ε∗ (4)

= x⊤β̂CP
+ (ε∗− µ̂ε) (5)

where ε∗ has the same distribution of ε above but it is independent from the data used for

estimation, hence from β̂DP and β̂DP.

Consider first the case when object refers to a fit with family="SN". Two approximations

are introduced: (a) the distribution of β̂CP, and consequently the one of x⊤β̂CP is regarded as

asymptotically normal, leading to the approximation

x⊤β̂CP
∼̇ N

(

x⊤βCP
, x⊤

(I
CP

)
−1x

)

, (6)

where I
CP denotes the CP observed (penalized) information matrix; (b) µε and the other

parameters of ε∗ are treated as known, ignoring estimation error; this simplification is com-

monly in use. Therefore (5) represents the sum of x⊤β̂CP, with approximate distribution (6),

and a SN variate ε−µε. The convolution distribution is still of SN type by Proposition 2.3 of

the SN book, leading readily to the distribution of (5).

When object refers to a fit with family="ST" (or its special case "SC"), there is the

complication that the convolution distribution of a Normal and an independent ST variable

is not known. An additional consideration is that µε does not exist when ν ≤ 1; clearly this

includes the case with family="SC". However, there is the advantage that ST case is free

from the problem of non-standard asymptotics of the MLE in a neighbourhood of α= 0. This

fact allows us to base our construction on (2), sidestepping the issue of µε.

The distribution of x⊤β̂DP distribution can be approximated similarly to the expression in

(6), with the obvious substitution of βCP and I
CP by the corresponding DP quantities, βDP and

I
DP. Since no result analogous to Proposition 2.3 is currently available for ST variates, the

distribution of (4) requires an approximation. Apart from the constant term x⊤βDP, which is

estimated by x⊤β̂DP, the issue now is to approximate the distribution of

V =U +ε∗

where

U ∼ N(0,σ2
U ), with σ2

U = x⊤
(I

DP
)
−1x,
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is independent of ε∗.

Consider first the case with ν> 4, so that the first four cumulants of ε∗ exist; denote them

κ1, . . . ,κ4. Hence the matching cumulants of V are

κ1, κ2 +σ2
U , κ3, κ4 .

If we re-express this fact in terms of CP components of ε∗, denoted µ,σ,γ1,γ2, the analogous

quantities for V are

µ, σ/r, γ1 r 3
, γ2 r 4 (7)

where

r 2
=σ2

/(σ2
+σ2

U ) .

The required approximation to the distribution of V is obtained by finding the member of

the ST family having CP components equal to those in (7). The task of parameter matching

is accomplished using the available facilities for converting back and forth between the DP

and CP parameterization. Note however that this step involves the solutions of non-linear

equations; this process can then beccome lengthy when the number of prediction points x is

large.

The idea of approximating an unknown distribution by one with matching four moments

(or cumulants, equivalently) has been employed repeatedly in the literature. Numerical

supporting evidence for this sort of procedure has been provided for instance by Solomon &

Stephens (1978), although using a different parametric class.

If the condition ν > 4 fails, we replace the CP components µ,σ,γ1,γ2 with their pseudo-

CP counterparts, which exist for all values of ν, and proceed similarly. A brief description of

pseudo-CP is given in § 4.3.4 of the SN book; a full account is given in the original paper of

Arellano-Valle & Azzalini (2013). One could raise the objection that the pseudo-CP set does

not formally represent a proper parameterization, so that in some cases there could be two

members of the ST family with the same pseudo-CP’s. However, this is not an issue in the

present context where the target is merely to provide a numerical approximation and the

potential existence of another approximation does not cause problems.
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