
THE GENETICS PACKAGE

The genetics package
Utilities for handling genetic data

by Gregory R. Warnes

Introduction

In my work as a statistician in the Non-Clinical
Statistics and Biostatistical Applications group
within Pfizer Global Research and Development I
have the opportunity to perform statistical analysis
in a wide variety of domains. One of these domains
is pharmacogenomics, in which we attempt to deter-
mine the relationship between the genetic variability
of individual patients and disease status, disease
progression, treatment efficacy, or treatment side ef-
fect profile.

Our normal approach to pharmacogenomics is
to start with a small set of candidate genes. We
then look for markers of genetic variability within
these genes. The most common marker types
we encounter are Single Nucleotide Polymorphisms
(SNPs). SNPs are locations where some individuals
differ from the norm by the substitution one of the 4
DNA bases, adenine (A), thymine (T), guanine (G),
and cytosine (C), by a one of the other bases. For
example, a single cytosine (C) might be replaced by
a single tyrosine (T) in the sequence ‘CCTCAGC’,
yielding ‘CCTTAGC’. We also encounter simple se-
quence length polymorphisms (SSLP), which are
also known as microsatellite DNA. SSLP are simple
reteating patters of bases where the number of re-
peats can vary. E.g., at a particular position, some
individuals might have 3 repeats of the pattern ‘CT’,
‘ACCTCTCTAA’, while others might have 5 repeats,
‘ACCTCTCTCTCTAA’.

Regardless of the type or location of genetic varia-
tion, each individual has two copies of each chromo-
some, hence two alleles (variants), and consequently
two data values for each marker. This information is
often presented together by providing a pair of allele
names. Sometimes a separator is used (e.g. ‘A/T’),
sometimes they are simply concatinated (e.g., ‘AT’).

A further layer of complexity arises from the
inability of most laboratory methods to determine
which observed variants comes from which copy of
the chromosome. (Statistical methods are often nec-
essary to impute this information when it is needed.)
For this type of data ‘A/T’, and ‘T/A’ are equivalent.

The genetics package

The genetics package, available from CRAN, in-
cludes classes and methods for creating, represent-
ing, and manipulating genotypes (unordered allele
pairs) and haplotypes (ordered allele pairs). Geno-
types and haplotypes can be annotated with chromo-
some, locus (location on a chromosome), gene, and
marker information. Utility functions compute geno-
type and allele frequencies, flag homozygotes or het-
erozygotes, flag carriers of certain alleles, count the
number of a specific allele carried by an individual,
extract one or both alleles. . These functions make it
easy to create and use single-locus genetic informa-
tion in R’s statistical modeling functions.

The genetics library also provide a set of func-
tions to estimate and test for departure from Hardy-
Weinberg equilibrium (HWE). HWE specifies the
expected allele frequencies for a single population
when none of the variant alleles impart a survival
benefit. Departure from HWE is often indicative of
a problem with the laboratory assay, and is often the
first statistical method applied to genetic data. In
addition, the genetics package provides functions to
test for linkage disequilibrium (LD), the non-random
association of marker alleles which can arise from
marker proximity or from selection bias. Further,
to assist in sample size calculations when consider-
ing sample sizes needed when investigating poten-
tial markers, we provide a function which computes
the probability of observing all alleles with a given
true frequency.

My primary motivation in creating the genetics li-
brary was to overcome the difficulty in representing
and manipulating genotype in general-purpose sta-
tistical packages. Without an explicit genotype vari-
able type, handling genetic variables requires con-
siderable string manipulation, which can be quite
messy and tedious. The genotype function has
been designed to remove the need to perform string
manupulation by allowing allele pairs to be specified
in any of four commonly occuring notations:

• A single vector with a character separator:

g1 <- genotype(c(’A/A’,’A/C’,’C/C’,’C/A’,

NA,’A/A’,’A/C’,’A/C’))

g3 <- genotype(c(’A A’,’A C’,’C C’,’C A’,

’’,’A A’,’A C’,’A C’),

sep=’ ’, remove.spaces=F)

• A single vector with a positional separator

1

IMPLEMENTATION THE GENETICS PACKAGE

g2 <- genotype(c(’AA’,’AC’,’CC’,’CA’,’’,

’AA’,’AC’,’AC’), sep=1)

• Two separate vectors

g4 <- genotype(

c(’A’,’A’,’C’,’C’,’’,’A’,’A’,’A’),

c(’A’,’C’,’C’,’A’,’’,’A’,’C’,’C’)

)

• A dataframe or matrix with two columns

gm <- cbind(

c(’A’,’A’,’C’,’C’,’’,’A’,’A’,’A’),

c(’A’,’C’,’C’,’A’,’’,’A’,’C’,’C’))

g5 <- genotype(gm)

For simplicity, the functions makeGenotype and
makeHaplotype can be used to convert all of the ge-
netic variables contained in a dataframe in a single
pass. (See the help page for details.)

A second difficulty in using genotypes is the need
to represent the information in different forms at dif-
ferent times. To simplify the use of genotype vari-
ables, each of the three basic ways of modeling the
effect of the allele combinations is directly supported
by the genetics package:

categorical Each allele combination acts differently.

This situation is handled by entering the
genotype variable without modification into a
model. In this case, it will be treated as a factor:

lm(outcome ~ genotype.var + confounder)

additive The effect depends on the number of copies
of a specific allele (0, 1, or 2).

The function allele.count(gene, allele)

returns the number of copies of the specified
allele:

lm(outcome ~ allele.count(genotype.var,’A’)

+ confounder)

dominant/recessive The effect depends only on the
presence or absence of a specific allele.

The function carrier(gene, allele) re-
turns a boolean flag if the specified allele is
present:

lm(outcome ~ carrier(genotype.var,’A’)

+ confounder)

Implementation

The basic functionality of the genetics package is
provided by the genotype class and the haplotype

class, which is a simple extension of the former.
Friedrich Leisch and I collaborated on the design of
the genotype class. We had four goals: First, we
wanted to be able to manipulate both alleles as a
single variable. Second, we needed a clean way of
accessing the individual alleles when this was re-
quired. Third, a genotype variable should be able
to be stored in dataframes as they are currently im-
plemented in R. Fourth, the implementation of geno-
type variables should be space-efficient.

After considering several potential implemen-
tations, we chose to implement the genotype
class as an extension to the in-built factor vari-
able type with additional information stored in at-
tributes. Genotype objects are stored as factors
and have the class list c("genotype","factor").
The names of the factor levels are constructed as
paste(allele1,"/",allele2,sep=""). Since most
genotyping methods do not indicate which allele
comes from which member of a chromosome pair,
the alleles for each individual are placed in a con-
sistent order controlled by the reorder argument.
In cases when the allele order is informative, the
haplotype class, which preserves the allele order,
should be used instead.

The set of allele names is stored in the attribute
allele.names. A translation table from the factor
levels to the names of each of the two alleles is stored
in the attribute allele.map. This map is a two col-
umn character matrix with one row per factor level.
The columns provide the individual alleles for each
factor level. Accesing the individual alleles, as per-
formed by the allele function, is accomplished by
simply indexing into this table,

allele.x <- attrib(x,"allele.map")

alleles.x[genotype.var,which]

where which is 1, 2, or c(1,2) as appropriate.
Finally, there is often additional meta-

information associated with a genotype. The func-
tions locus, gene, and marker create objects to store
information, respectively, about genetic loci, genes,
and markers. Any of these objects can be included as
part of a genotype object using the locus argument.
The print and summary functions for genotype ob-
jects properly display this information when it is
present.

This implementation of the genotype class met
our four design goals and offered an additional ben-

2

EXAMPLE THE GENETICS PACKAGE

efit: in most contexts factors behave the same as the
desired default behavior for genotype objects. Con-
sequently, relatively few additional methods needed
to written. Further, in the absence of the genetics
package, the information stored in genotype objects
is still accessible in a reasonable way.

The genotype class is accompanied by a full com-
plement of helper methods for standard R operators
([], [<-, ==, etc.) and object methods (summary,
print, is.genotype, as.genotype, etc.). Additional
functions for manipulating genotypes include:

allele Extracts individual alleles. matrix.

allele.names Extracts the set of allele names.

homozygote Creates a logical vector indicating
whether both alleles of each observation are the
same.

heterozygote Creates a logical vector indicating
whether the alleles of each observation differ.

carrier Creates a logical vector indicating whether
the specified alleles are present.

allele.count Returns the number of copies of the
specified alleles carried by each observation.

getlocus Extracts locus, gene, or marker informa-
tion.

makeGenotypes Convert appropriate columns in a
dataframe to genotypes or haplotypes

write.pop.file Creates a ’pop’ data file, as used by
the GenePop (http://wbiomed.curtin.edu.
au/genepop/) and LinkDos (http://wbiomed.
curtin.edu.au/genepop/linkdos.html) soft-
are packages.

write.pedigree.file Creates a ’pedigree’ data file, as
used by the QTDT software package (http:
//www.sph.umich.edu/statgen/abecasis/

QTDT/).

write.marker.file Creates a ’marker’ data file, as
used by the QTDT software package (http:
//www.sph.umich.edu/statgen/abecasis/

QTDT/).

The genetics package provides four functions re-
lated to Hardy-Weinberg Equilibrium:

diseq Estimate or compute confidence interval for
the single marker Hardy-Weinberg disequilib-
rium

HWE.chisq Performs a Chi-square test for Hardy-
Weinberg equilibrium

HWE.exact Performs a Fisher’s exact test of Hardy-
Weinberg equilibrium for two-allele markers.

HWE.test Computes estimates and bootstrap confi-
dence intervals, as well as testing for Hardy-
Weinberg equilibrium.

as well as three related to linkage disequilibrium
(LD):

LD Compute pairwise linkage disequilibrium be-
tween genetic markers.

LDtable Generate a graphical table showing the LD
estimate, number of observations and p-value
for each marker combination, color coded by
significance.

LDplot Plot linkage disequilibrium as a function of
marker location.

and one function for sample size calculation:

gregorius Probability of Observing All Alleles with
a Given Frequency in a Sample of a Specified
Size.

The algorithms used in the HWE and LD functions
are beyond the scope of this article, but details are
provided in the help pages or the corresponding
package documentation.

Example

Here is a partial session using tools from the geno-
type package to examine the features of 3 simulated
markers and thier relationships with a continuous
outcome:

> library(genetics)

[...]

> # Load the data from a CSV file

> data <- read.csv("example_data.csv")

>

> # Convert genotype columns to genotype variables

> data <- makeGenotypes(data)

>

> ## Annotate the genes

> marker(data$a1691g) <-

+ marker(name="A1691G",

+ type="SNP",

+ locus.name="MBP2",

+ chromosome=9,

+ arm="q",

+ index.start=35,

+ bp.start=1691,

+ relative.to="intron 1")

3

http://wbiomed.curtin.edu.au/genepop/
http://wbiomed.curtin.edu.au/genepop/
http://wbiomed.curtin.edu.au/genepop/linkdos.html
http://wbiomed.curtin.edu.au/genepop/linkdos.html
http://www.sph.umich.edu/statgen/abecasis/QTDT/
http://www.sph.umich.edu/statgen/abecasis/QTDT/
http://www.sph.umich.edu/statgen/abecasis/QTDT/
http://www.sph.umich.edu/statgen/abecasis/QTDT/
http://www.sph.umich.edu/statgen/abecasis/QTDT/
http://www.sph.umich.edu/statgen/abecasis/QTDT/

EXAMPLE THE GENETICS PACKAGE

[...]

>

> # Look at some of the data

> data[1:5,]

PID DELTA.BMI c104t a1691g c2249t

1 1127409 0.62 C/C G/G T/T

2 246311 1.31 C/C A/A T/T

3 295185 0.15 C/C G/G T/T

4 34301 0.72 C/T A/A T/T

5 96890 0.37 C/C A/A T/T

>

> # Get allele information for c104t

> summary(data$c104t)

Marker: MBP2:C-104T (9q35:-104) Type: SNP

Allele Frequency:

Count Proportion

C 137 0.68

T 63 0.32

Genotype Frequency:

Count Proportion

C/C 59 0.59

C/T 19 0.19

T/T 22 0.22

>

>

> # Check Hardy-Weinberg Equilibrium

> HWE.test(data$c104t)

Test for Hardy-Weinberg-Equilibrium

Call:

HWE.test.genotype(x = data$c104t)

Raw Disequlibrium for each allele pair (D)

C T

C 0.12

T 0.12

Scaled Disequlibrium for each allele pair (D’)

C T

C 0.56

T 0.56

Correlation coefficient for each allele pair (r)

C T

C 1.00 -0.56

T -0.56 1.00

Overall Values

Value

D 0.12

D’ 0.56

r -0.56

Confidence intervals computed via bootstrap

using 1000 samples

Observed 95% CI NA’s

Overall D 0.121 (0.073, 0.159) 0

Overall D’ 0.560 (0.373, 0.714) 0

Overall r -0.560 (-0.714, -0.373) 0

Contains Zero?

Overall D *NO*

Overall D’ *NO*

Overall r *NO*

Significance Test:

Exact Test for Hardy-Weinberg Equilibrium

data: data$c104t

N11 = 59, N12 = 19, N22 = 22, N1 = 137, N2

= 63, p-value = 3.463e-08

>

> # Check Linkage Disequilibrium

> ld <- LD(data)

Warning message:

Non-genotype variables or genotype variables with

more or less than two alleles detected. These

variables will be omitted: PID, DELTA.BMI

in: LD.data.frame(data)

> ld # text display

Pairwise LD

a1691g c2249t

c104t D -0.01 -0.03

c104t D’ 0.05 1.00

c104t Corr. -0.03 -0.21

c104t X^2 0.16 8.51

c104t P-value 0.69 0.0035

c104t n 100 100

a1691g D -0.01

a1691g D’ 0.31

a1691g Corr. -0.08

a1691g X^2 1.30

a1691g P-value 0.25

a1691g n 100

>

> LDtable(ld) # graphical display

4

CONCLUSION THE GENETICS PACKAGE

Marker 2

M
ar

ke
r

1

a1691g c2249t

a1
69

1g
c1

04
t

−0.00652

−0.02671

−0.01111

0.0487

0.9978

0.3076

−0.0284

−0.2062

−0.0806

0.161

8.505

1.299

0.68780 0.00354

0.25439

100 100

100

D
D'
r

X^2
P−value

n

Linkage Disequilibrium

> # fit a model

> summary(lm(DELTA.BMI ~

+ homozygote(c104t,’C’) +

+ allele.count(a1691g, ’G’) +

+ c2249t, data=data))

Call:

lm(formula = DELTA.BMI ~ homozygote(c104t, "C") +

allele.count(a1691g, "G") + c2249t,

data = data)

Residuals:

Min 1Q Median 3Q Max

-2.9818 -0.5917 -0.0303 0.6666 2.7101

Coefficients:

Estimate Std. Error

(Intercept) -0.1807 0.5996

homozygote(c104t, "C")TRUE 1.0203 0.2290

allele.count(a1691g, "G") -0.0905 0.1175

c2249tT/C 0.4291 0.6873

c2249tT/T 0.3476 0.5848

t value Pr(>|t|)

(Intercept) -0.30 0.76

homozygote(c104t, "C")TRUE 4.46 2.3e-05 ***

allele.count(a1691g, "G") -0.77 0.44

c2249tT/C 0.62 0.53

c2249tT/T 0.59 0.55

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01

‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.1 on 95 degrees of

freedom

Multiple R-Squared: 0.176,

Adjusted R-squared: 0.141

F-statistic: 5.06 on 4 and 95 DF,

p-value: 0.000969

Conclusion

The current release of the genetics package, 1.0.0,
provides a complete set of classes and methods for
handling single-locus genetic data as well as func-
tions for computing and testing for departure from
Hardy-Weinberg and linkage disequilibrium using a
variety of estimators.

As noted earlier, Friedrich Leisch and I collabo-
rated on the design of the data structures. While
I was primarily motivated by the desire to provide
a natural way to include single-locus genetic vari-
ables in statistical models, Fritz also wanted to sup-
port multiple genetic changes spread across one or
more genes. As of the current version, my goal has
largely been realized, but more work is necessary to
fully support Fritz’s goal.

In the future I intend to add functions to perform
haplotype imputation and generate standard genet-
ics plots.

I would like to thank Freidrich Leisch for his
assistance in designing the genotype data struc-
ture, David Duffy for contributing the code for the
gregarious and HWE.exact functions, and Michael
Man for error reports and helpful discussion.

I welcome comments and contributions.

Gregory R. Warnes
greg@warnes.net

5

	The genetics package
	Introduction
	The genetics package
	Implementation
	Example
	Conclusion

