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Abstract

graphPAF is a comprehensive package designed for estimation, inference and display
of population attributable fractions (PAF)s and impact fractions. In addition to allowing
inference for standard PAFs and impact fractions, graphPAF facilitates display of PAFs
over multiple risk factors using fan plots and nomograms, calculations of PAFs for con-
tinuous exposures, inference for PAFs appropriate for specific risk factor → mediator →
outcome pathways (pathway-specific PAFs) and Bayesian network based calculations and
inference for joint, sequential and average PAFs in scenarios where multiple risk factors
are of interest. In summary, graphPAF extends and consolidates existing packages for
PAF estimation in multiple ways. This vignette serves as a broad overview of theory and
estimation approaches appropriate for attributable fractions, as well as a guide regarding
how to use the graphPAF package in practice.
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1. Introduction

Population attributable fractions (PAFs) measure the extent to which disease burden, for
example the level of heart disease or cancer, in some population is related to a particular
behaviour or exposure. Often these behaviours and exposures are referred to as risk factors,
with some examples being smoking, inactivity and air pollution. The most straightforward
examples of PAFs pertain to risk factors that can be eliminated from the population, at
least in theory. For instance, one could imagine a population similar to Ireland in almost
every way (for instance having similar demographics, culture, a similar health system and so
on), except that nobody in this population smoked. How might the rate of heart failure in
hypothetical nonsmoking Ireland compare to the rate in real Ireland? If the PAF for heart
disease attributable for smoking is 12% (as was estimated in Sinha, Ning, Carnethon, Allen,
Wilkins, Lloyd-Jones, and Khan (2021)), this means that 12% of the cases of heart failure
that occur in the real Ireland, would be avoided in a hypothetical Ireland where nobody
smoked. PAFs are important metrics for determining how pertinent particular risk factors
are in determining disease, as well as ranking differing risk factors as targets for health
interventions.

There are a number of currently available R packages for estimating PAFs under various study
designs, mostly designed for the standard setting that considers population level elimination
of a single binary valued risk factor. paf implements methods described in Chen, Lin, and
Zeng (2010) and concentrates on estimation under cohort designs using a proportional hazards
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model. attribrisk Schenck, Atkinson, Crowson, and Therneau (2014) estimates PAFs in
matched and unmatched case-control designs. More recently, AF and stdReg described in
Dahlqwist, Zetterqvist, Pawitan, and Sjölander (2016) and Sjölander (2018) enable estimation
of PAFs in cross sectional, case-control and cohort settings. pifpaf Camacho-García-Formentí
and Zepeda-Tello (2019) specialises on estimation of PAFs using cross sectional summary
data over several independent populations. The new R package graphPAF described here
also estimates PAFs for cross sectional, case-control and cohort study designs under random
samples. Unlike some of the aforementioned packages, graphPAF also can estimate PAFs
for multilevel risk factors and under survey data collection schemes. It also enables PAF
calculations in more complicated settings as we describe below.

In the case that many risk factors are under consideration, differing kinds of analyses may
be of interest. graphPAF implements fan plots and nomograms that graphically display the
interrelationships between PAFs, relative risk and risk factor prevalence for multiple risk
factors, as described in Ferguson, O’Leary, Maturo, Yusuf, and O’Donnell (2019). These
visualisations can be useful to identify clusters of risk factors that behave similarly, to visually
compare attributable disease burden due to differing risk factors, and sometimes to visualise
the effects of interventions.

Joint PAFs refer to collective disease burden represented by a group of risk factors (and
involves consideration of a hypothetical population where all risk factors in the group were
eliminated). Sequential PAFs examine incremental effects on population disease prevalence
when each of the risk factors in the group is eliminated according to some order. Average PAFs
(literally an average of all possible sequential PAFs for each risk factor), allow one to partition
the joint PAF into contributions for each risk factor. Previous R implementations of average,
sequential and joint PAFs (for example the R package averisk, Ferguson, Alvarez-Iglesias,
Newell, Hinde, and O’Donnell (2018)), have been agnostic to the causal structure linking
risk factors to disease, which can result in biased estimation in scenarios where multiple risk
factors of interest are on the same causal pathway to disease (for instance if smoking affects
blood pressure which affects disease, smoking and blood pressure would be considered to be
on the same causal pathway). In contrast, in these settings graphPAF incorporates known
risk factor/risk factor and risk factor/disease relationships using a causal Bayesian network
model Ferguson, O’Connell, and O’Donnell (2020b) and as a result can alleviate these biases.

Referring to the putative pathway: ‘smoking → blood pressure → heart disease’ mentioned
above, one might wonder about the extent to which this particular pathway contributes
to heart disease. This is measured by the pathway-specific PAF O’Connell and Ferguson
(2022) which can also be calculated by graphPAF. Moreover, smoking may affect heart disease
through other mechanisms; for instance, through effects on blood cholesterol. Provided data
is available, pathway-specific PAFs can be estimated for these alternative pathways which may
help to determine the most important mechanisms through which the risk factor of interest
leads to disease.

In the case of continuous risk factors or exposures, zero exposure or alternatively elimination
of the risk factor can be nonsensical to consider. Consider body mass index (BMI) as an
example: zero BMI is obviously unattainable and extremely low BMI might be as detrimental
to one’s health as high BMI. Versions of PAFs appropriate in these settings, that allow valid
comparisons of disease burden across differing exposures and don’t resort to categorisation,
are described in Ferguson, Maturo, Yusuf, and O’Donnell (2020a). These metrics are also
implemented in graphPAF.



John Ferguson University of Galway Maurice O’Connell University of Galway 3

In summary, graphPAF extends and consolidates existing packages for PAF estimation in
multiple ways. In this manuscript, we describe its features in more depth, interweaving
between the theory for PAF estimation and using graphPAF in practice.

2. Basic PAF estimation

In this section, we imagine a setting where the risk factor is either binary, or perhaps multi-
category, with some level indicating ‘elimination’ for the risk factor. Let Y denote a binary
disease outcome (1 indicating disease) for a randomly selected individual from the popula-
tion, and Y0 the same binary disease outcome but where the individual is sampled from a
hypothetical population with the risk factor eliminated. The PAF can be defined as:

PAF =
P (Y = 1) − P (Y0 = 1)

P (Y = 1)
(1)

where P (Y = 1) represents the prevalence of disease in the current population and P (Y0 = 1)
the prevalence of disease in the hypothetical population with the risk factor eliminated. (1)
is an appropriate estimand in case-control and cross sectional studies. Often in longitudinal
cohort studies, a cohort of healthy individuals are followed over time with some eventually
developing disease. In this setting, a differing kind of PAF is calculated where the cumulative
incidence of disease for that cohort as a function of time is compared to what the incidence
would be if the factor had been eliminated from the cohort:

PAF (t) =
P (T ≤ t) − P (T0 ≤ t)

P (T ≤ t)
. (2)

Here random sampling is interpreted as random sampling from the cohort of interest and
PAF , Y and Y0 from (1) are replaced by PAF (t), I{T ≤ t} and I{T0 ≤ t}, with the
random variables T and T0 representing time to disease in the current population and under
hypothetical elimination of the risk factor. In the setting of competing events (such as death)
we can define T as the time an individual would have developed disease had the competing
event not occurred, and the PAF in terms of prevented disease under elimination of the risk
factor provided the competing event did not happen. It should be noted that (2) can only
be estimated in the presence of competing events under limited conditions, such as under
the assumption that censoring of the true survival time T by the competing event is non-
informative. We can also incorporate competing events directly in the definition of the PAF.
Suppose ∆ represents an indicator for the event that happens first with ∆ = 1 indicating
that disease occurred before any other event. We can then write

PAF ∗(t) =
P (T ≤ t and ∆ = 1) − P (T0 ≤ t and ∆0 = 1)

P (T ≤ t and ∆ = 1)
. (3)

Note that as t → ∞, PAF ∗(t) converges to (4) below:

PAF ∗ =
P (∆ = 1) − P (∆0 = 1)

P (∆ = 1)
(4)

which is essentially the PAF for future disease incidence in the cohort, as described by Laak-
sonen, Härkänen, Knekt, Virtala, and Oja (2010). While (3) may at first seem a more sensible
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estimand than (2) in the presence of competing events, care must be taken in its interpreta-
tion. For instance, if the risk factor leads to early mortality due to other mechanisms than the
disease of interest (3) may be negative for large t even when the risk factor causes disease. In
other words, while (3) is the proportional difference in cumulative incidence in disease by time
t due to removing the risk factor, it can’t be interpreted as disease incidence prevented by
eliminating the risk factor. In contrast (2) does have an interpretation in terms of prevented
hypothetical incidence in the absence of competing events.

Note that (1), (2) and (3) are causal entities, and unbiased estimation with observational data
requires relatively strong assumptions. For instance, if the random variable A ∈ {0, 1, ..., nA}
represents the observed risk factor (A = 0 coding for elimination), one cannot say that
P (Y = 1 | A = 0) = P (Y0 = 1) unless the risk factor A could be considered randomly assigned.
Informal sufficient conditions for the possibility of asymptotically unbiased estimation of (1)
are:

1. Unambiguous definition of the potential outcome: Y0, representing risk factor elimina-
tion. (This is essentially the famous stable unit treated value assumption (SUTVA),
first described in Rubin (1974))

2. The measurement of a collection of covariates C, so that for any observed value of C,
P (Y = 1 | A = 0, C) = P (Y0 = 1 | C). This will be true if within joint strata of the
covariates C, the risk factor A behaves as if it were randomly assigned. The collection
C is sometimes referred to as a sufficient adjustment set of covariates.

3. Any proposed model for disease probability conditional on risk factor and covariates
that is used in the subsequent PAF estimator is correctly specified. In other words, if
we use an estimator P̂ (Yi = 1 | Ai, Ci) of P (Y = 1 | A = 0, C) based on an assumed
parametric statistical model, correct functional relationships and interactions between
A, C and the probability of disease need to be specified in the model.

Similar conditions need to be assumed to estimate (2) and (3). The variables C are often,
but not always, a set of confounders of the risk factor/outcome relationship (that is they are
joint causes of A and Y ). We will assume the veracity of these conditions (including the
measurement of a sufficient adjustment set C) in what follows, although their validity should
be carefully considered in any practical application.

Assuming these conditions, differing estimators are appropriate dependent on the study de-
sign. For cross sectional and case-control designs, (1) can be estimated by

ˆPAF =

∑
i≤N wi(P̂ (Yi = 1 | Ai, Ci) − P̂ (Yi = 1 | Ai = 0, Ci))

∑
i≤N wiP̂ (Yi = 1 | Ai, Ci)

(5)

where i ∈ {1, ..., N} indexes the sampled individuals, Yi, Ai, Ci the disease outcome, risk
factor and covariates for individual i, and wi is a weight specific to individual i. Usually wi

would be set to 1 for cross sectional datasets and is specified based on disease prevalence
for case-control datasets. In graphPAF, P̂ (Yi = 1 | Ai, Ci) may be estimated via log linear,
logistic or conditional logistic models, with estimation using conditional logistic models only
possible when disease prevalence is known. Note that when disease prevalence is specified as
π, graphPAF adjusts predicted probabilities via adding a constant to the linear predictor of
the estimated model to ensure that

∑
i≤N P̂ (Yi = 1 | Ai, Ci) = Nπ. As an example, for a
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logistic model with a single univariate confounder, C, with assumed regression coefficients,
β0, β1 and β2, for the intercept, A and C, this entails finding the constant, c, such that:
∑

i≤N
ec+β̂0+β̂1A+β̂2C

1+ec+β̂0+β̂1A+β̂2C
= Nπ, and then substituting modified predicted probabilities: P̂ (Yi =

1 | Ai, Ci) =
∑

i≤N
ec+β̂0+β̂1A+β̂2C

1+ec+β̂0+β̂1A+β̂2C
into (5). In addition, separate weights for disease cases

and controls are computed so that the empirical weighted prevalence of disease:
∑

wiYi∑
wi

= π.

If disease prevalence is unknown, (5) can’t be used for estimation in case-control studies;
instead, the formula by Bruzzi, Green, Byar, Brinton, and Schairer (1985) should be used:

ˆPAF = 1 −
1

Nc

∑

i≤N :Yi=1

P̂ (Y = 1 | Ai = 0, Ci)

P̂ (Y = 1 | Ai, Ci)
= 1 −

1

Nc

∑

i≤N :Yi=1

ˆRRi
−1

(6)

where R̂Ri = P (Y = 1 | Ai, Ci)/P (Y = 1 | Ai = 0, Ci) is the estimated relative increase
in disease risk encountered by individual i based on their risk factor value Ai and Nc =∑

i≤N I{Yi = 1} is the number of cases in the data set. R̂Ri can be approximated by the
correspondingly estimated odds ratio in case-control study designs provided the disease is
relatively rare.

In cohort designs, often Cox Proportional Hazard models are used to estimate (2). Under
the proportional hazards assumption, suppose r̂(Ci, Ai) is the estimated hazard ratio for
an individual with covariates Ci and risk factor Ai compared to their hazard assuming all
covariates and risk factors were at reference levels (defined as 0 for continuous covariates).
Let Ĥ0(t) be an estimate of the cumulative baseline hazard function (graphPAF uses the
Kalbfleisch Prentice estimate). PAF (t) is then estimated as

ˆPAF (t) =

∑
i≤N e−Ĥ0(t)r̂(Ci,Ai=0) − e−Ĥ0(t)r̂(Ci,Ai)

∑
i≤N (1 − e−Ĥ0(t)r̂(Ci,Ai))

. (7)

To estimate PAF ∗(t), r̂(Ci, Ai) can be replaced in (7) by the estimated Fine Gray subdistri-

bution hazard ratio: r̂F G(Ci, Ai) for disease incidence, and e−Ĥ0(t) by e−
∫ t

0
ĥF G

0 (u)du, where
ĥF G

0 (u) is the estimated baseline subdistribution hazard function at time u. These functions
can be estimated by prior weighting of the Cox model, as will be described in Section 2.1.

2.1. Estimation of PAF in cross sectional and case-control designs

The function PAF_calc_discrete facilitates PAF estimation for binary and multilevel risk
factors for cross sectional, case-control and longitudinal cohort designs. As an example, con-
sider estimating the PAF for the variable exercise, a binary indicator for physical inactivity,
using the dataframe stroke_reduced, included in graphPAF. stroke_reduced is a simu-
lated matched case-control dataset including 10 stroke risk factors (with R variable names:
smoking, stress, waist_hip_ratio, exercise, alcohol, diabetes, early_stage_heart_disease,
diet, lipids, education, high_blood_pressure) for 6,856 stroke cases and 6,856 stroke con-
trols. Stroke cases, as indicated by the variable case=1, were matched with controls on the
variables age (in 5 year windows), gender and region. The simulated data were generated
using probability distributions estimated using a Bayesian network model fitted to real data
from the INTERSTROKE project O’Donnell, Chin, Sumathy, and et al (2016). In INTER-
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STROKE, the stroke cases represented first occurrences of stroke, and we will presume the
same true for the simulated data, stroke_reduced.

To deal with the case-control matching, we first fit a conditional logistic model to describe
the relationships between the prevalence of stroke, exercise and assumed confounders, with
the following commands:

> library(splines)

> library(survival)

> library(graphPAF)

> model_exercise <- clogit(formula = case ~ age

+ education +exercise + ns(diet, df = 3) + smoking + alcohol

+ stress + ns(lipids,df = 3) + ns(waist_hip_ratio, df = 3)

+ high_blood_pressure +strata(strata),data=stroke_reduced)

The function for PAF estimation with a binary (or multilevel) risk factor in graphPAF is
PAF_calc_discrete. A minimum of 4 arguments need to be specified to use this function:
model, a fitted statistical model (either a glm, with log or logit link, a conditional logistic
regression fitted with clogit or a proportional hazards regression fitted with coxph), a char-
acter string, riskfactor indicating the variable name of the risk factor, a character, refval,
indicating the reference level of the risk factor and the dataframe, data, that was used to fit
the statistical model. Specifying these arguments, PAF_calc_discrete returns an estimated
PAF of 33% for inactivity:

> PAF_calc_discrete(model=model_exercise, riskfactor="exercise",

refval=0, data=stroke_reduced)

0.3322625

For case-control datasets such as stroke_reduced the ‘Bruzzi’ method Bruzzi et al. (1985)
which avoids the necessity of specifying disease prevalence is recommended. This is the
default approach employed by PAF_calc_discrete as well as in other graphPAF functions
such as PAF_calc_continuous and impact_fraction. However, the ‘Bruzzi’ approach re-
quires approximating relative risks with odds ratios which will generate substantial inaccu-
racy for common diseases. If prevalence or average incidence of the disease over a period
of time is known, the ‘direct’ method can be used as an alternative by utilising the extra
arguments calculation_method="D" and prev. The average global yearly incidence of first
stroke estimated by Anonymous (2018) was approximately 0.0035. This indicates that using
prev=0.0035 in PAF_calc_discrete will estimate PAF (1), that is equation (2) at t = 1:

> PAF_calc_discrete(model_exercise, "exercise", 0,

stroke_reduced,calculation_method="D", prev=0.0035)
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0.3196773

If disease prevalence (rather than an estimated incidence) is available and used in the argu-
ment prev, the estimator will estimate equation (1). Note that when lifetime disease incidence
across the cohort is low, relative risks and hazard ratios should roughly correspond and one
would expect (1) to be approximately equal to (2) at varying t.

For PAF calculations with cross sectional data, a glm model (with a logistic or log-linear
link) should first be fit that describes the relationship between risk factor and disease, con-
ditional on covariates. Provided the sample is representative of the source population, the
argument prev doesn’t need to be set, and calculation_method="D" should instead be used.
PAF_calc_discrete will then estimate equation (1).

Bootstrap-calculated confidence intervals for PAF can be requested via ci=TRUE. The boot-
strap is assisted by the R package boot Canty and Ripley (2022) which is loaded by default
when graphPAF is installed. Parallelisation over multiple CPU cores is available by setting
the option boot.ncpus to an integer above 1 prior to estimation of the PAF. The number
of bootstrap replications can be changed using the argument boot_rep, and the confidence
level via the argument ci_level. Similar bootstrap generated confidence intervals (requested
using the same arguments) are also available for other graphPAF functions detailed later such
as: impact_fraction,PAF_calc_continuous,ps_paf,joint_paf,average_paf and seq_paf.
Note the R defaults for these arguments: ci=FALSE,boot_rep=50 and ci_level=0.95. In the
code snippets that follow (and in later parts of the manuscript), we will set ci=TRUE when
confidence intervals are required with the understanding that the number of Bootstrap iter-
ates is 50 and the confidence level is 95%. The confidence intervals calculated by default are
bias-corrected symmetric intervals that effectively assume the PAF estimator to be normally
distributed. This can be changed by altering the argument ci_type to either basic, perc or
bca (note that using perc and bca necessitates a larger number of bootstrap iterates for ac-
curacy). Bootstrap intervals will vary slightly over differing executions with differing starting
random number seeds, as stored in the variable .Random.seed. See the documentation for
the boot library for more details. Canty and Ripley (2022).

>library(parallel)

>options(boot.ncpus=5) # set to number of cores on machine

>PAF_calc_discrete(model_exercise, "exercise", refval=0, data=stroke_reduced,

ci=TRUE)

est bias debiased_est norm_lower norm_upper

0.33200 0.00547 0.32700 0.26000 0.39300

PAF_calc_discrete can also estimate the PAF in cohort datasets using equation (7) if a
fitted cox proportional hazard model object (that is an object of class coxph) is supplied to the
function. For example, in the dataframe stroke_reduced, time denotes a simulated survival
time to some event in the stroke controls, where individuals with event=0 are considered to
not have experienced the event at study completion or when they left the study. The following
model might be fit:
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> model_high_blood_pressure_coxph <- coxph(formula = Surv(time,event) ~

ns(age,df=5) + education + exercise + ns(diet, df = 3) + smoking +

alcohol + stress + ns(lipids,df = 3) + ns(waist_hip_ratio, df = 3)

+ high_blood_pressure,data=stroke_reduced[stroke_reduced$case==0,])

We can use PAF_calc_discrete to estimate the proportion of the events in the subcohort that
might have been avoided in various time periods if nobody was hypertensive, hypertension
being represented by the binary variable high_blood_pressure. For survival data, we must
use calculation_method="D" (the argument prev should not be specified). At time 0 nobody
had experienced an event, and over time the cumulative number of events (and also the
proportion of events that might be avoided) changes. The user can specify the times, t, at
which to calculate PAF (t) using the argument t_vector:

PAF_calc_discrete(model_high_blood_pressure_coxph,"high_blood_pressure",

refval=0, data = stroke_reduced[stroke_reduced$case==0,],

calculation_method="D", ci=TRUE, t_vector=c(1,2,3,4,5,6,7,8,9))

est bias debiased_est norm_lower norm_upper

1 0.397 0.00341 0.394 0.3640 0.424

2 0.391 0.00317 0.388 0.3590 0.417

3 0.379 0.00369 0.376 0.3450 0.406

4 0.361 0.00402 0.357 0.3210 0.393

5 0.327 0.00483 0.322 0.2740 0.370

6 0.293 0.00585 0.287 0.2270 0.347

7 0.256 0.00653 0.249 0.1800 0.319

8 0.220 0.00804 0.212 0.1350 0.288

9 0.176 0.00869 0.168 0.0876 0.248

The results indicate that while 39.7% of events that happen with a year might have been
avoided in a hypertension-free population, only 17.6% of events that happen within 9 years
would be avoided. This is the typical pattern one expects for an event such as death which
(unfortunately) can only be delayed but not prevented by the risk factor’s absence.

If data on competing events exists (3) may be estimated instead of (2). The first step is
to fit a weighted Cox model with weights calculated using the function finegray from the
survival package. Sending the weighted cox model to PAF_calc_discrete will utilise the
Fine Gray modification of (7) described earlier. See Therneau, Crowson, and Atkinson (2021)
for more details.

2.2. Estimation of PAFs for data collected from surveys

Equation (4) and weighted versions of equation (5) and (6) can also used to calculate at-
tributable estimates for data collected on surveys. This can be implemented through graphPAF

by using the argument weight_vec in the PAF_calc_discrete function, where weight_vec

is a vector of survey weights. A regression model (glm or coxph) estimated with weighted
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maximum likelihood with the same weights should be given as the model argument in this
case. Note that confidence intervals will be calculated using standard bootstrap techniques
(including bootstraping weight_vec) and may give incorrect results, particularly for surveys
involving cluster sampling. One workaround would be for a user to use graphPAF as a tool
to generate point estimates, but design their own custom resampling regime that replicates
the population sampling scheme used in the survey, and bootstrap according to this custom
sampling scheme. See Heeringa, Berglund, West, Mellipilán, and Portier (2015) for more
details regarding estimating PAF estimation with survey data.

2.3. Estimation of Impact fractions

While PAFs can summarise the overall impact or importance of a risk factor on disease
burden, they tend to give an overly optimistic impression of what an intervention on that
risk factor might achieve. The predominant reasons for this are first that it may be difficult
if not impossible to eliminate the risk factor from the population (think of the difficulties in
preventing all forms of smoking or alcohol use or enticing an entire population to change their
dietary habits) and second that even if one could eliminate the risk factor, the risk of disease
in individuals who previously were exposed might not equal the disease risk if they were
never exposed (for instance, former smokers may have higher disease risk than comparable
individuals who never smoked) Bulterys, Morgenstern, and Weed (1997).

In contrast, population impact fractions purport to measure the proportional reduction in
disease risk from a realistic health intervention that may reduce the prevalence of a risk
factor (rather than eliminate the risk factor), or perhaps favorably change the collective
statistical distribution of many risk factors. The function impact_fraction in graphPAF

can estimate impact fractions under the study designs considered above (cross sectional,
cohort and case-control). We first need to specify how the health intervention changes the
distribution of risk factors that might affect disease, through the new_data argument. For
instance, imagine a health intervention (perhaps a national campaign to encourage walking)
reduces the prevalence of inactivity by 20%. Assuming the intervention has no effect on any
other risk factor, the following code shows how such an intervention might be specified using
the new_data argument

> new_data <- stroke_reduced

> N <- nrow(new_data)

> inactive_patients <- (1:N)[stroke_reduced$exercise==1]

> N_inactive <- sum(stroke_reduced$exercise)

> newly_active_patients <- inactive_patients[sample(1:N_inactive,

0.2*N_inactive)]

> new_data$exercise[newly_active_patients] <- 0

The impact fraction for such an intervention is then calculated using:

> impact_fraction(model=model_exercise,data=stroke_reduced,new_data=new_data)

0.06707932
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indicating that the health intervention might result in a 6.7% reduction in the rate of strokes.
Note that this calculation really refers to the difference in disease risk in two comparable
populations, one with a reduced rate of inactivity. Since changing one’s behaviour may not
completely eliminate cumulative damage due to prior unhealthy lifestyle, this estimated 6.7%
might overestimate the impact of the intervention at least in the short term. If the 20%
reduction in ‘inactivity’ is sustained over many years, it is reasonable that this estimate
represents a long run effect of the health intervention.

2.4. PAF nomograms

graphPAF facilitates plotting of the interrelationships between prevalence, odds ratios and
PAFs over multiple risk factors using methods described in detail in Ferguson et al. (2019).
These plots utilise the concept of ‘approximate PAF’, derived in the same paper:

PAFapprox = log(OR)πcontrol ≈ PAF (8)

where OR is the causal odds ratio between a risk factor and disease, and πcontrol is the
prevalence of the risk factor in controls. This approximation stems from a Taylor expansion
of the PAF around a relative risk of 1, and will be most accurate for risk factors that have
relatively small effects on a relatively rare outcome. One interesting observation regarding
approximate PAFs is the symmetric roles that risk factor prevalence and log odds ratio play
in its definition; indicating that similar changes in either lead to a similar impact on disease
on a population level. To create a fan plot, risk factor data (names, prevalences and log odds
ratios) must be first summarised into an rf_summary object before plotting. For instance:

> rfs <- rf_summary(rf_names=c("Hypertension","Inactivity",

"ApoB/ApoA","Diet","waist_hip_ratio","Smoking",

"Cardiac causes","Alcohol","Global Stress","Diabetes"),

rf_prev=c(.474,.837,.669,.67,.67,.224,.049,

.277,.144,.129),risk=c(1.093,0.501,0.428,0.378,0.294,

0.513,1.156,0.186,0.301,0.148),log=TRUE)

creates such an object for 10 risk factors from the INTERSTROKE database. In the above
code, rf_prev is a vector of the prevalences of the differing risk factors (named in rf_names).
While technically, one should use the prevalence of the risk factor in healthy controls without
disease in rf_prev, this can be substituted with population prevalence if the disease is rare.
For risk factors with more than 2 levels (here ApoB/ApoA, waist_hip_ratio and alcohol

have 3 levels), the prevalence of the non reference levels of the risk factor should be used.
By default, the argument risk should specify confounder adjusted log odds ratios or risk
ratios for association between risk factor and outcome, although odds ratios or risk ratios can
be used via the setting log=FALSE. Note that log odds ratios can be conveniently estimated
via coefficients from fitted logistic regression models. Plotting this rf_summary object, using
default settings, produces Figure 1 below.

> plot(rfs)
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Figure 1: Fan Plot displaying Prevalences, odds ratios and approximate PAFs for INTER-
STROKE risk factors. The approximate PAF is represented as both the slope of the line
adjoining a point to the y axis, and also the y axis intercept of that adjoining line. The
fan plot indicates that hypertension and inactivity are the two most prominent risk factors
in stroke pathogenesis. Cardiac disease is an outlier on the plot. While it has the highest
estimated relative risk, it has low prevalence (less than 5%) in comparison with the other risk
factors and is only ranked 7th in terms of disease burden

The approximate PAF is represented on a fan plot as both the slope of the line adjoining a
point to the y axis, and also the y axis intercept of that adjoining line. Fan plots are read
clockwise from the upper left corner along the rays of decreasing approximate PAF (which is
again the slope of the ray), and display risk factor prevalence and odds ratio (based on the
x axis and y axis intercept of a particular point) for the risk factors under comparison, in
addition to approximate PAFs.

Imagine now a successful health intervention that reduces the prevalence of smoking by about
50%. This information might be displayed in a rf_summary object as follows:

> rfs <- rf_summary(rf_names=c("Hypertension","Smoking",

"Smoking (after health intervention)"),

rf_prev=c(.474,.224,.11)

,risk=c(1.093,0.513,0.513),log=TRUE)

Like a fan plot, PAF nomograms display joint information on prevalence, odds ratio and
approximate PAF, but this time on three vertical axes, with a risk factor represented by
the line connecting these three data points. An intervention will usually work by changing
the population prevalence of the risk factor, without affecting the odds ratio. This can be
graphically represented by rotating the line for the risk factor through the new prevalence
using the (unaffected) odds ratio on the left hand axis as a pivot, as represented by the green
and blue lines on Figure 2. The difference in approximate PAFs on the right hand axis in the
green and blue line represents the approximate impact fraction for the intervention. Plotting
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a rf_summary object with argument type="rn" produces the Figure below. If preferred,
using type = "n", uses odds ratio rather than prevalence as the centre axis, with risk factor
prevalence being the left hand axis, but is otherwise interpreted similarly.

> plot(rfs,type="rn")
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Figure 2: PAF nomogram for INTERSTROKE risk factors. Nomograms like the above
give an alternative way to display joint intervention regarding odds ratios, prevalences and
approximate PAFs. They can also be used to visualise interventions. For instance, the green
and blue lines represent smoking in a population pre and post intervention. The odds ratio
for smoking isn’t affected by the intervention, but the prevalence for smoking is. The effect
of the intervention for smoking PAF can be visualised by rotating the line for smoking (using
the left axis odds ratio as a pivot) through the new prevalence post intervention.

3. Estimation with Continuous Exposures

Frequently, a discrete risk factor such as hypertension is generated by truncating an un-
derlying continuous exposure, such as blood pressure. Not accounting for this underlying
continuity may result in underestimation of disease burden attributable to the exposure as
some individuals with the reference value of the discretised risk factor may still be at elevated
risk. For instance if hypertension is defined as systolic blood pressure above 140mm/Hg, an
individual with systolic blood pressure of 139mm/Hg would fall into the reference group but
might have increased risk of cardiovascular disease compared to an individual with systolic
blood pressure under 120mm/Hg. Ferguson et al. (2020a) discusses these issues and suggests
a variety of appropriate estimands for the level of disease burden due to continuous exposures.

Using the notation from Ferguson et al. (2020a), we consider the exposure for a randomly
selected individual from the population as a continuous random variable, X, with Y repre-
senting a binary disease outcome. We let Yx represent the potential outcome if X = x, which
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we assume is well defined. Assuming that P (Yx = 1), considered as a function of x, has some
minimum value xmin within the physiological limits of the exposure X, we define the PAF
as:

PAF =
P (Y = 1) − P (Yxmin

= 1)

P (Y = 1)
. (9)

In the circumstance that P (Yx = 1) is strictly decreasing or strictly increasing as a function
of x, the minimum value xmin may be undefined, in which case we define the PAF as:

PAF =
P (Y = 1) − Inf{P (Yx = 1)}

P (Y = 1)
, (10)

defining Inf{P (Yx = 1)} as the infimum of the set of probabilities P (Yx = 1) with x ranging
over the possible range of exposure values.

As explained in Ferguson et al. (2020a), the estimands (9) and (10) may be difficult to estimate
when xmin falls in the extremes of the exposure distribution. As an alternative, the family
of estimands: PAFq for q ∈ (0, 1) are suggested as alternative metrics. Intuitively PAFq is
the impact fraction for an intervention that shifts the exposure value for individuals in the
subpopulation where it is beneficial to do so, with the intervention not effecting individuals
where such a shift is not necessary. 1−q indicates the proportion of individuals affected by the
intervention, in addition to how large the shift in exposure values is for those affected (larger
values of 1 − q indicating larger shifts). More technically, exposure values X for individuals
whose disease risk (based purely on the exposure value and not on other covariates) is above
the 100qth percentile of disease risk are moved to the closest possible value, fq(X), where
closest implies | fq(X) − X | as small as possible, such that the disease risk associated
with exposure values of fq(X) is at or below the 100qth percentile. Individuals with good
exposure values (corresponding to risk values below the 100qth percentile), are unaffected
by this intervention. PAFq when q > 0 tends to be easier to estimate than PAF (9), the
reason being that estimating PAFq usually involves less extrapolation. It also has a more
concrete real world interpretation as the impact fraction for an achievable intervention. PAFq

is defined more precisely as:

PAFq =
P (Y = 1) − P (I{X ∈ Rq}Y + I{X /∈ Rq}Y fq(X) = 1}

P (Y = 1)
(11)

where Rq is the interval of exposure values corresponding to the bottom 100q% of risk and
fq(X) is the closest point in the closure of Rq to X. Note that as q ↓ 0, PAFq ↑ PAF .

Under continuous analogs of the conditions 1., 2. and 3. listed on pages 3 and 4, (11) can be
estimated as

PAFq =
EC(I{X /∈ Rq}(P̂ (Y = 1 | X, C) − P̂ (Y = 1 | f̂q(X), C)))

P (Y = 1)
(12)

and

PAFq = EX,C|Y =1I{X /∈ Rq}[1 −
P̂ (Y = 1 | f̂q(X), C)

P̂ (Y = 1 | X, C)
] (13)



14 Estimating and displaying population attributable fractions

and

ˆPAFq(t) =

∑
i≤N (e−Ĥ0(t)ĥ(Ci,Ai) − e−Ĥ0(t)ĥ(Ci,f̂q(X)))

∑
i≤N e−Ĥ0(t)ĥ(Ci,Xi)

(14)

respectively for cross sectional, case-control and cohort designs, with f̂q(x) the estimated
value for fq(x) and P̂ (Y = 1 | x, c), the estimated probability of disease, when the risk factor
is x and the covariates are c.

graphPAF uses these equations to estimate PAFq across differing risk factors. Here we con-
sider the convenient case where a group of continuous risk factors: waist_hip_ratio, diet

and lipids all have the same set of underlying confounders, and subsequently estimated
effects of each risk factor can be obtained from a single statistical model. The following code
demonstrates how such a model might be specified for a case-control dataset:

> model_continuous_clogit <- clogit(formula = case ~

region*ns(age, df = 5) + sex*ns(age, df = 5) + education +

exercise + ns(diet, df = 3) + alcohol +

stress + ns(lipids,df = 3) + ns(waist_hip_ratio, df = 3) +

high_blood_pressure + strata(strata), data = stroke_reduced)

In the above, the continuous exposures waist_hip_ratio, diet and lipids appear in the
model as natural spline terms in the model. One can evaluate the estimated shape of the
exposure/outcome relationship, and visualise the interventions corresponding to a particular
value of PAFq using the function plot_continuous. As an example:

> plot_continuous(model_continuous_clogit,riskfactor="lipids",

data=stroke_reduced,min_risk_q=.1)

> plot_continuous(model_continuous_clogit,riskfactor="lipids",

data=stroke_reduced,min_risk_q=.2)

> plot_continuous(model_continuous_clogit,riskfactor="lipids",

data=stroke_reduced,min_risk_q=.3)

produces estimated relationships between lipids and OR of stroke (with the median value for
lipids as a reference by default), highlighting the regions representing the post intervention
ranges of the risk factor for PAF0.1,PAF0.2 and PAF0.3 (the argument min_risk_q identifying
the post intervention range).

Having fit the model, the function PAF_calc_continuous can be used to estimate PAFq.
Mandatory arguments to this function are riskfactor_vec, a vector of the risk factor names
that are of interest, q_vec, a vector of q values at which calculate PAFq as well as the model
and dataset. The resulting object is essentially a data frame with rows for each risk factor,
PAFq combination and columns corresponding to quantiles which can be printed and plotted
as follows:
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Figure 3: Estimated effects of blood lipid levels on the OR of stroke. The density of lipids
and pointwise 95% confidence bands for the odds ratios are also plotted. Also shaded blue
are the target regions for the intervention associated with PAFq for various q. For instance
PAF0.1 corresponds to the smallest 10% of risk

> out <- PAF_calc_continuous(model=model_continuous_clogit,

data=stroke_reduced, riskfactor_vec=c("diet","lipids","waist_hip_ratio"),

q_vec=c(0.01, 0.1,0.3,0.5,0.7,0.9),ci=TRUE)

> print(out)

riskfactor q_val est bias debiased_est norm_lower norm_upper

1 diet 0.01 0.16200 2.85e-02 0.13300 0.042300 0.2240

2 diet 0.10 0.14600 3.91e-03 0.14200 0.096300 0.1880

3 diet 0.30 0.11100 4.16e-04 0.11100 0.075800 0.1460

4 diet 0.50 0.07990 -2.17e-04 0.08010 0.063000 0.0973

5 diet 0.70 0.04860 -8.75e-04 0.04950 0.034800 0.0642

6 diet 0.90 0.01600 -5.33e-04 0.01660 0.007890 0.0252

7 lipids 0.01 0.37900 8.24e-03 0.37100 0.333000 0.4090

8 lipids 0.10 0.36500 6.27e-03 0.35800 0.326000 0.3910

9 lipids 0.30 0.28200 5.31e-03 0.27700 0.251000 0.3030

10 lipids 0.50 0.17300 3.56e-03 0.17000 0.151000 0.1890

11 lipids 0.70 0.07330 4.88e-04 0.07280 0.056900 0.0887
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12 lipids 0.90 0.01290 -5.19e-04 0.01350 0.005190 0.0217

13 waist_hip_ratio 0.01 0.17200 1.75e-02 0.15500 0.062600 0.2460

14 waist_hip_ratio 0.10 0.16100 1.74e-03 0.15900 0.112000 0.2050

15 waist_hip_ratio 0.30 0.11400 5.81e-04 0.11400 0.083100 0.1450

16 waist_hip_ratio 0.50 0.06810 1.09e-03 0.06700 0.048600 0.0855

17 waist_hip_ratio 0.70 0.03080 2.96e-04 0.03050 0.016400 0.0445

18 waist_hip_ratio 0.90 0.00691 2.98e-05 0.00688 -0.000203 0.0140

As explained earlier, the default setting "calculation_method="B" (13) facilitates estima-
tion in case-control designs for rare diseases. In contrast, "calculation_method="D" which
uses (12) is appropriate in cross-sectional designs or for case-control settings where disease
prevalence is known, and (14) is appropriate for cohort studies with a survival response. Note
that in the case of a survival response, PAFq(t) can only be evaluated at a single time, t,
specified as t_vector being a single element. Plotting estimated PAFq, which can be done
by simply applying plot to a PAF_q object, against q for several risk factors allows the user
to assess the relative benefits of comparable and achievable interventions on differing risk
factors.
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Figure 4: plotting PAFq over multiple risk factors. The figure indicates that comparable
interventions on diet and waist hip ratio (for instance shifting 50% of exposure values as is
the case in PAF0.5 may have similar effects for diet and waist hip ratio, but much larger
effects for lipids). As can be seen in the plot, the confidence intervals get wider as q gets
smaller reflecting the fact that PAFq (for q ≥ 0.1) is easier to estimate than PAF0 = PAF
in addition to representing more realistic interventions.

The results from the plot (shown in Figure 4) indicate that comparable interventions targeting
waist hip ratio and diet may have similar effects on disease burden, with interventions on
lipids having larger effects. This might motivate an intervention on lipid levels (for example,
increased statin use when appropriate) over interventions on diet or BMI, although admittedly
many other factors may dictate what if any intervention may be chosen in practice.

4. Pathway-specific PAF calculations
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While the PAF provides an overall measure of the importance of a particular disease risk fac-
tor in causing disease on a population level, the mechanisms by which the risk factor effects
disease may also be of interest. For instance, perhaps physical inactivity increases blood pres-
sure which subsequently increases the risk of stroke. Alternatively, physical inactivity might
indirectly increase the risk of stroke through weight gain or increased cholesterol levels. In this
context, the variables blood pressure, weight gain and cholesterol are regarded as ‘mediators’,
that is they are intermediate variables on differing causal pathways each partially explaining
the causal relationship between inactivity and stroke. How important might each pathway
be in disease pathogenesis? In O’Connell and Ferguson (2022) this question is addressed by
defining a PAF for a particular mediating pathway. Roughly this ‘pathway-specific’ PAF (PS-
PAF for short) can be interpreted as the relative decrease in disease prevalence if a particular
mediating pathway didn’t exist. For instance imagine there was no effect of physical inactivity
on blood pressure; what percentage of stroke might be avoided in such a population? Letting
M1, ..., MK represent K known mediators of the risk factor outcome relationship, A ∈ {0, 1}
a risk factor and Y ∈ {0, 1} a disease outcome, the PS-PAF for mediator k ≤ K is denoted
as:

Figure 5: Mediators on separate causal pathways. M1, M2 and M3 mediate the causal
relationship between A and Y . These mediators represent independent mechanisms by which
A affects Y in that any pathway of direct arrows originating from A and ending at Y can
only involve one of the three mediators.

PAFA−>Mk−>Y =
P (Y = 1) − P (YA,Mk

0
= 1)

P (Y = 1)
(15)

P (YA,Mk
0

= 1) can be interpreted as disease prevalence in a hypothetical population which
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mirrors the actual population in the values of the risk factor A, but where the values for
mediator, Mk, behave as if the risk factor didn’t exist (note that on an individual level Mk

0

is the potential outcome for the kth mediator assuming no exposure to the risk factor, that is
A = 0). As described in O’Connell and Ferguson (2022), interpretations for pathway-specific
PAFs subtly differ based on the causal identifiability conditions assumed. We are describing
the mechanistic interpretation here, although two other interpretations exist. We won’t go
into these details here and instead refer the interested reader to O’Connell and Ferguson
(2022).

In addition to defining pathway-specific PAFs for indirect pathways, one can also define an
PAF for all ‘unobserved’ or unknown pathways:

PAFA−>Y =
P (Y = 1) − P (Y0,M1,...,MK = 1)

P (Y = 1)
(16)

(16) denotes the ‘direct’ pathway specific PAF, and represents the contribution of mechanisms
by which the risk factor affects disease, other than those represented by pathways through
M1,....,MK (Note that P (Y0,M1,...,MK = 1) can be interpreted as the disease prevalence in
a population where the risk factor, A, was eliminated but with the joint distribution of
mediators M1, ..., MK being unaffected).

Under the assumptions listed in O’Connell and Ferguson (2022) (with the additional assump-
tion that mediators are on separate causal pathways between the risk ractor and disease),
estimating (15) requires fitting a model for the mediator, Mk, conditional on both the risk
factor, A, and the confounder vector for the exposure outcome relationship, C. Note that
these models estimate P (Mk = m | A, C) for a discrete mediator and E(Mk | A, C) for a
continuous mediator. In addition, one needs to fit a model for the disease outcome, Y , condi-
tional on the exposure, A, mediators, M1, ..., MK , and the same set of confounders, C. This
second model estimates P (Y = 1 | A, C, M1, ..., MK). When Mk is continuous, the following
estimator for (15) can then be used:

P̂AF A−>Mk−>Y =

∑
wiYi −

∑
i wi

̂
P (Y = 1 | Ai, Ci, M̂k

i , M
6=k

i
)∑

wiYi
(17)

with M̂k
i = Mk

i − ̂E(Mk | A = 0, Ci), with Ci and Mk
i representing the observed values of

the confounder vector and kth mediator for person i, and M
6=k

i
, the observed values for other

mediators for the same individual. Weights wi are used to account for possible case-control
structure. For representative cross sectional samples, these weights should be set to 1 (the
default). In contrast, for case-control data, these weights can be set based on estimated
disease prevalence. In the case that the mediator is discrete, a slightly different estimator is
used:

P̂ AF
A−>Mk−>Y

=

∑
wiYi −

∑
i

wi

∑
m∈Mk

̂P (Mk = m | Ai = 0, Ci) ̂P (Y = 1 | Ai, Ci, Mk = m, M
6=k

i
)∑

wiYi

(18)

Direct PS-PAF is slightly easier to estimate, as one only needs to fit the outcome model that
conditions on the risk factor, A, covariates, C, and mediators, M1,...,MK :

P̂AF A−>Y =

∑
wiYi −

∑
i wi

̂P (Y = 1 | Ai = 0, Ci, M1
i , ..., MK

i )∑
wiYi

(19)
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Examples

To illustrate these calculations with graphPAF, suppose we wish to estimate pathway-specific
PAFs for the 4 pathways from physical inactivity to stroke through waist hip ratio, through
blood lipid counts, through high blood pressure, and through any mediating pathways other
than waist hip ratio, blood pressure and lipids from the simulated dataset stroke_reduced
included in the graphPAF library. Since stroke_reduced is a case-control dataset, weighted
models for each mediator and the response need to be fit to replicate what one would ex-
pect from a representative sample of the population. In stroke_reduced, these weights
are already in the dataset and are based on an average incidence of 0.0035 new strokes per
person per year (as explained earlier). To calculate the weights vector for a different preva-
lence, stroke_reduced could be sent to the data_clean function. For instance, if we instead
thought that 0.01 was the correct incidence, we could use

stroke_reduced_2 <- data_clean(stroke_reduced,

riskfactor_vec=colnames(stroke_reduced),prev=0.01)

A column of weights would then be included in the dataframe stroke_reduced_2. Having
calculated these weights, models for the response and a list of models for the mediators can
be specified:

> response_model <-

glm(case ~ region * ns(age, df = 5) + sex * ns(age, df = 5) +

education + exercise + ns(diet, df = 3) + smoking + alcohol +

stress + ns(lipids, df = 3) + ns(waist_hip_ratio, df = 3) +

high_blood_pressure,data=stroke_reduced,family='binomial',

weights=weights)

> mediator_models <- list(

glm(high_blood_pressure ~ region * ns(age, df = 5) +

sex * ns(age, df = 5) + education +exercise + ns(diet, df = 3) +

smoking + alcohol + stress,data=stroke_reduced,family='binomial',

weights=weights),

lm(lipids ~ region * ns(age, df = 5) + sex * ns(age, df = 5) +

education +exercise + ns(diet, df = 3) + smoking + alcohol +

stress, weights=weights, data=stroke_reduced),

lm(waist_hip_ratio ~ region * ns(age, df = 5) +

sex * ns(age, df = 5) + education+ exercise + ns(diet, df = 3) +

smoking + alcohol + stress, weights=weights,

data=stroke_reduced))

The response model (argument: response_model) and list of mediator models (mediator_models)),
along with the standard arguments for the riskfactor name, reference value for the risk factor
and dataset, are then sent to ps_paf, which implements the estimators: (17),(18) or (19) with
the fitted models. Again, for case-control datasets, the argument prev needs to be specified
for correct calculation of the weights.

> ps_paf(response_model=response_model, mediator_models=mediator_models,

riskfactor="exercise",refval=0,data=stroke_reduced,prev=0.0035,ci=TRUE)
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est bias debiased_est norm_lower norm_upper

Direct 0.3350 0.005050 0.3300 0.260000 0.3990

high_blood_pressure 0.0174 -0.001200 0.0185 -0.00605 0.431

lipids 0.0207 0.000713 0.0200 -0.000896 0.0409

waist_hip_ratio 0.0314 0.000390 0.0310 0.019100 0.0429

The results indicate that only a small proportion of the disease burden due to physical in-
activity is attributable to pathways involving lipids, blood pressure and waist hip ratio. For
instance, if the pathway from physical inactivity to stroke through waist hip ratio were dis-
abled (in that physical inactivity had no deleterious affect on waist hip ratio), relative stroke
prevalence would only decrease by 3.1%, with similar interpretations and small PS-PAFs for
the pathways through lipids and high blood pressure.

5. Joint PAF

Joint PAFs refer to the collective disease burden that can be appropriated to a collection of
risk factors. For instance the INTERSTROKE study O’Donnell et al. (2016) estimates that
roughly 90% of incident strokes might be avoided if 10 major modifiable stroke risk factors
were removed from the population. More formally, the joint PAF for a set of risk factors, S

can be defined as:

PAFS =
P (Y = 1) − P (Y (0S) = 1)

P (Y = 1)
, (20)

with the shorthand: Y (0S) representing the potential outcome where the subset of risk factors
S have been set to their reference levels. Traditionally, such calculations were performed via
multivariable regression models that include the set of variables that are to be eliminated. For
instance to estimate a joint PAF for stroke associated with stress and a diagnosis of diabetes,
disease risk in the data collected might be compared to predicted disease risk if diabetes status
and stress were set to their reference levels, with the predicted disease risk being computed
via a single fitted logistic model. While this approach may be fine if diabetes status and stress
share the same set of confounding variables (proviso that the model for stroke risk includes
these confounders and is correctly specified), bias may result when the effects of one of the
risk factors act as confounders in the relationship between the response and other risk factors
of interest. This is the case here as blood pressure, which is an effect of physical activity
according to Figure 6, confounds the relationship between diabetes and stroke. For these
kinds of causal structures, while predicted risks derived via a single regression may correctly
reflect the probability that an individual in the dataset has disease, conditional on their having
reference values for the risk factors under investigation, they will not reflect the probability
of disease in the population if all individuals had reference levels for those same risk factors.
In other words, the associated estimated joint PAF will not have a causal interpretation.

Ferguson et al. (2020b) describes how the intervention corresponding to a joint PAF (the
intervention being the ‘elimination’ of a subset of risk factors) can be conceptualised via
recursive application of Pearl’s do-operator Pearl (2009) on the true causal graph (assumed
to be a directed acyclic graph or DAG), linking risk factors, outcome and associated risk
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factor/outcome confounders. This observation facilitates asymptotically unbiased estimation
of joint PAFs under general causal structures. To achieve this in practice, we need to first
know the causal DAG, second have collected data on individuals i = 1, ...., N for all variables
represented in the DAG, and finally correctly specify and fit statistical models linking each
node in the causal DAG to all of its direct causes (the direct causes being those variables with
arrows pointing to the node of interest). Having done this, one can use these fitted models
to simulate from the joint distribution of all variables in the graph (confounders, risk factors
and outcome) corresponding to each application of the do-operator. For each application of
the do-operator (corresponding to a population level elimination of a single risk factor), this
simulation is itself recursive. For instance, if smoking is eliminated, smoking is first set to its
reference level (no smoking) for all individuals in the current simulated dataset. Values for
the direct effects of smoking (that is the nodes for which smoking is a parent in the causal
graph) are then simulated from the conditional distribution of these variables assuming no
smoking. Supposing blood pressure is one of the effects of smoking, next the direct effects of
blood pressure are simulated, conditional on the simulated values for blood pressure and the
other direct effects of smoking. This process (simulations of a particular node being made
conditional on the simulated values for parent nodes) is continued until the response node is
simulated. More details are given in Ferguson et al. (2020b).

Suppose then that upon elimination of a subset S of risk factors, the population distribution
of all variables in the causal graph is PS, and via the recursive algorithm above, we have
simulated new data DS for all variables in the causal graph (excluding the response) under
PS. Our estimate for (20) is then:

PAFS =

∑
i≤N [wiYi − wiP̂ (Yi = 1 | DS)]

∑
i≤N wiYi

, (21)

where P̂ (Yi = 1 | DS) represents the estimated probability of disease for individual i under the
simulated data structure for risk factors and confounders represented by DS (this probability
depends on DS through the simulated values for individual i at those risk factors and covari-
ates that are assumed to directly affect the outcome). This approach can be applied to cross
sectional and case-control datasets, where as before the argument prev is utilised to calculate
the weights, wi in case-control datasets. Note that the above estimator may be randomised,
that is estimating joint PAF twice using the same data may give slightly different results,
since differing simulated datasets DS will likely be used in (20) on each occasion. The degree
of randomisation in the resulting estimator will generally be small for large datasets, although
if desired the estimator (21) can be averaged over several independently simulated versions of
DS to reduce variability. In some cases, DS may not vary over over differing simulations. For
instance, for reasons described in O’Connell and Ferguson (2022), continuous variables in DS

are simulated by adding model predicted residuals to the predicted values given the current
values of their parents. As a result, randomness in DS can only be generated by discrete risk
factors or confounders that are graph descendants of risk factors that are eliminated.

5.1. Data examples

The joint_paf function in graph PAF implements the procedure described above. As an
example, suppose we are interested in estimating the joint PAF for stroke due to stress and
blood pressure. First we need to specify the causal graph linking stress, blood pressure
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and stroke. In doing this, one must ensure that the confounders of any two nodes in the
graph are also specified: for instance, any joint causes of stress and blood pressure must also
be included. In Figure 5, we illustrate our assumed causal structure for INTERSTROKE
risk factors, which includes many confounders and risk factors other than stress and blood
pressure. However, in the context of this estimation problem (and assuming Figure 5 is
correct), we can give graphPAF a reduced causal structure: we actually don’t need to specify
preclinical disease variables PCD or physiology variables P, other than blood pressure, since
they are not common causes of variables in the set {stress, blood pressure and stroke}. We
can specify the causal graph with a list of the parents of all relevant variables in the graph
using the argument parent_list, together with a vector of variable names corresponding to
the nodes of the graph using the argument node_vec. When doing this it is important that
the components of node_vec and parent_list are in the same order. In addition, node_vec

should be ordered so that parent nodes, which represent the causes of their children nodes,
are positioned in the vector before their children.

> node_vec=c("exercise","diet","smoking","alcohol","stress",

"high_blood_pressure","case")

> parents_exercise <- c("education")

> parents_diet <- c("education")

> parents_smoking <- c("education")

> parents_alcohol <- c("education")

> parents_stress <- c("education")

> parents_high_blood_pressure <- c("education","exercise","diet",

"smoking","alcohol","stress")

> parents_case <- c("education","exercise","diet","smoking",

"alcohol","stress","high_blood_pressure")

> parent_list <- list(parents_exercise,parents_diet,parents_smoking,

parents_alcohol,parents_stress,parents_high_blood_pressure,parents_case)

Next, models for each variable, each model adjusting for the parents of that variable as
well as the variable itself, need to be fit. In estimating joint PAFs (as well as the sequential
and average PAFs detailed in the following section), graphPAF supports simulation from linear
models (fit using lm), logistic models (fit using glm) and ordinal logistic models (fit using polr

from the R library MASS). Given that specification of multiple models can be time consuming,
graphPAF has a function automatic_fit that automatically fits additive models for each node
in node_vec, conditioned on the parents of that node. This function can also fit nonlinear
relationships for continuous risk factors or confounders using the spline_nodes argument.
In the code below, diet is assumed to have a nonlinear effect. Common interactions between
variables that appear in all of the models can be specified by the argument common. In the
case that the models for differing nodes require individual specification (for example if the
interaction terms differ between models) the models can be fit separately with either lm,
glm or polr, before populating model_list. For case-control datasets, these models need
to be fit with appropriate weighting (so that the weighted dataset set could be regarded as
a representative sample) as described earlier. If automatic_fit is used, this can again be
achieved automatically by specifying the prev argument. As mentioned earlier, weights can
be also calculated by passing the original dataset to data_clean before model fitting.
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> model_list=automatic_fit(data=stroke_reduced, parent_list=parent_list,

node_vec=node_vec, prev=.0035,common="region*ns(age,df=5)

+sex*ns(age,df=5)",spline_nodes=c("diet"))

Having specified values for model_list, parent_list and node_vec, these values can be
passed as arguments to joint_paf to estimate the joint PAF. The subset of risk factors of
interest, riskfactor_vec which will be a subset of node_vec, also needs specification. For
case-control data sets we also need to specify the argument prev. All of these arguments
are common to joint_paf, and the related functions seq_paf and average_paf described
later in Section 6. As an example, below we compare estimated single risk factor PAFs for
smoking and blood pressure to the joint PAF for both smoking and blood pressure together.
Note that the estimated joint PAF (0.375) is slightly less than the sum of individual PAFs
(0.113+0.269=0.382). This is expected Rowe, Powell, and Flanders (2004) as some of the
disease cases that might be prevented in a population where nobody smokes would equally be
prevented in a population where nobody was hypertensive. As mentioned earlier, joint_paf

can average (21) over multiple independently estimated datasets using the argument nsim.
However, since no discrete graph descendants of smoking (other than high_blood_pressure)
are specified in the causal graph specified in joint_paf, DS will not vary over differing
simulation iterates in this example.

> joint_paf(data=stroke_reduced, model_list=model_list,

parent_list=parent_list,node_vec=node_vec,riskfactor_vec=c("smoking"),

prev=.0035,ci=TRUE)

est bias debiased_est norm_lower norm_upper

joint PAF 0.113 0.00718 0.105 0.0857 0.125

> joint_paf(data=stroke_reduced, model_list=model_list,

parent_list=parent_list, node_vec=node_vec,

riskfactor_vec=c("high_blood_pressure"),

prev=.0035,ci=TRUE)

est bias debiased_est norm_lower norm_upper

joint PAF 0.269 0.00331 0.266 0.248 0.284

> joint_paf(data=stroke_reduced, model_list=model_list,

parent_list=parent_list, node_vec=node_vec,riskfactor_vec

=c("smoking","high_blood_pressure"), prev=.0035,

ci=TRUE)
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Figure 6: DAG showing causal structure linking risk factors at multiple levels. For the
simulated INTERSTROKE dataset, we might assume that each node represents multiple risk
factors as follows: C represents the Confounders (age,region,sex and education), B represents
Behavioural risk factors: (exercise, alcohol use, smoking, stress levels and diet), P represents
risk factors indicating physiology: (blood pressure, blood lipids and waist hip ratio), PCD
represents preclinical disease: (diabetes and cardiac symptoms such as atrial fibrillation). Y
is a 0/1 indicator for stroke occurrence

est bias debiased_est norm_lower norm_upper

joint PAF 0.375 0.000738 0.374 0.349 0.399

6. Sequential and Average PAFs

Sequential PAFs (SAF)s, first described by Eide and Gefeller (1995) are closely related to joint
PAFs as discussed in the previous section. They pertain to the incremental disease burden
attributable to a risk factor (or more specifically to the removal of that risk factor from
the population) in a population where a subset of risk factors have already been eliminated.
Suppose that we number disease risk factors under consideration as: {1, ..., K}. We can define
the sequential PAF for eliminating risk factor j ≤ K, conditional on the subset of risk factors
S ⊂ {1, ..., K} \ {j} already having being removed from the population, as the difference in
joint PAF pertaining to removing S ∪ {j} and the joint PAF pertaining to removing S alone:

PAFj|S = PAFS∪{j} − PAFS (22)

Given this link between joint PAF and sequential PAF, the same issues (in particular risk
factors of interest acting as confounders of causally downstream risk factors of interest) men-
tioned in the section above can also cause biases in estimating sequential PAF and average
PAF. These can again be handled by recursive application of the do-operator and simulation
from the corresponding distributions. Sequential PAF may be of practical interest if popu-
lation health interventions are to be applied incrementally (for instance, what would be the
next risk factor to target in a health intervention after a successful intervention that targets
smoking?), but another use is in the definition and estimation of average PAFs (APAF)s,
again first introduced in Eide and Gefeller (1995).
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As explained above, individual PAFs for differing risk factors in a set are not expected to sum
to the joint PAF corresponding to eliminating all of the risk factors. Over the years, differing
proposals have been made to construct versions of PAFs for individual risk factors that do sum
to the corresponding joint PAF, the most convincing of which is to define and calculate average
PAFs. Again suppose there are K risk factors, labeled again {1...K}. Imagine eliminating
these K risk factors in some sequence. This can be done in K! different ways. Each of these
K! permutations can be represented as σ = σ(1), ..., σ(K), where σ(j) = k if the risk factor k
is the jth risk factor eliminated according to that ordering, and as such each permutation is
associated with a sequential PAF for each risk factor. For instance, in the previous example
the sequential PAF for risk factor k according to σ would be SAFk|{σ(1)...σ(j−1)} if j ≥ 2
or just the PAF for risk factor k if j = 1. The average PAF, APAFk, for risk factor k is
the average of the sequential PAF s over all K! different permutations. By definition, the
sequential PAFs for differing risk factors corresponding to a particular permutation must add
to the joint PAF. From this it follows easily that the average of these sequential PAFs for
each risk factor across differing permutations (that is the average PAF) must also sum over
differing risk factors to the joint PAF.

6.1. Estimation

At first look, it seems that one must calculate K! differing sequential PAFs to calculate
average PAF for a risk factor. However, examining (22) we see that any sequential PAF is
the difference between two differing joint PAFs. The number of joint PAF calculations is the
same as the number of nonempty subsets of {1...K} (that is 2K − 1, much smaller than K!).
Provided the number of risk factors isn’t too large (say 10 or fewer), it is quite feasible to
calculate all possible sequential PAFs utilising this approach. The average PAF for risk factor
k ≤ K can then be calculated using:

APAFk =

∑K
j=1(K − j)!(j − 1)!

∑
S⊂{1,...,K}\k:|S|=j−1 PAFk|S
K!

. (23)

The ‘exact’ approach to estimating APAFk is to first estimate PAFk|S for all possible subsets:
S ⊂ {1, ...K} \ k of risk factors sets that exclude k, and then plug these estimates into (23).
This is done most efficiently when calculating APAF for all K risk factors together.

When 2K is very large, estimating (23) exactly may be too time consuming. Recognising
instead that APAFk is a ‘population’ average of K! sequential PAFs, each sequential PAF
corresponding to a single permutation (with admittedly many of these permutations lead to
the same SAF), one can approximate the average PAF by randomly sampling a smaller number
nperm K! of permutations. Obviously, the larger nperm is, the smaller the approximation error
from this step, which like any sample average decreases probabilistically at rate 1√

nperm
as

nperm increases. In practice, nperm= 1000 has been suggested to achieve acceptable accuracy
Ferguson et al. (2018). Stratified sampling of permutations (ensuring for instance that each
risk factor appears in position 1 in the elimination order an equal number of times in the
nperm permutations) can somewhat reduce the approximation error. We will describe this in
the next section.

6.2. Examples

Let’s extend the example from earlier where we looked at the joint PAF for smoking and
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high_blood_pressure, to include a 3rd risk factor diabetes. Note that lipids and waist_hip_ratio

are joint causes of diabetes and stroke (see Figure 5), and we now need to extend our
causal graph and associated list of statistical models to include these variables in addition to
diabetes.

> node_vec=c("exercise","diet","smoking","alcohol","stress",

"high_blood_pressure","waist_hip_ratio","lipids","diabetes","case")

> parents_exercise <- c("education")

> parents_diet <- c("education")

> parents_smoking <- c("education")

> parents_alcohol <- c("education")

> parents_stress <- c("education")

> parents_high_blood_pressure <- c("education","exercise","diet",

"smoking","alcohol","stress")

> parents_waist_hip_ratio <- c("education","exercise","diet",

"smoking","alcohol","stress")

> parents_lipids <- c("education","exercise","diet",

"smoking","alcohol","stress")

> parents_diabetes <- c("education","exercise","diet",

"smoking","alcohol","stress","high_blood_pressure",

"waist_hip_ratio","lipids")

> parents_case <- c("education","exercise","diet","smoking","alcohol","stress",

"high_blood_pressure","waist_hip_ratio","lipids","diabetes")

> parent_list <- list(parents_exercise,parents_diet,parents_smoking,

parents_alcohol,parents_stress,parents_high_blood_pressure,

parents_waist_hip_ratio,parents_lipids,parents_diabetes,parents_case)

Again we can automatically specify models using the automatic_fit function which now will
fit models for the extra variables specified in node_vec. Note that the risk factors lipids

and waist_hip_ratio are continuous. We can allow nonlinear effects for these variables by
using the spline_nodes argument, which fits 3 degree of freedom natural cubic splines as a
default, as below:

> model_list=automatic_fit(data=stroke_reduced, parent_list=parent_list,

node_vec=node_vec, prev=.0035,common="region*ns(age,df=5)+

sex*ns(age,df=5)",spline_nodes = c("waist_hip_ratio","lipids","diet"))

Single sequential PAFs can be estimated using the function seq_paf, which has the same
structure as joint_paf. The most important argument is riskfactor_vec, a vector of risk
factors. The sequential PAF is estimated for the risk factor specified in the last position
of riskfactor_vec conditional on the risk factors in earlier positions. For instance, the
code below estimates the sequential PAF for eliminating diabetes, in a population where
smoking and high_blood_pressure are already eliminated. As can be seen below, this
estimator is randomised: the estimate will vary slightly over differing simulated data sets.
The reason for this is that now the discrete variable diabetes is included in the dataset:
D{smoking, high_blood_pressure}, and values for diabetes under interventions for smoking
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and high_blood_pressure are randomly simulated. Nevertheless as demonstrated below, the
variation over simulation repetitions is fairly minimal and this variability will be accounted for
in the bootstrap confidence interval. Overall, this analysis suggests that in a population with
no smoking and no high blood pressure, an extra 2.4% of strokes (taken as a percentage of
the number of strokes in the current population) might be prevented if there was no diabetes.

> seq_paf(stroke_reduced,model_list,parent_list,node_vec,prev=0.0035,

riskfactor_vec=c("smoking","high_blood_pressure","diabetes")

,nsim=1)

0.02382662

> seq_paf(stroke_reduced,model_list,parent_list,node_vec,prev=0.0035,

riskfactor_vec=c("smoking","high_blood_pressure","diabetes")

,nsim=1)

0.02267426

> seq_paf(stroke_reduced,model_list,parent_list,node_vec,prev=0.0035,

riskfactor_vec=c("smoking","high_blood_pressure","diabetes"),

ci=TRUE,nsim=1)

est bias debiased_est norm_lower norm_upper

sequential PAF 0.024 2.94e-05 0.024 0.0156 0.0323

Average PAF can be estimated using the function average_paf. The default estimation
method is to first estimate the joint PAF for all possible risk factor subsets, S denoting a
particular subset, next to estimate all possible sequential PAFs, PAFj|S, from the vector
of joint PAFs and finally substitute these estimated sequential PAFs into (23). Recall that
in estimating the joint PAF for the risk factor set S, a data set DS corresponding to this
joint intervention is simulated recursively. The recursive nature of this simulation can be
exploited to perform the estimation of all 2K joint PAFs efficiently. For instance, when
simulating data: DS∪{j} corresponding to eliminating risk factors: S ∪ {j}, with j being the
final risk factor eliminated, data corresponding to eliminating the risk factors in S, DS has
already been simulated. average_paf calculates the joint PAF for the 2K risk factor subsets
in an order that allows extensive use of this fact. As illustrated in the results below, the
estimated average PAF is highest for high_blood_pressure at 0.259, with smoking at 0.106
and diabetes at 0.0395. These three quantities sum to the estimated joint PAF, 0.405, as
expected. In addition, average sequential PAFs by elimination position for each risk factor is
provided. Note that the sequential PAF for diabetes is most effected by elimination position.
This makes sense based on its position in the causal graph (causally upstream of smoking

and high_blood_pressure)
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> out <- average_paf(stroke_reduced,model_list,parent_list,

node_vec,prev=0.0035,riskfactor_vec

=c("smoking","high_blood_pressure","diabetes"))

> print(out)

position risk factor estimate

1 elimination position 1 smoking 0.10530974

2 elimination position 2 smoking 0.10030958

3 elimination position 3 smoking 0.10349950

4 elimination position 1 high_blood_pressure 0.27667668

5 elimination position 2 high_blood_pressure 0.26135515

6 elimination position 3 high_blood_pressure 0.25422371

7 elimination position 1 diabetes 0.05407963

8 elimination position 2 diabetes 0.03472414

9 elimination position 3 diabetes 0.02355873

10 Average smoking 0.10303961

11 Average high_blood_pressure 0.26408518

12 Average diabetes 0.03745417

13 Joint 0.40457895

In the above analysis, the estimator is again randomised. This default estimation method for
average_paf requires estimating 2K − 1 joint PAFs, each estimated joint PAF corresponds
to a single simulated data set DS, the simulation of which can generate substantial Monte
Carlo variability for small datasets when K is also small. As an alternative, by setting the
argument exact=FALSE, one can sample nperm differing permutations of {1, ..., K}: corre-
sponding to differing risk factor elimination orders, calculate sequential PAFs associated with
each permutation and average the associated sequential PAF for a particular risk factor. For
small K and nperm 2K this alternative approach is likely to have reduced Monte Carlo error
(compared to the ‘exact’ approach), despite some Monte Carlo error due to the sampling of
permutations. Stratified sampling of permutations (so that the joint empirical distribution of
permutation positions σ(1), ..., σ(S) for some S < K is uniform (as it would be if we calcu-
lated sequential PAFs for all K! permutations), can help further reduce Monte Carlo error.
For K risk factors, an integer multiple of K(K − 1)...(K − S + 1) permutations are needed to
implement such a strategy. Such stratified sampling of permutations is implemented through
the argument correct_order (correct_order=S in the preceding example).

For larger K, the alternative approach of averaging sequential PAFs over a number of sam-
pled permutations nperm≈ 2K or nperm< 2K may be less accurate than (22) due to the
Monte Carlo error associated with sampling permutations, but may be more computationally
feasable. When confidence intervals are not requested (ci=FALSE) an upper bound on the
margin of error of the point estimate (in terms of how close to the calculation with nperm =
∞) is given (with 95%) confidence as calculated in Ferguson et al. (2018), provided permuta-
tions are sampled (using the argument exact=FALSE). Note that this margin of error assumes
nonstratified sampling rather than the more accurate stratified sampling implemented here.
The results below indicate that the three average PAFs are calculated to within an accuracy
of 0.004 (with 95% confidence) compared to the exact estimate when nperm → ∞.
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> out <- average_paf(stroke_reduced,model_list,parent_list,node_vec,

prev=0.0035, riskfactor_vec=c("smoking","high_blood_pressure","diabetes"),

ci=FALSE,exact=FALSE, correct_order=2, nperm=60)

> print(out)

position risk factor estimate Margin error lower bound Upper bound

1 elimination position 1 smoking 0.10441103 2.786493e-03 0.10162454 0.10719752

2 elimination position 2 smoking 0.10406168 1.177682e-03 0.10288399 0.10523936

3 elimination position 3 smoking 0.10349950 0.000000e+00 0.10349950 0.10349950

4 elimination position 1 high_blood_pressure 0.27582328 6.291276e-04 0.27519415 0.27645241

5 elimination position 2 high_blood_pressure 0.26066718 6.768796e-03 0.25389838 0.26743598

6 elimination position 3 high_blood_pressure 0.24764498 2.129574e-03 0.24551541 0.24977455

7 elimination position 1 diabetes 0.05407963 0.000000e+00 0.05407963 0.05407963

8 elimination position 2 diabetes 0.03942847 6.971034e-03 0.03245744 0.04639951

9 elimination position 3 diabetes 0.02412110 3.563301e-04 0.02376477 0.02447743

10 Average smoking 0.10399074 9.525977e-04 0.10303814 0.10494333

11 Average high_blood_pressure 0.26137848 3.738582e-03 0.25763990 0.26511706

12 Average diabetes 0.03920974 3.864373e-03 0.03534536 0.04307411

13 Joint 0.40457895 5.903706e-18 0.40457895 0.40457895

Of course, sampling error also needs to be accounted for when making a statement about
estimation accuracy. While in this case with only K = 3 risk factors, estimation with 60 per-
mutations should give a slightly more accurate point estimate for the average PAF compared
to using equation (22) directly, the approximation error in both cases is much smaller than
the sampling error. In fact, confidence intervals suggest comparable accuracy of using equa-
tion (22) (full_results_a) and calculating the average PAF using 60 sampled permutations
with stratified sampling (full_results_b).

> full_results_a <- average_paf(stroke_reduced,model_list,parent_list,

node_vec,prev=0.0035,riskfactor_vec=c("smoking","high_blood_pressure",

"diabetes"), ci=TRUE)

> print(full_results_a)

position risk factor est bias debiased_est norm_lower norm_upper

1 elimination position 1 smoking 0.1100 -0.002300 0.1130 0.0918 0.1330

2 elimination position 2 smoking 0.1060 0.000482 0.1050 0.0892 0.1210

3 elimination position 3 smoking 0.1030 0.000395 0.1030 0.0890 0.1170

4 elimination position 1 high_blood_pressure 0.2750 -0.001090 0.2760 0.2570 0.2960

5 elimination position 2 high_blood_pressure 0.2580 -0.000116 0.2590 0.2360 0.2810

6 elimination position 3 high_blood_pressure 0.2440 -0.002010 0.2460 0.2180 0.2740

7 elimination position 1 diabetes 0.0541 0.000731 0.0533 0.0354 0.0713

8 elimination position 2 diabetes 0.0379 0.001700 0.0362 0.0203 0.0522

9 elimination position 3 diabetes 0.0244 -0.000195 0.0246 0.0153 0.0339

10 Average smoking 0.1060 -0.000475 0.1070 0.0916 0.1220

11 Average high_blood_pressure 0.2590 -0.001070 0.2600 0.2380 0.2830

12 Average diabetes 0.0388 0.000746 0.0381 0.0243 0.0518

13 Joint PAF 0.4050 -0.000801 0.4050 0.3790 0.4320
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> full_results_b <- average_paf(stroke_reduced,model_list,parent_list,

node_vec,prev=0.0035,riskfactor_vec=c("smoking","high_blood_pressure",

"diabetes"),ci=TRUE,exact=FALSE,

correct_order=2, nperm=60)

position risk factor est bias debiased_est norm_lower norm_upper

1 elimination position 1 smoking 0.1040 9.29e-04 0.1030 0.0815 0.1250

2 elimination position 2 smoking 0.1040 5.65e-04 0.1040 0.0862 0.1210

3 elimination position 3 smoking 0.1030 2.37e-05 0.1030 0.0881 0.1190

4 elimination position 1 high_blood_pressure 0.2760 4.34e-05 0.2760 0.2550 0.2970

5 elimination position 2 high_blood_pressure 0.2620 -3.45e-04 0.2620 0.2400 0.2840

6 elimination position 3 high_blood_pressure 0.2460 -2.25e-04 0.2460 0.2230 0.2690

7 elimination position 1 diabetes 0.0541 6.78e-04 0.0534 0.0371 0.0697

8 elimination position 2 diabetes 0.0396 3.95e-04 0.0392 0.0261 0.0522

9 elimination position 3 diabetes 0.0242 7.41e-05 0.0241 0.0155 0.0327

10 Average smoking 0.1040 5.06e-04 0.1040 0.0855 0.1220

11 Average high_blood_pressure 0.2610 -1.76e-04 0.2610 0.2400 0.2830

12 Average diabetes 0.0393 3.82e-04 0.0389 0.0263 0.0515

13 Joint PAF 0.4050 7.13e-04 0.4040 0.3770 0.4310

Results (estimated average PAFs and sequential PAFs by elimination position, along with asso-
ciated variability bands) can be plotted over differing risk factors using plot(full_results_b,number_rows=1,max_PAF=

and are displayed in Figure 7, the arguments number_rows and max_PAF controlling the num-
ber of rows to plot and the maximum value on the y-axis on each plot.
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Figure 7: Estimated average PAFs and sequential PAFs for the group of risk factors: smoking,
blood pressure and diabetes. Risk factors are plotted in decreasing order of estimated average
PAF. Estimated average PAFs are shaded in pink, and estimated average sequential PAFs
for each elimination position (with the averaging over differing configurations of risk factors
eliminated prior to the risk factor under consideration) in blue. One expects sequential PAFs
to decrease as elimination position increases as observed for blood pressure and diabetes.
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Note that if exact=`FALSE' and ci=`FALSE', the plotted variability bands will not be inter-
pretable as confidence intervals, but rather as bands for the degree of possibility approximation
error in the point estimate.

6.3. Computational considerations

As described here, graphPAF, facilitates incorporation of causal structure into estimation
of joint, sequential and average PAFs, essentially by utilising recursive simulation methods
based on an assumed causal structure. Ignoring such causal structure, as other approaches
have in the past (for example, Rückinger, von Kries, and Toschke (2009), Ferguson et al.

(2018)) may lead to bias. A drawback of this simulation based strategy is computational
cost. Techniques such as bootstrap parallelisation (through the boot library), intelligent or-
dering of calculations when calculating joint PAFs for differing risk factor subsets, stratified
sampling of permutations when the number of risk factors is large and the use of the more
efficient formula for average PAFs (23) can somewhat reduce these computational require-
ments. Computational cost depends jointly the size of the Bayesian networks and the size
of the underlying dataset. The dataset stroke_reduced used in this manuscript has 13,712
rows and the algorithms described here can be run in reasonable time on most modern laptops
when using this data. For larger datasets, splitting the complete dataset into independent
subsets and running the methods independently on each subset before averaging might be
recommended to avoid memory management problems.

7. Conclusions

In addition to implementing standard PAF estimation, graphPAF collates many recently de-
veloped tools for estimation of disease burden in nonstandard settings into one package. We
hope it will be useful to statisticians and epidemiologists who are interested in comparisons
of disease burden over multiple risk factors, both discrete and continuous.
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