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The mombf package implements Bayesian model selection (BMS) and
model averaging (BMA) for linear and generalized linear models. It also
implements model search with information criteria like the AIC, BIC, EBIC,
or other general information criteria. Other implemented models in the
Bayesian framework include regression (linear, asymmetric linear, median
and quantile regression, accelerated failure times) and mixture models. This
is also the main package implementing non-local priors (NLP) but some
other priors are also implemented, e.g. Zellner's prior in regression, Normal-
IWishart priors for mixtures. NLPs are brie�y reviewed here, see Johnson
and Rossell (2010, 2012) for their model selection properties and Rossell and
Telesca (2017) for parameter estimation and posterior sampling. The main
mombf features are:

� Density, cumulative density, quantiles and random numbers for NLPs

� BMS (Section 2, Johnson and Rossell (2010, 2012)) and BMA (Section
5, Rossell and Telesca (2017)) in linear regression.

� Exact BMS and BMA under orthogonal and block-diagonal linear re-
gression (Section 6, Papaspiliopoulos and Rossell (2016)).

� BMS and BMA for certain generalized linear models (Section ??, John-
son and Rossell (2012); Rossell et al. (2013))

� BMS in linear regression with non-normal residuals (Rossell and Ru-
bio, 2018). Particular cases are Bayesian versions of asymmetric least
squares, median and quantile regression.

� BMS for Accelerated Failure Time models.

� BMS for mixture models (Section 7, currently only Normal mixtures)
(Fúquene et al., 2018).
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This manual introduces basic notions underlying NLPs and the main R
functions implementing model selection and averaging. Most of these are
internally implemented in C++ so, while they are not optimal in any sense
they are designed to be minimally scalable to large sample sizes n and high
dimensions (large p).

1 Quick start

The main BMS functions are modelSelection and bestBIC and its com-
panions (bestEBIC etc.). BMA is also available for some models, mainly
linear regression and Normal mixtures. Details are in subsequent sections,
here we illustrate quickly how to get information criteria for all models (or
those obtained in an MCMC model exploration, there are too many mod-
els to enumerate), posterior model probabilities, marginal posterior inclusion
probabilities, BMA point estimates and posterior intervals for the regression
coe�cients and predicted outcomes.

> library(mombf)

> set.seed(1234)

> x <- matrix(rnorm(100*3),nrow=100,ncol=3)

> theta <- matrix(c(1,1,0),ncol=1)

> y <- x %*% theta + rnorm(100)

> #BIC for all models

> b= bestBIC(y ~ x[,1]+x[,2]+x[,3]) #recall: lower BIC is better

Enumerating models...

Computing posterior probabilities................ Done.

> b

icfit object

Model with best BIC : x[, 1] x[, 2]

Use summary(), coef() and predict() to get inference for the top model

Use coef(object$msfit) and predict(object$msfit) to get BMA estimates and predictions

> summary(b)

Call:

glm(formula = f, family = family2glm(ms$family), data = data)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.00349 -0.57831 0.06072 0.66821 2.18190

Coefficients:



Estimate Std. Error t value Pr(>|t|)

`x[, 1]` 1.1505 0.1022 11.26 <2e-16 ***

`x[, 2]` 1.1509 0.1006 11.44 <2e-16 ***

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for gaussian family taken to be 1.06776)

Null deviance: 371.43 on 100 degrees of freedom

Residual deviance: 104.64 on 98 degrees of freedom

AIC: 294.32

Number of Fisher Scoring iterations: 2

> coef(b)

`x[, 1]` `x[, 2]`

1.150549 1.150920

> #Default MOM prior on parameters

> priorCoef <- momprior(taustd=1)

> #Beta-Binomial prior for model space

> priorDelta <- modelbbprior(1,1)

> #Model selection

> fit1 <- modelSelection(y ~ x[,1]+x[,2]+x[,3], priorCoef=priorCoef, priorDelta=priorDelta)

Enumerating models...

Computing posterior probabilities................ Done.

> #Posterior model probabilities

> postProb(fit1)

modelid family pp

7 2,3 normal 9.845428e-01

8 2,3,4 normal 8.090989e-03

15 1,2,3 normal 7.203173e-03

16 1,2,3,4 normal 1.630761e-04

3 3 normal 3.424188e-17

5 2 normal 7.726180e-18

4 3,4 normal 2.419357e-19

11 1,3 normal 1.113025e-19

6 2,4 normal 6.333567e-20

13 1,2 normal 2.511379e-20

12 1,3,4 normal 1.770463e-21

14 1,2,4 normal 4.634764e-22

1 normal 2.476975e-25

2 4 normal 1.421272e-27

9 1 normal 3.018082e-28

10 1,4 normal 4.620530e-30

> #BMA estimates, 95% intervals, marginal post prob

> coef(fit1)



estimate 2.5% 97.5% margpp

(Intercept) 0.007082034 -0.02658464 0.04089499 0.007366249

x[, 1] 1.133309621 0.93331088 1.33480178 1.000000000

x[, 2] 1.134404673 0.93919629 1.33501531 1.000000000

x[, 3] 0.000366013 0.00000000 0.00000000 0.008254065

phi 1.103715115 0.84213596 1.44604848 1.000000000

> #BMA predictions for y, 95% intervals

> ypred= predict(fit1)

> head(ypred)

mean 2.5% 97.5%

1 -0.8928148 -1.1160111 -0.66885457

2 -0.2161415 -0.3514485 -0.08236455

3 1.3134407 1.0653356 1.56205993

4 -3.2261301 -3.6793885 -2.77249364

5 -0.4427614 -0.6498843 -0.23853199

6 0.7716784 0.6332783 0.90914325

> cor(y, ypred[,1])

[,1]

[1,] 0.8468441

We can repeat the exercise for binary outcomes, using logistic regression.
We just set the argument family='binomial'. The top model is still the
correct one.

�quickstart2� ybin= y>0 priorCoef <- momprior(taustd=1)

�t2 <- modelSelection(ybin x[,1]+x[,2]+x[,3], priorCoef=priorCoef, priorDelta=priorDelta,

family='binomial') postProb(�t2)

Let's go back to the linear regression. We can add non-linear e�ects,
modeled via cubic splines, with the argument smooth (the default number of
knots is 9, resulting in 5 columns in the design matrix, this can be changed by
nknots). The output below shows that the top model continues to (correctly)
include only the linear e�ects, and has very large posterior probability. The
second top model includes 5 extra columns corresponding to the spline basis
for the e�ect of x2.

�quickstart2� �t3 <- modelSelection(y x[,1]+x[,2]+x[,3], smooth= x[,1]+x[,2]+x[,3],

priorCoef=priorCoef, priorDelta=priorDelta) head(postProb(�t3))

2 Basics on non-local priors

The basic motivation for NLPs is what one may denominate the model sepa-
ration principle. The idea is quite simple, suppose we are considering a (pos-
sibly in�nite) set of probability models M1,M2, . . . for an observed dataset



y, if these models overlap then it becomes hard to tell which of them gen-
erated y. The notion is important because the vast majority of applications
consider nested models: if say M1 is nested within M2 then these two models
are not well-separated. Intuitively, if y are truly generated from M1 then
M1 will receive high integrated likelihood however that for M2 will also be
relatively large given that M1 is contained in M2. We remark that the no-
tion remains valid when none of the posed models are true, in that case M1

is the model of smallest dimension minimizing Kullback-Leibler divergence
to the data-generating distribution of y. A usual mantra is that perform-
ing Bayesian model selection via posterior model probabilities (equivalently,
Bayes factors) automatically incorporates Occam's razor, e.g. M1 will even-
tually be favoured over M2 as the sample size n → ∞. This statement is
correct but can be misleading: there is no guarantee that parsimony is en-
forced to an adequate extent, indeed it turns out to be insu�cient in many
practical situations even for small p. This issue is exacerbated for large p to
the extent that one may even loose consistency of posterior model probabili-
ties (Johnson and Rossell, 2012) unless su�ciently strong sparsity penalities
are introduced into the model space prior. See (Rossell, 2018) for theoretical
results on what priors achieve model selection consistency and a discussion
on how set priors that balance sparsity versus power to detect truly active
coe�cients.

Intuitively, NLPs induce a probabilistic separation between the consid-
ered models which, aside from being philosophically appealing (to us), one
can show mathematically leads to stronger parsimony. When we compare
two nested models and the smaller one is true the resulting BFs converge
faster to 0 than when using conventional priors and, when the larger model
is true, they present the usual exponential convergence rates in standard pro-
cedures. That is, the extra parsimony induced by NLPs is data-dependent, as
opposed to inducing sparsity by formulating sparse model prior probabilities
or increasingly vague prior distributions on model-speci�c parameters.

To �x ideas we �rst give the general de�nition of NLPs and then proceed
to show some examples. Let y ∈ Y be the observed data with density p(y | θ)
where θ ∈ Θ is the (possibly in�nite-dimensional) parameter. Suppose we
are interested in comparing a series of models M1,M2, . . . with corresponding
parameter spaces Θk ⊆ Θ such that Θj ∩Θk have zero Lebesgue measure for
j ̸= k and, for precision, there exists an l such that Θl = Θj ∩Θk so that the
whole parameter space is covered.

De�nition 1 A prior density p(θ | Mk) is a non-local prior under Mk i�
lim p(θ | Mk) = 0 as θ → θ0 for any θ0 ∈ Θj ⊂ Θk.

In words, p(θ | Mk) vanishes as θ approaches any value that would be



consistent with a submodel Mj. Any prior not satisfying De�nition 1 is
a local prior (LP). As a canonical example, suppose that y = (y1, . . . , yn)
with independent yi ∼ N(θ, ϕ) and known ϕ, and that we entertain the two
following models:

M1 : θ = 0

M2 : θ ̸= 0

Under M1 all parameter values are fully speci�ed, the question is thus re-
duced to setting p(θ | M2). Ideally this prior should re�ect one's knowledge
or beliefs about likely values of θ, conditionally on the fact that θ ̸= 0. The
left panel in Figure 1 shows two LPs, speci�cally the unit information prior
θ ∼ N(0, 1) and a heavy-tailed alternative θ ∼ Cachy(0, 1) as recommended
by Je�reys. These assign θ = 0 as their most likely value a priori, even
though θ = 0 is not even a possible value under M2, which we view as philo-
sophically unappealing. The right panel shows three NLPs (called MOM,
eMOM and iMOM, introduced below). Their common de�ning feature is
their vanishing as θ → 0, thus probabilistically separating M2 from M1 or,
to borrow terminology from the stochastic processes literature, inducing a
repulsive force between M1 and M2. As illustrated in the �gure beyond this
de�ning feature the user is free to choose any other desired property, e.g.
the speed at which p(θ | M2) vanishes at the origin, prior dispersion, tail
thickness or in multivariate cases the prior dependence structure.

Once the NLP has been speci�ed inference proceeds as usual, e.g. poste-
rior model probabilities are

p(Mk | y) =
p(y | Mk)p(Mk)∑
j p(y | Mj)p(Mj)

(1)

where p(y | Mk) =
∫
p(y | θ)dP (θ | Mk) is the integrated likelihood underMk

and p(Mk) the prior model probability. Similarly, inference on parameters
can be carried out conditional on any chosen model via p(θ | Mk, y) ∝ p(y |
θ)p(θ | Mk) or via Bayesian model averaging p(θ | y) =

∑
k p(θ | Mk, y)p(Mk |

y). A useful construction (Rossell and Telesca, 2017) is that any NLP can
be expressed as

p(θ | Mk) =
p(θ | Mk)

pL(θ | Mk)
pL(θ | Mk) = dk(θ)p

L(θ | Mk), (2)

where pL(θ | Mk) is a LP and dk(θ) = p(θ | Mk)/p
L(θ | Mk) a penalty term.

Simple algebra shows that

p(y | Mk) = pL(y | Mk)E
L(dk(θ) | Mk, y), (3)



where EL(dk(θ) | Mk, y) =
∫
dk(θ)dP

L(θ | Mk, y) is the posterior mean of
the penalty term under the underlying LP. That is, the integrated likelihood
under a NLP is equal to that under a LP times the posterior expected penalty
under that LP. The construction allows to use NLPs in any situation where
LPs are already implemented, all one needs is pL(y | Mk) or an estimate
thereof and posterior samples under pL(θ | y,Mk). We remark that most
functions in mombf do not rely on construction (2) but instead work directly
with NLPs, as this is typically more e�cient computationally. For instance,
there are closed-form expressions and Laplace approximations to p(y | Mk)
(Johnson and Rossell, 2012), and one may sample from p(θ | Mk, y) via
simple latent truncation representations (Rossell and Telesca, 2017).

Up to this point we kept the discussion as generic as possible, Section 3
illustrates NLPs for variable selection and mixture models. For extensions to
other settings see Consonni and La Rocca (2010) for directed acyclic graphs
under an objective Bayes framework, Chekouo et al. (2015) for gene regula-
tory networks, Collazo et al. (2016) for chain event graphs, or ? for �nite
mixture models. We also remark that this manual focuses mainly on practical
aspects. Readers interested in theoretical NLP properties should see John-
son and Rossell (2010) and Rossell and Telesca (2017) for an asymptotic
characterization under asymptotically Normal models with �xed dim(Θ), es-
sentially showing that EL(dk(θ) | Mk, y) leads to stronger parsimony, ? for
similar results in mixture models, and Rossell and Rubio (work in progress)
for robust linear regression with non-normal residuals where data may be
generated by a model other than those under consideration (M-complete).
Regarding high-dimensional results Johnson and Rossell (2012) prove that

under certain linear regression models p(Mt | y)
P−→ 1 as n → ∞ where Mt is

the data-generating truth when using NLPs and p = O(nα) with α < 1. The

authors also proved the conceptually stronger result that p(Mt | y) P−→ 0
under LPs, which implies that NLPs are a necessary condition for strong
consistency in high dimensions (unless extra parsimony is induced via p(Mk)
or increasingly di�use p(θ | Mk) as n grows, but this may come at a loss
of signal detection power). Shin et al. (2015) extend the consistency result
to ultra-high linear regression with p = O(en

α
) with α < 1 under certain

speci�c NLPs.



3 Some default non-local priors

3.1 Regression models

De�nition 1 in principle allows one to de�ne NLPs in any manner that is
convenient, as long as p(θ | Mk) vanishes for any value θ0 that would be con-
sistent with a submodel of Mk. mombf implements some simple priors that
lead to convenient implementation and interpretation while o�ering a reason-
able modelling �exibility, but naturally we encourage everyone to come up
with more sophisticated alternatives as warranted by their speci�c problem
at hand. It is important to distinguish between two main strategies to de-
�ne NLPs, namely imposing additive vs. product penalties. Additive NLPs
were historically the �rst to be introduced (Johnson and Rossell, 2010) and
primarily aimed to compare only two models, whereas product NLPs were
introduced later on (Johnson and Rossell, 2012) for the more general setting
where considers multiple models. Throughout let θ = (θ1, . . . , θp) ∈ Rp be
a vector of regression coe�cients and ϕ a dispersion parameter such as the
residual variance in linear regression.

Suppose �rst that we wish to test M1 : θ = (0, . . . , 0) versus M2 : θ ̸=
(0, . . . , 0). An additive NLP takes the form p(θ | Mk) = d(q(θ))pL(θ | Mk),
where q(θ) = θ′V θ for some positive-de�nite p × p matrix V , the penalty
d(q(θ)) = 0 if and only if q(θ) = 0 and pL(θ | Mk) is an arbitrary LP with
the only restriction that p(θ | Mk) is proper. For instance,

pM(θ | ϕ,Mk) =
θ′V θ

pτϕ
N(θ; 0, τϕV −1)

pE(θ | ϕ,Mk) = cEe
− τϕ

θ′V θN(θ; 0, τϕV −1)

pI(θ | ϕ,Mk) =
Γ(p/2)

|V | 12 (τϕ) p
2Γ(ν/2)πp/2

(θ′V θ)−
ν+p
2 e−

τϕ
θ′V θ (4)

are the so-called moment (MOM), exponential moment (eMOM) and inverse
moment (iMOM) priors, respectively, and cE is the moment generating func-
tion of an inverse chi-square random variable evaluated at -1. By default
V = I, but naturally other choices are possible.

Suppose now that we wish to consider all 2p models arising from setting
individual elements in θ to 0. Product NLPs are akin to (4) but now the



penalty term d(θ) is a product of univariate penalties.

pM(θ | ϕ,Mk) =
∏
i∈Mk

θ2i
τϕk

N(θi; 0, τϕk)

pE(θ | ϕ,Mk) =
∏
i∈Mk

exp

{√
2− τϕk

θ2i

}
N(θi; 0, τϕk),

pI(θ | ϕ,Mk) =
∏
i∈Mk

(τϕk)
1
2

√
πθ2i

exp

{
−τϕk

θ2i

}
. (5)

This implies that d(θ) → 0 whenever any individual θi → 0, in contrast with
(4) which requires the whole vector θ = 0. More generally, one can envision
settings requiring a combination of additive and product penalties. For in-
stance in regression models for continuous predictors product penalties are
generally appropriate, but for categorical predictors one would like to either
include or exclude all the corresponding coe�cients simultaneously, in this
sense additive NLPs resemble group-lasso type penalties and have the nice
property of being invariant to the chosen reference category. At this mo-
ment mombf primarily implements product NLPs and in some cases additive
NLPs, we plan to incorporate combined product and addivite penalties in
the future.

Figure 1 displays the prior densities in the univariate case, where (4) and
(5) are equivalent. pM induces a quadratic penalty as θ → 0, and has the
computational advantage that for posterior inference the penalty can often
be integrated in closed-form, as it simply requires second order moments.
pE and pI vanish exponentially fast as θ → 0, inducing stronger parsimony
in the Bayes factors than pM . This exponential term converges to 1 as q(θ)
increases, thus the eMOM has Normal tails and the iMOM can be easily
checked to have tails proportional to those of a Cauchy. Thick tails can
be interesting to address the so-called information paradox, namely that the
posterior probability of the alternative model converges to 1 as the residual
sum of squares from regressing y on a series of covariates converges to 0
(Liang et al., 2008; Johnson and Rossell, 2010), although in our experience
this is often not an issue unless n is extremely small. The priors above can
be extended to include nuisance regression parameters that are common to
all models, and also to consider higher powers q(θ)r for some r > 1, but for
simplicity we restrict attention to (4).

modelSelection automatically sets default prior distributions that from
our experience are sensible in most applications. If you are happy with these
defaults are not interested in how they were obtained you can skip to the
next section. Of course, we encourage you to think what prior settings are



appropriate for your problem at hand. In linear regression by default we set
τ so that P (|θ/

√
ϕ| > 0.2) = 0.99, that is the signal-to-noise ratio |θj|/

√
ϕ

is a priori expected to be > 0.2. The reason for choosing the 0.2 threshold
is that in many applications smaller signals are not practically relevant (e.g.
the implied contribution to the R2 coe�cient is small). Function priorp2g

�nds τ for any given threshold. Other useful functions are pmom, pemom and
pimom for distribution functions, and qmom, qemom and qimom for quantiles.
For instance, under a MOM prior τ = 0.348 gives P (|θ/

√
ϕ| > 0.2) = 0.99,

> priorp2g(.01, q=.2, prior='normalMom')

[1] 0.3483356

> 2*pmom(-.2, tau=0.3483356)

[1] 0.99

For Accelerated Failure Time models eθj is the increase in median survival
time for a unit standard deviation increase in xj (for continuous variables) or
between two categories (for discrete variables). A small change, say < 15%
(i.e. exp(|θj|) < 1.15), is often viewed as practically irrelevant. By default
we set τ such that

P (|βj| > log(1.15)) = 0.99. (6)

The probability in (6) is under the marginal priors πM(θj), πE(θj) and πI(θj)
which depend on τ and on (aϕ, bϕ). By default we set aϕ = bϕ = 3, as then the
tails of πM(θj) and πE(θj) are proportional to a t distribution with 3degrees
of freedom and the marginal prior variance is �nite. This gives τ = 0.192 for
πM and gE = 0.091 for πE.

Prior densities can be evaluated as shown below.

> thseq <- seq(-3,3,length=1000)

> plot(thseq,dnorm(thseq),type='l',ylab='Prior density')

> lines(thseq,dt(thseq,df=1),lty=2,col=2)

> legend('topright',c('Normal','Cauchy'),lty=1:2,col=1:2)

> thseq <- seq(-3,3,length=1000)

> plot(thseq,dmom(thseq,tau=.348),type='l',ylab='Prior density',ylim=c(0,1.2))

> lines(thseq,demom(thseq,tau=.119),lty=2,col=2)

> lines(thseq,dimom(thseq,tau=.133),lty=3,col=4)

> legend('topright',c('MOM','eMOM','iMOM'),lty=1:3,col=c(1,2,4))

Another way to elicit τ is to mimic the Unit Information Prior and set
the prior variance to 1, for the MOM prior this leads to the same τ as the
earlier rule P (|θ/

√
ϕ| > 0.2) = 0.99.
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Figure 1: Priors for θ under a model M2 : θ ̸= 0. Left: local priors. Right:
non-local priors

3.2 Mixture models

Let y = (y1, . . . , yn) be the observed data, where n is the sample size. Denote
by Mk a mixture model with k components and density

p(yi | ϑk,Mk) =
k∑

j=1

ηjp(yi | θj), (7)

where η = (η1, . . . , ηk) are the mixture weights, θ = (θ1, . . . , θk) component-
speci�c parameters, and ϑk = (η, θ) denotes the whole parameter vector. For
instance, for Normal mixtures θj = (µj,Σj), where µj is the mean and Σj the
covariance matrix. A standard prior choice for such location-scale mixtures
is the Normal-IW-Dir prior

p̃(ϑk | Mk) =

[
k∏

j=1

N(µj;µ0, gΣj)IW(Σj; ν0, S0)

]
Dir(η; q̃) (8)

for some given prior parameters (µ0, g, ν0, S0, q̃). This choice de�nes a local
prior, which we view as unappealing in this setting: it assigns positive prior
density to two components having the same parameters and, if q̃ ≤ 1, also
to having some mixture weights ηj = 0.

A non-local prior on ϑk must penalize parameter values that would make
the k-component mixture equivalent to a mixture with < k components. As



formalized in Fúquene et al. (2018) for any generically identi�able mixture
this is achieved by penalizing zero weights (ηj = 0) and any two components
having the same parameter values (i.e. θj = θl for j ̸= l). Speci�cally, for
location scale mixtures where θj = (µj,Σj) we consider the MOM-IW-Dir
prior p(ϑk | Mk) =

C−1
k

[∏
j<l

(µj − µl)
′A−1(µj − µl)

][
k∏

j=1

N(µj;µ0, gA)IW(Σj; ν0, S0)

]
Dir(η; q)

(9)

where Ck is the prior normalization constant (implemented in mombf), A
−1 =

1
k

∑k
j=1Σ

−1
j the average precision matrix, (µ0, g, ν0, S0) are given prior param-

eters (mombf implements defaults for all of them) and one must have q > 1
for (9) to de�ne a non-local prior.

Computing Bayes factors and posterior model probabilities turns out to
be surprisingly easy due to two results by Fúquene et al. (2018). First, the
integrated likelihood under a MOM-IW-Dir prior

p(y | Mk) = p̃(y | Mk)

∫
dk(ϑk)p̃(ϑk | y,Mk),

where p̃(y | Mk) is the integrated likelihood associated to the Normal-IW-Dir
prior, p̃(ϑk | y,Mk) ∝ p(y | ϑk,Mk)p̃(ϑk | Mk) the corresponding posterior
and dk(ϑk) =

C−1
k

[∏
j<l

(µj − µl)
′A−1(µj − µl)

][
k∏

j=1

N(µj;µ0, gA)IW(Σj; ν0, S0)

]
Dir(η; q)

Dir(η; q̃)

(10)

is a penalty term straightforward to estimate provided one has access to
posterior samples from p̃(ϑk | y,Mk).

The second result is the following simple connection between Bayes factors
and empty-component posterior probabilities:

p̃(y | Mk−1)

p̃(y | Mk)
=

1

kak

k∑
j=1

P (nj = 0 | y,Mk)

where ak = Γ(kq)Γ(n+kq− q)/(Γ(kq− q)Γ(n+kq)) and nj is the number of
individuals allocated to cluster j. The right-hand side requires the average
marginal posterior probability of one cluster being empty P (nj = 0 | y,Mk).



Given T posterior samples ϑ
(1)
k , . . . , ϑ

(T )
k this can be estimated in a Rao-

Blackwellized fashion as P̂ (nj = 0 | y,Mk) =

1

T

T∑
t=1

P (nj = 0 | y, ϑ(t)
k ,Mk) =

1

T

T∑
t=1

n∏
i=1

P (zi ̸= j | y, ϑ(t)
k ,Mk),

where zi ∈ {1, . . . , k} for i = 1, . . . , n are latent cluster indicators. mombf
implements this computational strategy, see Section 7 for examples.

We remark that P̂ (nj = 0 | y,Mk) only requires cluster allocation prob-

abilities P (zi ̸= j | y, ϑ
(t)
k ,Mk). The latter are readily available as a by-

product of any standard MCMC algorithm and for any parametric mix-
ture model. That is relative to running a standard MCMC one can obtain
P̂ (nj = 0 | y,Mk) at very little cost, further the estimator is readily appli-
cable to non-conjugate models (in constrast to other estimators, see Marin
(2008)).

4 Variable selection for generalized additive mod-

els

The main function for model selection is modelSelection, which returns
model posterior probabilities under linear regression allowing for Normal,
asymmetric Normal, Laplace and asymmetric Laplace residuals, as well as
some generalized linear models such as logistic and Poisson regression (by set-
ting family=='binomial' and family=='poisson', respectively). In fact,
it is also possible to specify non-linear e�ects by the argument smooth to
modelSelection, so generalized additive models are also implemented. If
one wishes to go further and consider non-additive models, it is possible to
add non-linear interaction terms to the design matrix, and specify group
constraints on those parameters via the argument groups.

A second interesting function is nlpMarginal, which computes the inte-
grated likelihood for a given model under the same settings as modelSelection.
We illustrate their use with a simple simulated dataset. Let us generate 100
observations for the response variable and 3 covariates, where the true re-
gression coe�cient for the third covariate is 0.

> set.seed(2011*01*18)

> x <- matrix(rnorm(100*3),nrow=100,ncol=3)

> theta <- matrix(c(1,1,0),ncol=1)

> y <- x %*% theta + rnorm(100)

To start with we assume Normal residuals (the default). We need to
specify the prior distribution for the regression coe�cients, the model space



and the residual variance. We specify a product iMOM prior on the co-
e�cients with prior dispersion tau=.133, which targets the detection of
standardized e�ect sizes above 0.2. Regarding the model space we use a
Beta-binomial(1,1) prior (Scott and Berger, 2010). Finally, for the residual
variance we set a minimally informative inverse gamma prior. For de�n-
ing other prior distributions see the help for msPriorSpec e.g. momprior,
emomprior and zellnerprior de�ne MOM, eMOM and Zellner priors, and
modelunifprior, modelcomplexprior set uniform and complexity priors on
the model space (the latter as de�ned in Castillo et al. (2015)).

> priorCoef <- imomprior(tau=.133)

> priorDelta <- modelbbprior(alpha.p=1,beta.p=1)

> priorVar <- igprior(.01,.01)

modelSelection enumerates all models when its argument enumerate

is set to TRUE, otherwise it uses a Gibbs sampling scheme to explore the
model space (saved in the slot postSample). It returns the visited model
with highest posterior probability and the marginal posterior inclusion prob-
abilities for each covariate (when using Gibbs sampling these are estimated
via Rao-Blackwellization to improve accuracy).

> fit1 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE,

+ priorCoef=priorCoef, priorDelta=priorDelta, priorVar=priorVar)

Enumerating models...

Computing posterior probabilities........ Done.

> fit1$postMode

x1 x2 x3

1 1 0

> fit1$margpp

x1 x2 x3

1.00000000 1.00000000 0.04011662

> postProb(fit1)

modelid family pp

7 1,2 normal 9.598834e-01

8 1,2,3 normal 4.011662e-02

5 1 normal 2.748191e-13

3 2 normal 9.543343e-14

6 1,3 normal 1.172358e-15

4 2,3 normal 6.549246e-16

1 normal 8.609828e-20

2 3 normal 2.748829e-22



> fit2 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE,

+ priorCoef=priorCoef, priorDelta=priorDelta, priorVar=priorVar,

+ enumerate=FALSE, niter=1000)

Greedy searching posterior mode... Done.

Running Gibbs sampler........... Done.

> fit2$postMode

x1 x2 x3

1 1 0

> fit2$margpp

x1 x2 x3

1.00000000 1.00000000 0.04011662

> postProb(fit2,method='norm')

modelid family pp

1 1,2 normal 0.95988338

2 1,2,3 normal 0.04011662

> postProb(fit2,method='exact')

modelid family pp

1 1,2 normal 0.96

2 1,2,3 normal 0.04

The highest posterior probability model is the simulation truth, indicating
that covariates 1 and 2 should be included and covariate 3 should be excluded.
fit1 was obtained by enumerating the 23 = 8 possible models, whereas
fit2 ran 1,000 Gibbs iterations, delivering very similar results. postProb

estimates posterior probabilities by renormalizing the probability of each
model conditional to the set of visited models when method='norm' (the
default), otherwise it uses the proportion of Gibbs iterations spent on each
model.

Below we run modelSelection again but now using Zellner's prior, with
prior dispersion set to obtain the so-called Unit Information Prior. The pos-
terior mode is still the data-generating truth, albeit its posterior probability
has decreased substantially. This illustrates the core issue with NLPs: they
tend to concentrate more posterior probability around the true model (or that
closest in the Kullback-Leibler sense). This di�erence in behaviour relative to
LPs becomes ampli�ed as the number of considered models becomes larger,
which may result in the latter giving a posterior probability that converges
to 0 for the true model (Johnson and Rossell, 2012).



> priorCoef <- zellnerprior(tau=nrow(x))

> fit3 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE, niter=10^2,

+ priorCoef=priorCoef, priorDelta=priorDelta, priorVar=priorVar,

+ method='Laplace')

Enumerating models...

Computing posterior probabilities........ Done.

> postProb(fit3)

modelid family pp

7 1,2 normal 7.214937e-01

8 1,2,3 normal 2.785063e-01

5 1 normal 1.079508e-13

3 2 normal 3.565310e-14

6 1,3 normal 1.096444e-14

4 2,3 normal 3.827255e-15

1 normal 3.640151e-20

2 3 normal 1.394484e-21

Finally, we illustrate how to relax the assumption that residuals are Nor-
mally distributed. We may set the argument family to 'twopiecenormal',
'laplace' or 'twopiecelaplace' to allow for asymmetry (for two-piece
Normal and two-piece Laplace) or thicker-than-normal tails (for Laplace and
asymmetric Laplace). For instance, the maximum likelihood estimator under
Laplace residuals is equivalent to median regression and under asymmetric
Laplace residuals to quantile regression, thus these options can be interpreted
as robust alternatives to Normal residuals. A nice feature is that regression
coe�cients can still be interpreted in the usual manner. These families add
�exibility while maintaining analytical and computational tractability, e.g.
they lead to convex optimization and e�cient approximations to marginal
likelihoods, and additionally to robustness we have found they can also lead
to increased sensitivity to detect non-zero coe�cients. Alas, computations
under Normal residuals are inevitably faster, hence whenever this extra �ex-
ibility is not needed it is nice to be able to fall back onto the Normal family,
particularly when p is large. modelSelection and nlpMarginal incorporate
this option by setting family=='auto', which indicates that the residual
distribution should be inferred from the data. When p is small a full model
enumeration is conducted, but when p is large the Gibbs scheme spends most
time on models with high posterior probability, thus automatically focusing
on the Normal family when it provides a good enough approximation and
resorting to one of the alternatives when warranted by the data.

For instance, in the example below there's roughly 0.95 posterior prob-
ability that residuals are Normal, hence the Gibbs algorithm would spend
most time on the (faster) Normal model. The two-piece Normal and two-
piece Laplace (also known as asymmetric Laplace) incorporate an asymmetry



parameter α ∈ [−1, 1], where α = 0 corresponds to the symmetric case (i.e.
Normal and Laplace residuals). We set a NLP on atanh(α) ∈ (−∞,∞) so
that under the asymmetric model we push prior mass away from α = 0,
which intuitively means we are interested in �nding signi�cant departures
from asymmetry and otherwise we fall back onto the simpler symmetric case.

> priorCoef <- imomprior(tau=.133)

> fit4 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE,

+ priorCoef=priorCoef, priorDelta=priorDelta, priorVar=priorVar,

+ priorSkew=imomprior(tau=.133),family='auto')

Enumerating models...

Computing posterior probabilities........... Done.

> head(postProb(fit4))

modelid family pp

7 1,2 normal 9.486877e-01

8 1,2,3 normal 3.964871e-02

15 1,2 laplace 8.899186e-03

23 1,2 twopiecenormal 2.561040e-03

16 1,2,3 laplace 9.678812e-05

31 1,2 twopiecelaplace 5.825143e-05

All examples above use modelSelection, which is based on product NLPs
(5). mombf also provides some (limited) functionality for additive NLPs (4).
The code below contains an example based on the Hald data, which has
n = 13 observations, a continuous response variable and p = 4 predictors.
We load the data and �t a linear regression model.

> data(hald)

> dim(hald)

[1] 13 5

> lm1 <- lm(hald[,1] ~ hald[,2] + hald[,3] + hald[,4] + hald[,5])

> summary(lm1)

Call:

lm(formula = hald[, 1] ~ hald[, 2] + hald[, 3] + hald[, 4] +

hald[, 5])

Residuals:

Min 1Q Median 3Q Max

-3.1750 -1.6709 0.2508 1.3783 3.9254

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.4054 70.0710 0.891 0.3991

hald[, 2] 1.5511 0.7448 2.083 0.0708 .



hald[, 3] 0.5102 0.7238 0.705 0.5009

hald[, 4] 0.1019 0.7547 0.135 0.8959

hald[, 5] -0.1441 0.7091 -0.203 0.8441

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 2.446 on 8 degrees of freedom

Multiple R-squared: 0.9824, Adjusted R-squared: 0.9736

F-statistic: 111.5 on 4 and 8 DF, p-value: 4.756e-07

> V <- summary(lm1)$cov.unscaled

> diag(V)

(Intercept) hald[, 2] hald[, 3] hald[, 4] hald[, 5]

820.65457471 0.09271040 0.08756026 0.09520141 0.08403119

Bayes factors between a �tted model and a submodel where some of the
variables are dropped can be easily computed from the lm output using func-
tions mombf and imombf. As an example here we drop the second coe�cient
from the model. Parameter g corresponds to the prior dispersion τ in our
notation. There are several options to estimate numerically iMOM Bayes fac-
tors (for MOM they have closed form), here we compare adaptive quadrature
with a Monte Carlo estimate.

> mombf(lm1,coef=2,g=0.348)

[,1]

[1,] 1.646985

> imombf(lm1,coef=2,g=.133,method='adapt')

[,1]

[1,] 1.596056

> imombf(lm1,coef=2,g=.133,method='MC',B=10^5)

[,1]

[1,] 1.593805

5 Parameter estimation

A natural question after performing model selection is obtaining estimates
for the parameters. Rossell and Telesca (2017) developed a general posterior
sampling framework for NLPs based on Gibbs sampling an augmented prob-
ability model that expresses NLPs as mixtures of truncated distributions.
The methodology is implemented in function rnlp. Its basic use is simple,
by setting parameter msfit to the output of modelSelection the function



produces posterior samples under each model γ visited by modelSelection.
The number of samples is proportional to its posterior probability p(γ | y),
thus averaging the output gives Bayesian model averaging estimates E(θ |
y) =

∑
γ E(θ | γ, y)p(γ | y) and likewise for the residual variance E(ϕ | y).

For convenience the method coef extracts such BMA estimates, along with
BMA 95% posterior intervals and marginal posterior inclusion probabilities
(i.e. when such inclusion probability is large there's Bayesian evidence that
the variable has an e�ect).

> priorCoef <- momprior(tau=.348)

> priorDelta <- modelbbprior(alpha.p=1,beta.p=1)

> fit1 <- modelSelection(y=y, x=x, center=FALSE, scale=FALSE,

+ priorCoef=priorCoef, priorDelta=priorDelta)

Enumerating models...

Computing posterior probabilities........ Done.

> b <- coef(fit1)

> head(b)

estimate 2.5% 97.5% margpp

intercept 0.000000000 0.0000000 0.000000 0.00000000

x1 1.010531296 0.8057897 1.209052 1.00000000

x2 0.942009285 0.7422590 1.136679 1.00000000

x3 -0.003806302 0.0000000 0.000000 0.02579503

phi 1.000399501 0.7605886 1.311363 1.00000000

> th <- rnlp(msfit=fit1,priorCoef=priorCoef,niter=10000)

> colMeans(th)

intercept beta1 beta2 beta3 phi

0.000000000 1.011775714 0.943901083 -0.003293648 1.001010211

> head(th)

intercept beta1 beta2 beta3 phi

[1,] 0 0.9746052 1.0925548 0 1.0198111

[2,] 0 0.9652667 1.0898363 0 1.0626032

[3,] 0 0.9983654 1.0809815 0 0.8667642

[4,] 0 0.9309454 0.8156676 0 1.1106747

[5,] 0 0.9098208 0.9829156 0 0.9640513

[6,] 0 1.1685269 1.0534391 0 0.7047573

Another interestingn use of rnlp is to obtain posterior samples under a
generic non-local posterior

p(θ | y) ∝ d(θ)N(θ;m,V ),

where d(θ) is a non-local prior penalty and N(θ;m,V ) is the normal poste-
rior that one would obtain under the underlying local prior. For instance,



suppose our prior is proportional to Zellner's prior times a product MOM
penalty p(θ) ∝

∏
j θ

2
jN(θ; 0, nτϕ(X ′X)−1) where ϕ is the residual variance,

then the posterior is proportional to p(θ | y) ∝
∏

j θ
2
jN(θ;m,V ) where

m = sτ (X
′X)−1X ′y, V = ϕ(X ′X)−1s2τ where sτ = nτ/(1 + nτ) is the usual

ridge regression shrinkage factor. We may obtain posterior samples as fol-
lows. Note that the posterior mean is close to that obtained above.

> tau= 0.348

> shrinkage= nrow(x)*tau/(1+nrow(x)*tau)

> V= shrinkage * solve(t(x) %*% x)

> m= as.vector(shrinkage * V %*% t(x) %*% y)

> phi= mean((y - x%*%m)^2)

> th= rnlp(m=m,V=phi * V,priorCoef=momprior(tau=tau))

> colMeans(th)

beta1 beta2 beta3

1.0128107 0.9277880 -0.1709449

6 Exact inference for block-diagonal regression

Papaspiliopoulos and Rossell (2016) proposed a fast computational frame-
work to compute exact posterior model probabilities, variable inclusion prob-
abilities and parameter estimates for Normal linear regression when the X ′X
matrix is block-diagonal. Naturally this includes the important particular
case of orthogonal regression where X ′X is diagonal. The framework per-
forms a fast model search that �nds the best model of each size (i.e. with
1, 2, . . . , p variables) and a fast deterministic integration to account for the
fact that the residual variance is uknown (the residual variance acts as a
"cooling" parameter that a�ects how many variables are included, hence
the associated uncertainty must be dealt with appropriately). The function
postModeOrtho tackles the diagonal X ′X case and postModeBlockDiag the
block-diagonal case.

The example below simulates n = 210 observations with p = 200 variables
where all regression coe�cients are 0 except for the last three (0.5, 0.75, 1)
and the residual variance is one. We then perform variable selection under
Zellner's and the MOM prior.

> set.seed(1)

> p <- 200; n <- 210

> x <- scale(matrix(rnorm(n*p),nrow=n,ncol=p),center=TRUE,scale=TRUE)

> S <- cov(x)

> e <- eigen(cov(x))

> x <- t(t(x %*% e$vectors)/sqrt(e$values))

> th <- c(rep(0,p-3),c(.5,.75,1)); phi <- 1



> y <- x %*% matrix(th,ncol=1) + rnorm(n,sd=sqrt(phi))

> priorDelta=modelbinomprior(p=1/p)

> priorVar=igprior(0.01,0.01)

> priorCoef=zellnerprior(tau=n)

> pm.zell <-

+ postModeOrtho(y,x=x,priorCoef=priorCoef,priorDelta=priorDelta,

+ priorVar=priorVar,bma=TRUE)

> head(pm.zell$models)

modelid pp

4 198,199,200 0.8257052262

5 54,198,199,200 0.0390061004

107 11,198,199,200 0.0062427546

108 186,198,199,200 0.0042350105

110 36,198,199,200 0.0037652564

6 11,54,198,199,200 0.0003357223

> priorCoef=momprior(tau=0.348)

> pm.mom <- postModeOrtho(y,x=x,priorCoef=priorCoef,priorDelta=priorDelta,

+ priorVar=priorVar,bma=TRUE)

> head(pm.mom$models)

modelid pp

4 198,199,200 9.779392e-01

5 54,198,199,200 1.144910e-02

107 11,198,199,200 1.209685e-03

108 186,198,199,200 7.314291e-04

110 36,198,199,200 6.262828e-04

6 11,54,198,199,200 1.717659e-05

postModelBlockDiag returns a list with the best model of each size and its corre-
sponding (exact) posterior probability, displayed in Figure 2 (left panel). It also returns
marginal inclusion probabilities and BMA estimates, shown in the right panel. The code
required to produce these �gures is below.

> par(mar=c(5,5,1,1))

> nvars <- sapply(strsplit(as.character(pm.zell$models$modelid),split=','),length)

> plot(nvars,pm.zell$models$pp,ylab=expression(paste("p(",gamma,"|y)")),

+ xlab=expression(paste("|",gamma,"|")),cex.lab=1.5,ylim=0:1,xlim=c(0,50))

> sel <- pm.zell$models$pp>.05

> text(nvars[sel],pm.zell$models$pp[sel],pm.zell$models$modelid[sel],pos=4)

> nvars <- sapply(strsplit(as.character(pm.mom$models$modelid),split=','),length)

> points(nvars,pm.mom$models$pp,col='gray',pch=17)

> sel <- pm.mom$models$pp>.05

> text(nvars[sel],pm.mom$models$pp[sel],pm.mom$models$modelid[sel],pos=4,col='gray')

> legend('topright',c('Zellner','MOM'),pch=c(1,17),col=c('black','gray'),cex=1.5)

> par(mar=c(5,5,1,1))

> ols <- (t(x) %*% y) / colSums(x^2)

> plot(ols,pm.zell$bma$coef,xlab='Least squares estimate',

+ ylab=expression(paste('E(',beta[j],'|y)')),cex.lab=1.5,cex.axis=1.2,col=1)
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Figure 2: Posterior probability under simulated orthogonal data

> points(ols,pm.mom$bma$coef,pch=3,col='darkgray')

> legend('topleft',c('Zellner','MOM'),pch=c(1,3),col=c('black','darkgray'))

We now illustrate similar functionality under block-diagonal X ′X. To
this end we consider a total p = 100 variables split into 10 blocks of 10
variables each, generated in such a way that they all have unit variance and
within-blocks pairwise correlation of 0.5. The �rst block has three non-zero
coe�cients, the second block two and the remaining blocks contain no active
variables.

> set.seed(1)

> p <- 100; n <- 110

> blocksize <- 10

> blocks <- rep(1:(p/blocksize),each=blocksize)

> x <- scale(matrix(rnorm(n*p),nrow=n,ncol=p),center=TRUE,scale=TRUE)

> S <- cov(x)

> e <- eigen(cov(x))

> x <- t(t(x %*% e$vectors)/sqrt(e$values))

> Sblock <- diag(blocksize)

> Sblock[upper.tri(Sblock)] <- Sblock[lower.tri(Sblock)] <- 0.5

> vv <- eigen(Sblock)$vectors

> sqSblock <- vv %*% diag(sqrt(eigen(Sblock)$values)) %*% t(vv)

> for (i in 1:(p/blocksize)) x[,blocks==i] <- x[,blocks==i] %*% sqSblock

> th <- rep(0,ncol(x))

> th[blocks==1] <- c(rep(0,blocksize-3),c(.5,.75,1))

> th[blocks==2] <- c(rep(0,blocksize-2),c(.75,-1))

> phi <- 1

> y <- x %*% matrix(th,ncol=1) + rnorm(n,sd=sqrt(phi))



postModeBlockDiag performs the model search using an algorithm nick-
named "Coolblock" (as it is motivated by treating the residual variance as a
cooling parameter). Brie�y, Coolblock visits a models of sizes ranging from 1
to p and returns the best model for that given size, thus also helping identify
the best model overall.

> priorCoef=zellnerprior(tau=n)

> priorDelta=modelbinomprior(p=1/p)

> priorVar=igprior(0.01,0.01)

> pm <- postModeBlockDiag(y=y,x=x,blocks=blocks,priorCoef=priorCoef,

+ priorDelta=priorDelta,priorVar=priorVar,bma=TRUE)

> head(pm$models)

modelid nvars pp pp.upper

1 0 1.754990e-24 1.754990e-24

2 7 1 5.732382e-22 5.732382e-22

3 6,7 2 4.575389e-22 4.575389e-22

4 2,6,7 3 5.221929e-23 5.221929e-23

5 2,5,6,7 4 1.133006e-24 1.133006e-24

6 2,4,5,6,7 5 1.079619e-26 1.079619e-26

> head(pm$postmean.model)

modelid X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 0 0.0000000 0 0.0000000 0.0000000 0.0000000 0.0000000 0 0 0

2 7 0 0.0000000 0 0.0000000 0.0000000 0.0000000 1.1069287 0 0 0

3 6,7 0 0.0000000 0 0.0000000 0.0000000 0.8493494 0.6822540 0 0 0

4 2,6,7 0 0.7206928 0 0.0000000 0.0000000 0.6091185 0.4420231 0 0 0

5 2,5,6,7 0 0.5756777 0 0.0000000 0.5800601 0.4641034 0.2970081 0 0 0

6 2,4,5,6,7 0 0.4765573 0 0.4956023 0.4809396 0.3649830 0.1978876 0 0 0

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 X29

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X30 X31 X32 X33 X34 X35 X36 X37 X38 X39 X40 X41 X42 X43 X44 X45 X46 X47 X48

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X49 X50 X51 X52 X53 X54 X55 X56 X57 X58 X59 X60 X61 X62 X63 X64 X65 X66 X67

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X68 X69 X70 X71 X72 X73 X74 X75 X76 X77 X78 X79 X80 X81 X82 X83 X84 X85 X86

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X87 X88 X89 X90 X91 X92 X93 X94 X95 X96 X97 X98 X99 X100

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3 shows a LASSO-type plot with the posterior means under the
best model of each size visited by Coolblock. We appreciate how the truly
active variables 8, 9, 10, 19 and 20 are picked up �rst.

> maxvars=50

> ylim=range(pm$postmean.model[,-1])

> plot(NA,NA,xlab='Model size',

+ ylab='Posterior mean given model',

+ xlim=c(0,maxvars),ylim=ylim,cex.lab=1.5)

> visited <- which(!is.na(pm$models$pp))

> for (i in 2:ncol(pm$postmean.model)) {

+ lines(pm$models$nvars[visited],pm$postmean.model[visited,i])

+ }

> text(maxvars, pm$postmean.model[maxvars,which(th!=0)+1],

+ paste('X',which(th!=0),sep=''), pos=3)

7 Model selection for mixtures

bfnormmix is the main function to obtain posterior probabilities on the num-
ber of mixture components, as well as posterior samples for any given number
of components. We start by simulating univariate Normal data truly arising
from a single component.

> set.seed(1)

> n=200; k=1:3

> x= rnorm(n)

We run bfnormmix based on B=10000 MCMC iterations and default prior
parameters. The prior dispersion g in (9) is an important parameter that
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Figure 3: Coolblock algorithm: posterior mean of regression coe�cients un-
der best model of each size

determines how separated one expects components to be a priori. Roughly
speaking its default value assigns 0.95 prior probability to any two com-
ponents giving a multimodal density, this default helps focus the analysis
on detecting well-separated components and enforcing parsimony whenever
components are poorly separated. The Dirichlet prior parameter q is also im-
portant, bfnormmix allows one to specify di�erent values for the MOM-IW-
Dir prior in (9) (argument q) and the Normal-IW-Dir prior in (8) (argument
q.niw). The default q=3 helps discard components with small weights, since
these could be due to over-�tting or outliers.

> fit= bfnormmix(x=x,k=k,q=3,q.niw=1,B=10^4)

> postProb(fit)

k pp.momiw pp.niw logprobempty logbf.momiw logpen logbf.niw

1 1 0.93353706 0.7319972 -Inf 0.000000 0.000000 0.000000

2 2 0.03437877 0.1991663 -4.001669 -3.301542 -1.999905 -1.301636

3 3 0.03208417 0.0688365 -3.552714 -3.370618 -1.006575 -2.364043

model

1 Normal, VVV

2 Normal, VVV

3 Normal, VVV

Under a MOM-Dir-IW prior one assigns high posterior probability P (M1 |
y) ≈ 0.96 to the data-generating truth, for the Normal-Dir-IW this proba-
bility is ≈ 0.753.



We can use postSamples to retrieve samples from the Normal-Dir-IW
posterior, and coef to obtain the coresponding posterior means.

> mcmcout= postSamples(fit)

> names(mcmcout)

[1] "k=1" "k=2" "k=3"

> names(mcmcout[[2]])

[1] "eta" "mu" "cholSigmainv" "momiw.weight"

> colMeans(mcmcout[[2]]$eta)

[1] 0.4747449 0.5252551

> parest= coef(fit)

> names(parest)

[1] "k=1" "k=2" "k=3"

> parest[[2]]

$eta

[1] 0.4747449 0.5252551

$mu

[1] -0.13189648 0.07627044

$Sigmainv

$Sigmainv[[1]]

[,1]

[1,] 11.6755

$Sigmainv[[2]]

[,1]

[1,] 9.360063

We remark that one can reweight these samples to obtain posterior sam-
ples from the non-local MOM-Dir-IW posterior, these weights are given by
the term dk(ϑk) in (10) and are stored in momiw.weight. As illustrated below
in our example under the 2-component model the location parameters under
the MOM-Dir-IW posterior are more separated than under the Normal-Dir-
IW, as one would expect from the repulsive force between components.

> w= postSamples(fit)[[2]]$momiw.weight

> apply(mcmcout[[2]]$eta, 2, weighted.mean, w=w)

[1] 0.5148894 0.4851106

> apply(mcmcout[[2]]$mu, 2, weighted.mean, w=w)



[1] -0.1970466 0.3292879

To further illustrate we simulate another dataset, this time where the
data-generating truth are k = 2 components. Interestingly the MOM-IW-
Dir favours k = 2 more than the Normal-IW-Dir and both clearly discard
k = 1, as expected given that the two components are well-separated (the
means are 3 standard deviations away from each other).

> set.seed(1)

> n=200; k=1:3; probs= c(1/2,1/2)

> mu1= -1.5; mu2= 1.5

> x= rnorm(n) + ifelse(runif(n)<probs[1],mu1,mu2)

> fit= bfnormmix(x=x,k=k,q=3,q.niw=1,B=10^4)

> postProb(fit)

k pp.momiw pp.niw logprobempty logbf.momiw logpen logbf.niw

1 1 2.260568e-47 3.794308e-47 -Inf 0.0000 0.0000000 0.0000

2 2 8.101610e-01 6.140569e-01 -111.703635 107.1954 0.7950311 106.4003

3 3 1.898390e-01 3.859431e-01 -4.150723 105.7443 -0.1916276 105.9359

model

1 Normal, VVV

2 Normal, VVV

3 Normal, VVV
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